Title of Invention

SYSTEM AND METHOD FOR EVALUATING A MACHINED SURFACE OF A CAST METAL COMPONENT

Abstract A method and system are provided for non-contact evaluation of a machined surface of a cast-metal part, including a vision-based porosity inspection station. A digital image of the machined surface is acquired, oriented and scaled to an XY coordinate system, filtered, and inverted. A second image is generated with known design surface features eliminated. Each pixel of the inverted digital image is XOR-compared with a corresponding pixel of the second image. Identified common surface features common to both images is analyzed statistically for conformance to a threshold. A defect is identified as any identified surface feature common to both images which exceeds the threshold. The system moves the part for further processing if a statistical analysis of defects indicates an acceptable component, and alternatively, removes the part from further processing if the analysis indicates a flawed component.
Full Text

FIELD OF INVENTION
[0001] This invention pertains to a system and method for evaluating a machined
surface of a cast metal component More particularly, the invention relates to cast-metal
parts and vision based, non-contact inspection systems for inspecting cast-metal parts.
BACKGROUND OF THE INVENTION
[0002] Manufacturers of cast-metal components having machined surfaces
typically inspect each component to identify presence of surface defects, to determine if
the component is in compliance with quality standards. Surface defects of interest
typically include pores, or openings, which indicate voids in the cast metal. Such voids
are caused, for example, by impurities in the cast metal, and metal flow problems
during the casting process. A specific pore may indicate a small void, or it may indicate
and lead to a much larger void below the surface. A pore may be located in a critical
location in the cast part, such as an edge of a casting, or near a heat-affected zone,
and affect overall part quality and performance in-use. Alternatively, a pore may be
located in a non-critical location, with little or no effect on part quality and in-use
reliability and performance. Voids in the casting typically associated with surface defects
include, by way of example, a small isolated opening, a pore with a concave region, a
convex hull in the casting created prior to pore separation, a top edge-connected pore,
or, an edge-connected pore on the inside of a concave region.
[0003] One present method and apparatus for inspecting and detecting surface
defects comprises having a human operator measure a machined surface used a
MYLARâ„¢ (or equivalent) template, and visually evaluating the result to identify and
detect defects therefrom. The quality and reliability

of such inspection is subject to the operator's overall capability and
performance over time.
[0004] A second method and system as been developed comprising a
surface porosity inspection process using a line-scan camera and lighting
system to obtain an image of a surface. Software was developed to evaluate
surface pores using adaptive threshold and characterization of isolated and
edge-connected pores. An adaptive threshold grayscale process generates a
black and white image of the surface. An inverted binary (i.e. pure black and
white) image is presented for processing to identify the pores using
algorithms. Such a system is not robust in a manufacturing production
environment because of limitations related to identification of surface defects
with edge-connected pores. These limitations included an inability to reliably
detect a pore with a concave region, a convex hull created prior to pore
separation, or an edge-connected pore on an inside of a concave region. In
addition, size of convexity defects and neighboring pores may be inaccurately
measured, leading to false detections. Furthermore, the system may falsely
detect small defects, or sharp features, or tightly-cornered features. Such a
system typically requires an operator to inspect and sort parts after machine
inspection in conjunction with the analysis from the inspection system,
defeating the purpose of the inspection station, and introducing risk of human
error into the process.
[0005] Therefore, there is a need to objectively inspect and analyze a
surface of a machined, cast-metal part at manufacturing line processing rates
to accurately, rep'eatably, and reliably identify defects so as to minimize and
eliminate false-pass errors. There is a further need to reliably identify
intricately-shaped defects and high-density small-sized defects. There is a
further need to minimize operator involvement in the inspection process, and
improve part throughput rate of the inspection process.

SUMMARY OF THE INVENTION
[0006] In accordance with the present invention, a method and system
provides a computer-based visual, non-contact, inspection of machined
surfaces of cast metal parts, to reliably identify and detect surface defects,
according to predetermined quality specifications. The disclosed method and
system operates at production line rates. The method and system provide a
vision-based system to identify and evaluate specific casting defects generally
known as pores, and eliminate a need for close operator attendance and
interaction that previously has been required to visually inspect critical
machined surfaces of certain components, for example cast engine
components. The method and system reduce part evaluation time, improve
product reliability, and provide greater consistency of part evaluation while
eliminating potentially arbitrary decision-making by an operator regarding
surface quality that may occur in a production environment. In general, all
parts are evaluated using the same measurement system and evaluation
criteria, and unacceptable parts are automatically removed from the
manufacturing line.
[0007] The present method and system for evaluating a machined
surface of a cast-metal part preferably comprises a plurality of conveyors,
operable to move the cast-metal part to and from a porosity inspection station.
The porosity inspection station comprises a digital monochrome camera, a
lighting station, and a precision-controlled transfer station. There is a
computer workstation, having a plurality of data processing computers, and a
graphical user interface. The workstation is operably connected to the
plurality of conveyors, and signally and operably connected to the porosity
inspection station.
[0008] In accordance with the present invention, the system and
method are operable to acquire an original pixelated image of the machined
surface, wherein each pixel comprises a digitized representation of a portion of
the machined surface, and identify known design surface features in the
original pixelated image, based upon predetermined criteria. The original

pixelated image of the machined surface is oriented and scaled to an XY
coordinate system, based upon the known design surface features. An
inverted digital image of the machined surface is generated. A second image
of the machined surface is generated, comprising eliminating the known
design surface features from the inverted digital image. Each pixel of the
inverted digital image is compared with a correspondingly located pixel of the
second image, with pixel location based upon the pixelated image oriented and
scaled to the XY coordinate system. Any surface feature common to the
inverted digital image and the second image is identified. Each identified
surface feature common to both images is analyzed statistically for
conformance to a threshold. A defect is identified as any identified surface
feature common to both images which exceeds the threshold.
[0009] Another aspect of the invention comprises the computer
workstation operable to control the plurality of conveyors to move the cast-
metal component into position for further processing when a quantity of
identified defects is below a threshold. The computer workstation is operable
to control the plurality of conveyors to move the cast-metal component out of
position for further processing when the quantity of identified defects exceeds
the threshold.
[0010] It is a further aspect of the present invention to provide the
method and system with a decision scheme in which only parts meeting the
predetermined quality specifications are accepted for further processing.
[0011] It is a further aspect of the present invention to provide the
method and system with a scheme to determine density of surface defects
within a specified region of interest.
[0012] It is an aspect of the present invention to identify surface
defects with: a concave region, and, when a convex hull is created prior to
defect (pore) separation, a top edge-connected pore, an isolated pore, and, an
edge-connected pore on an inside portion of a concave region, It is also an
aspect of the present invention to analyze a pore and defect in relationship to
neighboring defects and sharp or tight cornered features.

[0013] These and other aspects of the invention will become apparent
to those skilled in the art upon reading and understanding the following
detailed description of the embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] The invention may take physical form in certain parts and
arrangement of parts, the embodiment of which will be described in detail and
illustrated in the accompanying drawings which form a part hereof, and
wherein:
[0015] Fig. 1 is a plan-view schematic diagram of an exemplary
inspection system, in accordance with the present invention;
[0016] Fig. 2 is a front-view schematic diagram of an element of the
exemplary inspection system, in accordance with the present invention;
[0017] Fig. 3 is a plan-view schematic diagram of an element of the
exemplary inspection system, in accordance with the present invention;
[0018] Fig. 4 is a side-view schematic diagram of an element of the
exemplary inspection system, in accordance with the present invention;
[0019] Fig. 4A is a detailed plan-view schematic diagram of an
element of the exemplary inspection system, in accordance with the present
invention;
[0020] Fig. 5 is a diagram of a first flowchart for evaluating a surface,
in accordance with the present invention; and,
[0021] Fig. 6 is a diagram of a second flowchart for evaluating a
surface, in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0022] Referring now to the drawings, wherein the showings are for
the purpose of illustrating the invention only and not for the purpose of
limiting the same, Fig. I shows a schematic diagram of an exemplary vision
system which has been constructed in accordance with an embodiment of the
present invention. The exemplary vision system comprises a feed conveyor 12,

porosity inspection station 14, processing conveyor 16, part shuttle 18,
production conveyor 20, and scrap conveyors 22, 24. Each of the
aforementioned devices is operably controlled by the workstation 10, as
described in detail hereinafter. In overall operation, a component 1 for
inspection (not shown) is presented to the feed conveyor 12, preferably at a
production line rate. An exemplary line rate is preferably in the range of
twenty seconds per component evaluated, whereas the actual process of
acquiring an image of the surface of the component 1 takes approximately five
to seven seconds. When the porosity inspection station 14 is prepared to
receive and inspect the component 1, the workstation 10 controls feed
conveyor 12 to move the component 1 into the porosity inspection station 14.
The component 1 is moved thereto, and inspected, as described herein. When
the inspection is complete, the workstation 10 controls the processing
conveyor 16 to move the component to part shuttle 18. When the workstation
10 determines the component 1 is acceptable, i.e. contains insufficient defects
to warrant scrap or rework, the shuttle 18 moves the component to the
production conveyor 20 for further processing. When the workstation 10
determines the component 1 is unacceptable, i.e. contains sufficient defects
requiring the component 1 to be scrapped or reworked, the shuttle 18 moves
the component to the scrap conveyors 22, 24. The exemplary component 1 of
this embodiment comprises a cast-aluminum block for an internal combustion
engine having multiple cylinders.
[0023] Referring now to Figs. 2 - 4A, front-view, plan-view, and side-
view schematic diagrams of the porosity inspection station 14 with the
workstation 10 of the exemplary inspection system are described in detail.
The porosity inspection station 14 includes a base 32, having a roller conveyor
26 and a part elevator and inspection surface 28, and an inspection station 42 comprising a two-tiered camera/lighting scanning mast arrangement. The base
32 has conventional roller conveyor 26 operable to move component 1 into
position, wherein the component is elevated onto the inspection surface 28 for
inspection. The component 1 is preferably placed on the inspection surface 28

in a substantially correct position and orientation using the roller conveyor 26
and the part elevator, including a part placement sensor (not shown), with the
machined surface of interest for inspection suitably positioned for viewing by
the two-tiered camera/lighting scanning mast arrangement 42. This is
preferably accomplished using known conveying and positioning systems. A
skilled practitioner is able to correctly place and orient a series of components
in a predetermined location for inspection. The workstation 10 is operable to
detect that each component 1 is in correction position for inspection, prior to
executing any inspection algorithm. The base 32 includes a pair of bearing
tracks 30, each track 30 running parallel to an axis 27 longitudinal to flow of
components through the system 14. Inspection system 42 includes a
precision-controlled transfer station, operable to tram the two-tiered
camera/lighting scanning mast arrangement on the bearing tracks 30 and over
the component 1 for inspection. Inspection system 42 comprises a pair of
support masts 34, an upper tier 38 for mounting a camera 40, and a lower tier
36 for mounting a lighting system 37, and has an enclosure 44 to visually
enclose and shield at least a portion of the component from ambient light, to
facilitate the vision inspection process. The support masts 34 comprise a pair of vertical support legs orthogonal to the inspection surface 28. The base of
each of the support masts 34 is placed on one of the bearing tracks 30. In this
configuration, the inspection system 42 is able to move across the bearing
tracks 30, over the base with the inspection surface 28, to inspect each
component 1 placed thereon.
[0024] The upper tier 38 comprises a horizontal beam attached to and
supported by the support masts 34, and having fixturing to which the camera
40 is mounted. The exemplary camera 40 comprises a digital, monochrome
line-scan camera, having eight kilobyte (8K) resolution, with a 175 millimeter
lens attached, and preferably located a range of 150 millimeters to 450
millimeters from the surface of the inspected component 1. The camera 40
preferably provides a minimum pixel resolution of four kilobytes, and a
maximum square pixel size of ten microns by ten microns. The camera 40

electrically signally interfaces to a first computer 50 in the workstation 10
using an image acquisition card, preferably a PCI- or PXI-based frame grabber
card (not shown).
[0025] The lower tier 36 comprises a horizontal beam attached to and
supported by the support masts 34, and having fixturing to which the lighting
system 37 is mounted. The lighting system 37 includes a light source (not
shown) emitted in the direction of the inspected surface 28. The light source
preferably comprises red diffuse light generated using an array of red light-
emitting diodes ('LED'). Light emanating from the array of red LEDs is preferably passed through a corresponding array of fresnel lens to diffuse the
light source projected onto the inspected component 1. The light system is
preferably located so the emanating light is not directly orthogonal to the
surface of the component, with the object being to create a visually discernible
difference between a surface pore and the machined surface. Red light is
preferably used when the inspected surface is machined aluminum, although
other colors of the spectrum may be used when other metal material is to be
inspected. The lighting system 37 includes a scanning slit 39 placed
perpendicular to axis 27, and providing an opening at least the width of the
component 1 positioned for inspection. Axis 27 defines a Y-dimension, and
an X-dimension is defined to be orthogonal to the Y-dimension in a plane :
defined by inspected surface 28, thus defining an XY coordinate system,
which is discussed hereinafter. The upper tier 38 is preferably located above
lower tier 36 in a manner to permit the camera 40 to capture an image of a
portion of the inspected surface of the component 1 when it is positioned for
inspection. The camera 40 is preferably positioned to capture an image of the
component through the scanning slit 39 in the lighting system 37.
[0026] The exemplary workstation 10 comprises a rack-mountable
stack including five computers 50, 51, 52, 53, 54, each said computer
preferably having a single microprocessor device, each operable to function
independently and concurrently. All five computers are mounted in a single
cabinet or rack, and appropriately interconnected to accept input data from the

camera 40, analyze the input data, render a decision on acceptability of the
machined surface of the specific component being inspected, provide and store
detailed statistical analysis of the input data for each component, and advance
each component through the inspection station 14, either directly or through
interaction with an operator. Computer 50 acquires input data from the
camera 40 in form of a digital image of the machined surface of the
component 1, as previously described; Computers 51, 52, and 53 process the
image to a scaled image, analyze and invert the scaled image, and compare the
image to a known, expected image of the surface, further analyze the scaled
image and compare it to the inverted image to create a final image. Computer
54 performs statistical analysis on the final image, outputs the statistical analysis results to one or mores screens for operator review, and provides
coordination of graphical user interfaces ('GUI), the output of which includes
viewing and workstation monitors. The GUIs are developed to meet the
specific need of the individual application and the operators and engineers, as
known to one skilled in the art, and not discussed in detail herein. The various
systems and components are electrically connected using appropriately sized
and shielded cables which conform to industry standards applicable to a
manufacturing facility.
[0027] Computer 50 is signally electrically connected to an output of
the line-scan camera 40. The camera 40 is operable to acquire an original,
two-dimensional (in XY coordinates), digital, monochrome image of the machined surface of interest on the component 1, and communicate the image
to computer 50. The original digital monochrome image comprises a series of
pixels, each comprising a digitized representation of a portion of the machined
surface of interest, and preferably having eight-bit grayscale resolution, i.e.
ranging in value from 0 (black) to 255 (white), each pixel a square sized in the
range of ten microns by ten microns.
[0028] Referring now to Fig. 5, a method to use a vision system to
capture an image of the machined surface of the cast-metal component, to
evaluate the image to identify and separate surface defects from design

features, is described in detail. The method is preferably executed as one or
more algorithms contained in one of the computers of the workstation 10. A
skilled practitioner is generally able to design, develop, implement, and
execute algorithms for application in a computer, in conjunction with external
devices such as those described with reference to Figs. 1 - 4, and this process
is not described in detail herein.
[0029] The method includes capturing and processing a digital image
representative of the machine surface of component 1, using the
aforementioned vision system described with reference to Figs. 1-4. This
includes first acquiring the original pixelated image of the machined surface
(Block 110), wherein each pixel comprises a digitized representation of a
portion of the machined surface, as described hereinabove. The inspection
station 42 moves along the pair of bearing tracks 30, parallel to the Y-axis, at a ,
predetermined rate, with the lighting system 37 illuminating the surface of the
inspected component 1. The camera 40 digitally captures a series of line-scan
images of the component, each one pixel in length. When a complete original
digital image of the machined surface of the component 1 is acquired, it is
oriented and scaled to the aforementioned XY coordinate system, and has
units of measure, preferably in millimeters, representative of the actual
component being inspected (blocks 112, 114). The orientation and scaling is
accomplished by employing pattern recognition methods combined with
known design features of the machined surface. The known design features,
include, for example, cylinder bores and bolt holes when the component 1
comprises an engine block, and have been predetermined and preprogrammed .
into at least one of the computers 50, 51, 52, 53, 54 for use as an element of
algorithm execution. A series of regions of interest are predetermined and
preprogrammed into the computer for use during component analysis. Each
region of interest comprises a specific area of the machine surface being
inspected, with corresponding image captured by the vision system. Each
region of interest has a unique threshold level assigned thereto, useable when
identifying surface defects (Block 116).

[0030] A series of operations are executed to identify surface defects
in the inspected surface (Block 118). The imaging algorithm, designated as
Threshold I through Math Operations I, (blocks 120 through 132) describes
the steps executed to process the acquired image and separate the particles, in
a binary form, to identify porosity defects in the inspected surface. The first
portion of this process includes generating an inverted digital image of the
machined surface. This preferably comprises analyzing each pixel of the
original pixelated image relative to a cluster of pixels contiguous thereto;
resolving each analyzed pixel to be either one of a digital "1" or digital "0",
based upon the analysis of the original pixelated image and the cluster of
pixels contiguous thereto; and, inverting each resolved analyzed pixel, as
described hereinbelow.
[0031] Referring again to Fig. 5, a threshold I step is executed (Block
120) wherein a clustering threshold operation is executed. The clustering
threshold operation uses a statistical algorithm, comprised of known Gaussian
analysis techniques, to convert each greyscale pixel to a digital zero value or a
digital 255 value, thus resolving the acquired image into a binary image. A
cluster of pixels contiguous to a specific pixel is analyzed. The value of the
specific, centrally located pixel, is converted to either 0 (black) or 255 (white),
based on the statistical analysis of the cluster. Each pixel in the acquired
image is analyzed thusly.
[0032] A basic morphology I operation is executed (block 122),
comprising an erosion function wherein small particles are filtered out of the
acquired image, e.g. an individual pixel having a value of 255 surrounded by a
large mass of pixels, each having a value of zero, is converted to a value of
zero. This step is able to run several times during execution of the algorithm
to clean the image and minimize the number of noisy objects in a specific
region of interest, thus improving accuracy of the inspection process.

[0033] The image remaining after execution of the basic morphology I
operation is inverted (block 124). This comprises changing each pixel value
from zero to 255, or, alternatively, from 255 to zero. The result is an image
that is digitally reversed from the input image, i.e. a digital equivalent of a
photographic negative. The inverted image is stored in an image buffer,
preferably in computer 52, for subsequent use (block 128).
[0034] In the advanced morphology step, a second image of the
machined surface is generated, comprising eliminating the known design
surface features from the inverted digital image (block 130). This comprises
identifying the aforementioned known design features of the machine surface,
using information stored in the computer 54. Identifiable large objects and
border objects are removed, whereas known cavities, comprising, e.g. valve
seats, guides, and holes, are 'filled in' in the image data file. Known edges are
smoothed.
[0035] The math operation step (block 132) comprises comparing each
pixel of the inverted digital image with a correspondingly located pixel of the
second image. Pixel location is based upon the pixelated image oriented and
scaled to the XY coordinate system, as previously described. The result of
this action is to identify any surface feature, i.e. pores and other defects,
common to the inverted digital image and the second image. The math
operation step preferably comprises comparing each pixel of the inverted
digital image with the correspondingly located pixel of the second image by
executing a simple digital logic operation referred to as an Exclusive-OR
(XOR) function. The resultant image from this operation is analyzed for
conformance to predetermined quality standards.
[0036] Statistical particle analysis is performed on the resultant image.
(Block 134). This comprises identifying the regions of interest in the original
pixelated image of the machined surface, relative to the scaled XY coordinate
system for the digital image (Block 136). A high detection threshold is
employed for evaluating pores and identifying defects when the region of
interest comprises a critical region of interest, thus identifying relatively small

surface pores, typically in the range of 0.3 millimeters, to be identified as
defects. A low detection threshold is employed for evaluating surface pores
and identifying defects when the region of interest comprises a non-critical
region of interest, thus requiring a pore to be relatively large, typically in the
range of 2.0 millimeters, before being identified as a defect (Block 138). A
critical region of interest for a machined surface of a cast metal component
typically includes any region subjected to high levels of mechanical stress or
thermal stress in-use. Typical regions include cylinder walls and edges, and
gasket squish areas, i.e. areas at which gaskets are compressed on a typical
engine block when a cylinder head (not shown) is assembled thereto.
[0037] The defects are identified and classified within each region of
interest, comprising identifying location and magnitude of each surface defect
within each region of interest, relative to the scaled XY coordinate system for
the digital image (Block 140). Magnitude of each surface defect is classified
based upon several analysis techniques, including defect or pore diameter,
defect or pore area ratio, and defect XY location. The pore diameter is
preferably defined as a diameter of the smallest circle able to completely
circumscribe the identified pore, or defect, and is measured in millimeters.
Pore area ratio comprises a calculation of a ratio between area of the circle
defined by the pore diameter, and actual area of the identified pore, based
upon pixels. As part of analysis, a high detection threshold for pore size is
typically in the range of 0.3 millimeters when in a critical region of interest.
Therefore, any pore having a diameter in excess of 0.3 millimeters is
considered an identifiable defect in a region of interest near a cylinder wall, or
near a gasket squish area and edge. Alternatively, a low detection threshold
for pore size is typically in the range of 2.0 millimeters when in a non-critical
region of interest. Therefore any pore having a diameter in excess of 2.0
millimeters is considered an identifiable defect in a region of interest
substantially away from a cylinder wall. Proximity of pores in each region of
interest is important, and a typical threshold for minimum distance between
pores is in the range of 3.0 millimeters (Block 142).

[0038] After defects have been identified and classified, they are
analyzed by the computer 54. An estimate of defect density is calculated for
each region of interest (Block 144). A histogram is generated, comprising a
showing of quantity of defects by size for each region of interest and for the
entire machined surface of the component. Other analyses are conducted
involving estimating area ratio for each identified defect (block 148), and
estimating area ratios of defects of each region of interest, adjusted for
irregular shapes (block 150).
[0039] The defects are statistically analyzed and evaluation criteria are
applied, and a decision is made whether to reject or accept the component
being inspected (block 152). Statistical analysis is preferably provided using
readily available software packages, known to a skilled practitioner, and not
described in detail herein. The defects leading to rejection of a given part are
physically marked on the part (block 154), and it is either scrapped or used in
further analysis (block 156), as determinable by quality procedures in the
manufacturing plant. The accepted parts are conveyed down the
manufacturing line for further processing and assembly (block 158).
[0040] Referring now to Fig. 6, a second system and method to
evaluate the machined surface of a cast-metal component, to identify and
separate surface defects from design features, is described in detail. The
hardware referred to with regard to Fig. 1 - 4 is unchanged, and a laser probe
(not shown) is added to the two-tiered camera/lighting scanning mast
arrangement of inspection station 42 and signally connected to the workstation
10 for processing of the signal. The laser probe is operable to detect a depth
of each detected surface defect. The method, as shown in Fig. 6, is in essence
equivalent to the method detailed with regard to Fig. 5, with steps 160, 162
added. The depth dimension, in the Z-dimension orthogonal to the XY-
coordinate system, is input into the analysis as an added element to the
classification of defects (blocks 162, 142). The evaluation criteria (block 152)
determining whether to accept or reject a specific component may be adjusted,

and this evaluation and decision making is determinable by a skilled
practitioner.
[0041] The invention has been described with specific reference to the
embodiments and modifications thereto. This includes any embodiment
wherein the inspected component is moved under the camera, and alternative
methods of acquiring the original image, e.g. using a multidimensional digital
camera. Further modifications and alterations may occur to others upon
reading and understanding the specification. It is intended to include all such
modifications and alterations insofar as they come within the scope of the
invention.

WE CLAIM
1. Method to evaluate a machined surface of a cast-metal part, comprising:
acquiring an original pixilated image of the machined surface, wherein
each pixel comprises a digitized representation of a portion of the machined
surface;
identifying known design surface features in the original pixilated image,
based upon predetermined criteria;
orienting and sealing the original pixilated image of the machined surface
to an XY coordinate system, based upon the known design surface features;
generating an inverted digital image of the machined surface;
generating a second image of the machined surface, comprising
eliminating the known design surface features from the inverted digital image;
comparing each pixel of the inverted digital image with a correspondingly
located pixel of the second image, said location based upon the pixilated image
oriented and scaled to the XY coordinate system;
identifying any surface feature common to the inverted digital image and
the second image;
analyzing statistically each identified surface feature common to both
images for conformance to a threshold; and,
identifying a defect as any identified surface feature common to both
images which exceeds the threshold.
2. The method as claimed in claim 1, wherein generating an inverted digital image
of the machined surface, comprises:
analyzing each pixel of the original pixilated image relative to a cluster of
pixels contiguous thereto;

machined surface, relative to the scaled XY coordinate system for the digital
image; and
identifying a location and magnitude of each surface defect within each
region of interest.
7. The method as claimed in claim 6, wherein calculating a density of surface
defects within each specified region of interest.
8. The method as claimed in claim 7, wherein analyzing each defect in relationship
to neighboring defects, and in relationship to sharp or tight cornered features on
the component.
9. The method as claimed in claim 1, wherein acquiring an original pixilated image
of the machined surface comprises: acquiring a monochrome digitized
representation of a portion of the machined surface.
10.The method as claimed in claim 1, wherein:
controlling a plurality of conveyors to move the cast-metal component into
position for further processing when a quantity of identified defects is below a
threshold, and, controlling the plurality of conveyors to move the cast-metal
component out of the position for further processing when the quantity of
identified defects exceeds the threshold.
11.The method as claimed in claim 10, wherein: making physically on each rejected
part at least one of the defects leading to rejection.
12. Method to evaluate a machined surface of a cast-metal part, comprising:
a) acquiring an original pixilated image of the machined surface;
b) identifying known design surface features in the original pixilated image;

c) orienting and scaling the original pixilated image of the machined surface
to an XY coordinate system, based upon the known design surface
features;
d) generating an inverted digital image of the machined surface;
e) generating a second image of the machined surface, comprising
eliminating the known design surface features from the inverted digital
image;
f) comparing each pixel of the inverted digital image with a correspondingly
located pixel of the second image;
g) identifying any surface feature common to the inverted digital image and
the second image;
h) analyzing each identified surface feature common to both images; and,
i) identifying a defect as any identified surface feature common to both
images which exceeds a threshold.
13.System for evaluating a machined surface of a cast-metal part, comprising:
a plurality of conveyors, operable to move the cast-metal part to and from
a porosity inspection station, the porosity inspection station comprising: a digital
monochrome camera, a lighting station, and a precision-controlled transfer
station;
a computer workstation: having a plurality of data processing computers,
and
a graphical user interface; operable connected to the plurality of conveyors, and
signally and operably connected to the porosity inspection station;
the system operable to:
a) acquire an original pixilated image of the machined surface, wherein each
pixel comprises a digitized representation of a portion of the machined
surface;

b) identify known design surface features in the original pixelated image, based
upon predetermined criteria;
c) orient and scale the original pixelated image of the machined surface to an
XY coordinate system, based upon the known design surface features;
d) generate an inverted digital image of the machined surface;
e) generate a second image of the machined surface, which comprises
eliminating the known design surface features from the inverted digital
image;
f) compare each pixel of the inverted digital image with a correspondingly
located pixel of the second image, said location based upon the pixelated
image oriented and sealed to the XY-coordinate system;
g) identify any surface feature common to the inverted digital image and the
second image;
h) analyze statistically each identified surface feature common to both images
for conformance to a threshold; and,
i) identify a defect as any identified surface feature common to both images
which exceeds the threshold.
14.The system as claimed in claim 13, wherein:
The computer workstation operable to control the plurality of conveyors to move
the cast-metal component into position for further processing when a quantity of
identified defects is below a threshold, and, control the plurality of conveyors to
move the cast-metal component out of the position for further processing when
the quantity of identified defects exceeds the threshold.
15.The system as claimed in claim 14, wherein the system is operable to function at
a manufacturing production rate.

16.The system as claimed in claim 15, wherein the manufacturing production rate
comprises operating at a rate of analyzing and moving each cast-metal
component in about twenty seconds.
17.The system as claimed in claim 13, wherein the porosity inspection station,
comprising: a digital monochrome camera, a lighting station, and a precision-
controlled transfer station further comprises a laser probe is operable to detect a
depth of each detected surface defect.



ABSTRACT


A method and system are provided for non-contact evaluation of a
machined surface of a cast-metal part, including a vision-based porosity
inspection station. A digital image of the machined surface is acquired,
oriented and scaled to an XY coordinate system, filtered, and inverted. A
second image is generated with known design surface features eliminated.
Each pixel of the inverted digital image is XOR-compared with a
corresponding pixel of the second image. Identified common surface features
common to both images is analyzed statistically for conformance to a
threshold. A defect is identified as any identified surface feature common to
both images which exceeds the threshold. The system moves the part for
further processing if a statistical analysis of defects indicates an acceptable
component, and alternatively, removes the part from further processing if the
analysis indicates a flawed component.

Documents:

00810-kol-2006 abstract.pdf

00810-kol-2006 claims.pdf

00810-kol-2006 correspondeothers.pdf

00810-kol-2006 description(complet).pdf

00810-kol-2006 drawings.pdf

00810-kol-2006 form1.pdf

00810-kol-2006 form2.pdf

00810-kol-2006 form3.pdf

00810-kol-2006 form5.pdf

00810-kol-2006 prioritydocument.pdf

00810-kol-2006-correspondence-1.1.pdf

00810-kol-2006-form-26.pdf

00810-kol-2006-priority document-1.1.pdf

810-KOL-2006-(15-11-2011)-CORRESPONDENCE.pdf

810-KOL-2006-(21-03-2013)-AMANDED CLAIMS.pdf

810-KOL-2006-(21-03-2013)-AMANDED PAGES.pdf

810-KOL-2006-(21-03-2013)-FORM 3.pdf

810-KOL-2006-(21-03-2013)-FORM 5.pdf

810-KOL-2006-(21-03-2013)-OTHERS.pdf

810-KOL-2006-(21-03-2013)-PETITION UNDER RULE 137.pdf

810-kol-2006-ASSIGNMENT.pdf

810-kol-2006-CORRESPONDENCE.pdf

810-kol-2006-EXAMINATION REPORT.pdf

810-kol-2006-form 18.pdf

810-kol-2006-GRANTED-ABSTRACT.pdf

810-kol-2006-GRANTED-CLAIMS.pdf

810-kol-2006-GRANTED-DESCRIPTION (COMPLETE).pdf

810-kol-2006-GRANTED-DRAWINGS.pdf

810-kol-2006-GRANTED-FORM 1.pdf

810-kol-2006-GRANTED-FORM 2.pdf

810-kol-2006-GRANTED-FORM 3.pdf

810-kol-2006-GRANTED-FORM 5.pdf

810-kol-2006-GRANTED-SPECIFICATION-COMPLETE.pdf

810-kol-2006-OTHERS.pdf

810-kol-2006-PA.pdf

810-kol-2006-PETITION UNDER RULE 137.pdf

810-kol-2006-PRIORITY DOCUMENT.pdf

abstract-00810-kol-2006.jpg


Patent Number 260080
Indian Patent Application Number 810/KOL/2006
PG Journal Number 14/2014
Publication Date 04-Apr-2014
Grant Date 31-Mar-2014
Date of Filing 14-Aug-2006
Name of Patentee GM GLOBAL TECHNOLOGY OPERATION INC
Applicant Address 300 GM Renaissance Center Detroit, Michigan 48265-3000
Inventors:
# Inventor's Name Inventor's Address
1 MICHAEL E. SWANGER 50565 Cedargrove Shelby Township,Michigan 48317
2 ROBERT J. HOGARTH 5840 Millington Road Millington,Michigan 48746
3 JOHN S. AGAPIOU 2038 Wentworth Rochester Hills,Michigan 48307,
PCT International Classification Number H04N9/47; H04N7/18; H04N9/44
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/219,043 2005-09-02 U.S.A.