Title of Invention

HYBRID BURNER LANCE

Abstract The present invention relates to a lance (3) for a hybrid burner (2) of a combustor (1) of a gas turbine, comprising an inner passage (10) for a liquid fuel, an outer passage (11), coaxially enclosing the inner passage (10), for a gaseous fuel, a plurality of radially arranged outer nozzles (12) branching off radially from the outer passage (11), a plurality of inner nozzles (14) which branch off radially from the inner passage (10) and which each extend coaxially inside one of the outer nozzles (12) , a distributor section (18) which is arranged upstream of the outer nozzles (12) in the outer passage (11) and has a plurality of radially arranged, coaxially extending through-openings (19) for the gaseous fuel. In order to reduce the flow resistance in the gas path of the lance (3) , the through-openings (19) each have an opening width which is larger in the circumferential direction than in the radial direction. (Fig. 2)
Full Text

Hybrid burner lance
Technical field
The invention relates to a lance for a hybrid burner of a combustor of a gas turbine, in particular a gas turbine for a power plant.
Prior art
By means of such a lance, a liquid fuel, for example a suitable oil, and a gaseous fuel, for example natural gas, can be sprayed alternatively or in a cumulative manner into a hybrid burner. The lance is normally supplied with the gaseous fuel via a pipeline in which a gas pressure predetermined by the gas supply system prevails. However, in a multiplicity of applications, e.g. in a combustor having a low-pressure burner and downstream high-pressure burner, this system pressure present in the pipeline is too low in order to be able to spray the gaseous fuel with sufficient pressure difference through the lance into the combustor. Accordingly, it is conventional practice to arrange an additional compressor upstream of the lance in order to raise the gaseous fuel to the requisite pressure level. However, the fitting of such an additional compressor increases the installation costs of the combustor or of the gas turbine equipped with it. Furthermore, the additional compressor, for its operation, requires energy which, in a preferred application of the gas turbine in a power plant for the generation of electricity, reduces the efficiency of the power plant.
Summary of the invention
The invention is intended to provide a remedy here. The invention as characterized in the claims deals with the problem of specifying an improved embodiment for a lance of the type mentioned at the beginning, which improved embodiment, in particular, enables the hybrid burner equipped with said lance to be operated at a comparatively low pressure in the gaseous fuel.

This problem is solved by the subject matter of the independent claim. Advantageous embodiments are the subject matter of the dependent claims.
The invention is based on the general idea of reducing the resistance to flow of the lance by aerodynamic improvements in the gas path of the lance in order thus to reduce the pressure drop which occurs during flow through the lance. In effect, that pressure in the gaseous fuel which is required upstream of the lance can be reduced as a result. The aim in this case is to reduce the resistance to flow in the gas path of the lance if possible to such an extent that the pressure drop remaining permits proper operation of the burner just with the system pressure prevailing in the pipeline. This means that an additional compressor' upstream of the lance can be dispensed with.
In the invention, the flow resistance in the gas path of the lance is markedly reduced in particular by virtue of the fact that, at a distributor section which is arranged upstream of the outer nozzles in the outer passage and which has a plurality of radially arranged, axially extending through-openings for the gaseous fuel, the through-openings are dimensioned in such a way that they each have an opening width which is larger in the circumferential direction than in the radial direction. Due to this type of construction, that cross section in the distributor section through which flow can occur is considerably increased, which correspondingly reduces its resistance to flow. In this case, the invention makes use of the knowledge that, during flow through the distributor section, an especially pronounced pressure drop is produced inside the lance, so that there is especially high potential there for reducing the resistance to flow.

According to an advantageous embodiment, the outer passage can be defined axially in the region of the outer nozzles by an outer end wall, as a result of which the outer passage is axially closed. At each outer nozzle, an axial recess is then formed in the outer end wall on a side remote from the distributor section. By means of such a recess, the flow around the inner nozzles extending coaxially inside the outer nozzles can take place in a considerably more effective manner, which considerably simplifies the flow of the gaseous fuel from the outer tube into the outer nozzles, in particular on their side remote from the distributor section. Accordingly, the flow resistance is also markedly reduced in the region of the transition between outer tube and outer nozzles. At the same time, in such an embodiment, the homogeneity of the flow through the outer nozzles and thus the quality of the spraying of the gaseous fuel can be improved.
A further reduction in the pressure drop in the gas path of the lance can be realized in another embodiment by virtue of the fact that, at each outer nozzle, a transition from the outer passage to an outer-nozzle passage formed in the interior of the respective outer nozzle is provided with an inlet zone narrowing in the flow direction. Such an inlet zone reduces the flow resistance during the deflection of the gas flow, a factor which likewise reduces the total resistance of the lance,
Further important features and advantages of the lance according to the invention follow from the subclaims, the drawings and the associated description with reference to the drawings.
Brief description of the drawings
Preferred exemplary embodiments are shown in the drawings and are described in more detail below, the same designations referring to the same or similar or

functionally identical components. In the drawings, in each case schematically:
fig. 1 shows a simplified diagrammatic illustration of a lance according to the invention in the fitted state,
fig. 2 shows a perspective, partly sectioned view of a head of the lance,
fig. 3 shows a partly sectioned, perspective view of the lance head according to fig. 2 in a different direction of view identified by III,
fig. 4 shows a half longitudinal section of the lance head in a nozzle region.
According to fig. 1, a combustor 1 only partly indicated here comprises at least one hybrid burner 2 which is equipped with a lance 3. The combustor 1 is preferably an integral part of a gas turbine (not shown here), in particular for the generation of electricity inside a power plant.
The hybrid burner 2 can burn both gaseous fuels, such as natural gas for example, and liquid fuels, such as a suitable oil for example. Accordingly, the lance 3 is connected to a liquid-fuel supply line 4 on the one hand and to a gas-fuel supply line 5 on the other hand, A pump 6 is normally arranged in the liquid-fuel supply line 4 in order to be able to pressurize the liquid fuel to the requisite supply pressure. In contrast thereto, the gas-fuel supply line 5 is connected essentially directly to a pipeline (not shown here) which provides the gaseous fuel at a comparatively low pipeline pressure. The configuration of the lance 3 according to the invention enables a compressor in the gas-fuel supply line 5 upstream of the lance 3 to be dispensed with.

Compressed air is fed to the burner 2 from a compressor (not shown) in accordance with the arrow 7. With regard to the flow direction of the air 7, the lance 3 is brought essentially radially up to the burner 2 and has a lance head 8 projecting into the burner 2 and disposed essentially at right angles. With regard to its longitudinal center axis 9, the lance head 8 is therefore oriented parallel to the main flow direction of the fed air 7. The lance head 8 is configured in such a way that, relative to its longitudinal center axis 9, that is to say relative to the main flow direction, prevailing in the burner 2, of the air 7, it sprays the liquid and/or gaseous fuel radially into the burner 2.
The explanations below relate in particular to the lance head 8.
According to figs 2 and 3, the lance 3, in its head 8, contains an inner passage 10 for liquid fuel and an outer passage 11 for gaseous fuel. The two passages 10, 11 are arranged coaxially to one another, so that the outer passage 11 encloses the inner passage 10. Accordingly, the outer passage 11 has an annular cross section, whereas the inner passage 10 has a full cross section. The inner passage 10 and outer passage 11 are separated from one another by an inner tube 16 and are enclosed by an outer tube 17 arranged coaxially thereto.
To spray the gaseous fuel, the lance 3 is provided at its head 8 with a plurality of outer nozzles 12 which are arranged radially relative to the longitudinal center axis 9 and start radially from the outer passage 11. The outer nozzles 12 each contain an outer-nozzle passage 13 which branches off radially from the outer passage 11 and communicates with the latter.

Accordingly, the gaseous fuel can be sprayed into the burner 2 via the outer nozzles 12.
In a corresponding manner, the lance 3 is also provided at its head 8 with inner nozzles 14 which are likewise arranged radially relative to the longitudinal center axis 9 and at the same time branch off radially from the inner passage 10. In this case, a respective inner nozzle 14 is arranged coaxially inside an outer nozzle 12, the inner nozzles 14 and outer nozzles 12 each ending approximately flush radially on the outside. Each inner nozzle 14 contains an inner-nozzle passage 15 which communicates with the inner passage 10. Accordingly, the liquid fuel can be sprayed into the burner 2 via the inner nozzles 15.
The coaxial arrangement of the nozzles 12, 14 results in an annular cross section for the outer-nozzle passage 13, whereas the inner-nozzle passage 15 has a full cross section.
Arranged in the outer passage 11 upstream of the outer nozzles 12 is a distributor section 18, which in fig. 2 is identified by a brace. The distributor section 18 forms an axial section, closed in an annular shape, of the lance 3 or of the lance head 8 and may be designed in particular in one piece with the outer tube 17. The distributor section 18 is therefore arranged in the cross section, through which flow can occur, of the outer passage 11. So that the gaseous fuel can nonetheless reach the outer nozzles 12, the distributor section 18 is provided with a plurality of through-openings 19 which are arranged radially and extend axially through the distributor section 18. Such a distributor section 18 is required in order to be able to ensure a certain pressure difference with respect to the gas path in the event of damage during which the lance head 8, for example, has become leaky due to overheating, so that the flame front cannot drift into

the gas path against the gas flow direction or so that an excessive amount of fuel cannot flow into the burner 2 in an uncontrolled manner.
So that the distributor section 18 for the gaseous fuel has as low a resistance to flow as possible, the through-openings 19 are each designed in such a way that they have an opening width which is larger in the circumferential direction than in the radial direction. In fig. 3, the circumferential opening width oriented in the circumferential direction is marked by an arrow 20, whereas the radial opening width oriented in the radial direction is indicated by an arrow 21. It can clearly be seen that the circumferential opening width 2 0 is selected to be more than twice as large as the radial opening width 21. In particular, the circumferential opening width 20 is about three to five times larger, preferably about four times larger than the radial opening width 21. The dimensioning selected for the through-openings 19 results in a comparatively low resistance to flow for said through-openings 19, so that the pressure drop which occurs during flow through the distributor section 18 is correspondingly low. Consequently, a comparatively low flow resistance is also obtained for the lance 3.
In the preferred embodiment shown here, the through-openings 19 each extend in the circumferential direction along a segment of an arc of a circle, as a result of which an especially large cross section through which flow can occur can be achieved for the respective through-opening 19. In principle, other cross-sectional geometries may also be used, for example elliptical cross sections.
Without restricting the universality, four through-openings 19 are provided in the embodiment shown here. The individual through-openings 19 are separated from one another in the circumferential direction by webs

22. In this case, the webs 22 extend radially and axially relative to the longitudinal center axis 9, Compared with the through-openings 19, these webs 22 have only a comparatively small cross section. The circumferential opening width 2 0 of the through-openings 19 is in each case at least three times larger than a wall thickness 23, measured in the circumferential direction, of the webs 22. In particular, the webs 22 are dimensioned in such a way that the circumferential opening width 2 0 of the through-openings 19 is about four to eight times larger than the wall thickness 23 of the webs 22.
With reference to fig. 4, it can be seen especially clearly that the outer passage 11 in the region of the outer nozzles 12 is closed axially by an outer end wall 24 . Since the outer nozzles 12 or the outer-nozzle passages 13 are oriented radially relative to the outer passage 11, a relatively pronounced flow deflection occurs at a transition 25 between outer passage 11 and outer-nozzle passage 13, a factor which is indicated in fig. 4 by arrows. According to an advantageous configuration, in order to reduce the pressure drop accompanying the flow deflection, an axial recess 26 can be cut out in the outer end wall 24 at each outer nozzle 12 on a side remote from the distributor section 18. This recess 26 makes it easier for the gas flow in the inner passage 11 to flow around the respective inner nozzle 14. As a result, the deflection of the gas flow can be improved with the outer nozzle 12 on the side remote from the distributor section 18. This leads to the pressure distribution inside the transition 25 being made more uniform, with the consequence that, firstly, the flow resistance in the region of the transition 25 is reduced and, secondly, the homogeneity of the flow distribution inside the outer-nozzle passage 13 is improved.

As shown here in fig. 4, the recesses 26 may be provided separately for each outer nozzle 12, a configuration then being preferred in which the recess 26 is designed in the shape of a segment of an arc of a circle relative to a longitudinal center axis 27 of the nozzles 12, 14. As a result, "wake zones" can be reduced and the flow resistance can be reduced. Alternatively, it is also possible in principle to provide a common recess 26 for all outer nozzles 12. Such a common recess 26 then forms an encircling annular groove, closed in the circumferential direction, in the outer end wall 24. Such an embodiment is especially simple to produce.
Especially favorable values for the pressure drop at the transition 25 can be achieved if the dimensioning of the recess 26 is matched to the dimensions of the outer-nozzle passage 13 in a special manner. For example, an embodiment is favorable in which a radial depth 2 8 measured relative to the longitudinal center axis 27 of the outer nozzle 12 is about two times or at least two times larger than a radial distance 29 between an inner wall (not designated in any more detail) of the outer nozzle 12 and an outer wall (not designated in any more detail) of the inner nozzle 14 arranged therein.
A further measure of reducing the pressure loss inside the lance 3 is seen in aerodynamic optimization of the transition 25. For this purpose, the transition 25 according to fig. 4 may be provided with an inlet zone 3 0 which narrows in the flow direction. As a result, the flow resistance at the transition from the outer passage 11 into the respective outer-nozzle passage 13 is reduced. The narrowing of the inlet zone 3 0 can be achieved by simple beveling. It is likewise possible for the narrowing to be of rounded-off design.

As can be seen from figs 2 to 4, a splitter 31 is expediently arranged in the inner passage 10 in the region of the inner nozzles 14. The splitter 31 comprises a core 32 which extends concentrically inside the inner passage 10. Formed on this core 32 are dividing walls 33 which extend radially and axially and in the process project radially from the core 3 2 in such a way that they touch the inner tube 16. In this case, the core 3 2 and the dividing walls 3 3 are advantageously designed to be swept back in the incident-flow direction toward the longitudinal center axis 9. By means of such a splitter 31, the deflection of the liquid flow in the inner passage 10 to the inner nozzles 14 can be improved.
Especially advantageous, then, is an embodiment which is shown in figs 2 and 3 and in which a distance 34 between the core 32 and the inner tube 16 is at least twice as large as a core diameter 35. In such a type of construction, the inner tube 16 in the region of the splitter 31 need not be widened or need only be widened slightly in order to be able to ensure as constant a cross section of flow as possible up to the inner nozzles 14. The result of this is that the outer passage 11 can have a larger cross section of flow in the region of the outer nozzles 12, so that as constant a cross section of flow as possible can also be achieved in the outer passage 11 up to the outer nozzles 12. This measure therefore also ultimately leads to a reduction in the flow resistance in the gas path of the lance 3.
A further special feature can also be seen from figs 2 and 3, since the core 32 projects axially there from an inner end wall 3 6 which axially closes the inner passage 10 in the region of the inner nozzles 14 . In order to improve the deflection to the inner nozzles 14, a transition 37 from the core 32 to the inner end wall 3 6 may be designed in the form of a fillet. As a

result, it is possible for the splitter 31 to be of axially shorter construction. For example, an axial length 38 which is about the same size as or may even be smaller than an opening cross section 3 9 of the inner passage 10 in the region of the inner nozzles 14 is preferred for the core 32. This relatively short splitter 31 permits in turn widening in the outer passage 11 and leads there to a reduced flow resistance.

List of designations
1 Combustor
2 Hybrid burner
3 Lance
4 Liquid-fuel supply line
5 Gas-fuel supply line
6 Pump
7 Air
8 Lance head
9 Longitudinal center axis of 8
10 Inner passage
11 Outer passage
12 Outer nozzle
13 Outer-nozzle passage
14 Inner nozzle
15 Inner-nozzle passage
16 Inner tube
17 Outer tube
18 Distributor section
19 Through-opening
20 Circumferential opening width
21 Radial opening width
22 Web
23 Wall thickness of web
24 Outer end wall
25 Transition
26 Recess
27 Longitudinal center axis of 12 and 14
28 Depth of 26
29 Distance between 12 and 14
3 0 Inlet zone
31 Splitter
3 2 Core
33 Dividing wall
34 Distance between 32 and 16
35 Core diameter
3 6 Inner end wall
3 7 Fillet-shaped transition

3 8 Core length
3 9 Diameter of inner passage








WHAT IS CLAIMED IS:
1. A lance for a hybrid burner (2) of a combustor (1)
of a gas turbine,
having an inner passage (10) for a liquid fuel, having an outer passage (11), coaxially enclosing the inner passage (10), for a gaseous fuel, having a plurality of radially arranged outer nozzles (12) branching off radially from the outer passage (11),
having a plurality of inner nozzles (14) which branch off radially from the inner passage (10) and which each extend coaxially inside one of the outer nozzles (12),
having a distributor section (18) which is arranged upstream of the outer nozzles (12) in the outer passage (11) and has a plurality of radially arranged, coaxially extending through-openings (13) for the gaseous fuel, these through-openings (19) each having an opening width which is larger in the circumferential direction than in the radial direction.
2. The lance as claimed in claim 1, characterized in that the through-openings (19) each extend in the circumferential direction along a segment of an arc of a circle.
3. The lance as claimed in claim 1 or 2, characterized in that the through-openings (19) are defined in the circumferential direction by radially and axially extending webs (22) , in that the opening width (20) of the through-openings (19) in the circumferential direction is at least three or about four to eight times larger than a wall thickness (23) of the webs (22) in the circumferential direction.

4. The lance as claimed in one of claims 1 to 3, characterized in that the outer passage (11) is axially closed in the region of the outer nozzles (12) by an outer end wall (24) , in that, at each outer nozzle (12), an axial recess (26) is formed in the outer end wall (24) on a side remote from the distributor section (18).
5. The lance as claimed in claim 4, characterized in that a separate recess (26) is provided for each outer nozzle (12).
6. The lance as claimed in claim 5, characterized in that the recess (26) is designed in the shape of an arc of a circle coaxially to the outer nozzle (12).
7. The lance as claimed in claim 4, characterized in that a common recess (26) which extends in a closed annular shape in the circumferential direction is provided for all outer nozzles (12).
8. The lance as claimed in one of claims 4 to 7, characterized in that the recess (26), relative to a longitudinal center axis (27) of the respective outer nozzle (12) , has a radial depth (28) which is at least twice as large as a radial distance (29) between an inner wall of the outer nozzle (12) and an outer wall of the inner nozzle (14) arranged therein.
9. The lance as claimed in one of claims 1 to 8, characterized in that, at each outer nozzle (12) , a transition (25) from the outer passage (11) to an outer-nozzle passage (13) formed in the interior of the respective outer nozzle (12) is provided with an inlet zone (30) narrowing in the flow direction.

10. The lance as claimed in one of claims 1 to 9,
characterized in that a splitter (31) is arranged
in the region of the inner nozzles (14) in the
inner passage (10) , this splitter (31) having a
core (32) arranged concentrically to the inner
passage (10) and radially and axially extending
dividing walls (33) which project radially from
said core (32) up to an inner tube (16) defining
the inner passage (10) radially on the outside, in
that a distance (34) between the core (32) and the
inner tube (16) is at twice as large as a core
diameter (35).
11. The lance as claimed in claim 10, characterized in
that the core (32) projects axially from an inner
end wall (36) axially closing the inner passage
(10) in the region of the inner nozzles (14) , in
that a transition (37) from the core (32) to the
inner end wall (36) is designed in the form of a
fillet in longitudinal section.
12. The lance as claimed in claim 10 or 11,
characterized in that an axial length (38) of the
core (32) is approximately the same size as or is
smaller than an opening cross section (39) of the
inner passage (10) in the region of the inner
nozzles (14) .
Dated this 21 day of February 2007

Documents:

747-CHENP-2007 EXAMINATION REPORT REPLY RECEIVED 12-03-2014.pdf

747-CHENP-2007 FORM-3 12-03-2014.pdf

747-CHENP-2007 FORM-5 12-03-2014.pdf

747-CHENP-2007 CORRESPONDENCE OTHERS 23-12-2013.pdf

747-CHENP-2007 FORM-1 23-12-2013.pdf

747-CHENP-2007 FORM-13 23-12-2013.pdf

747-CHENP-2007 POWER OF ATTORNEY 23-12-2013.pdf

747-CHENP-2007 AMENDED CLAIMS 12-03-2014.pdf

747-CHENP-2007 AMENDED PAGES OF SPECIFICATION 12-03-2014.pdf

747-CHENP-2007 CORRESPONDENCE OTHERS 28-05-2013.pdf

747-chenp-2007 correspondence others 21-08-2007.pdf

747-chenp-2007 form-3 21-08-2007.pdf

747-chenp-2007-abstract.image.jpg

747-chenp-2007-abstract.pdf

747-chenp-2007-claims.pdf

747-chenp-2007-correspondnece-others.pdf

747-chenp-2007-description(complete).pdf

747-chenp-2007-drawings.pdf

747-chenp-2007-form 1.pdf

747-chenp-2007-form 26.pdf

747-chenp-2007-form 3.pdf

747-chenp-2007-form 5.pdf

747-chenp-2007-pct.pdf


Patent Number 259725
Indian Patent Application Number 747/CHENP/2007
PG Journal Number 13/2014
Publication Date 28-Mar-2014
Grant Date 25-Mar-2014
Date of Filing 21-Feb-2007
Name of Patentee ALSTOM TECHNOLOGY LTD.
Applicant Address BROWN BOVERI STRASSE 7, CH-5400 BADEN, SWITZERLAND
Inventors:
# Inventor's Name Inventor's Address
1 BRAUTSCH, ANDREAS AFFANDERWEG 6, CH-5303 WUERENLINGEN, SWITZERLAND
2 BURRI, DANIEL FRIEDAUWEG 9, CH-6023 ROTHENBURG, SWITZERLAND
3 HARDEGGER, HANSPETER BRAIEREIWEG 5, CH-8309 NUERENSDORF, SWITZERLAND
4 PAIKERT, BETTINA BADENERSTRASSE 8, CH-5452 OBERROHRDORF, SWITZERLAND
PCT International Classification Number F23D11/00
PCT International Application Number PCT/EP05/54073
PCT International Filing date 2005-08-18
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 102004041272.3 2004-08-23 Germany