Title of Invention

"A DIGITAL CLOCK GENERATOR CIRCUIT WITH IN-BUILT FREQUENCY AND DUTY CYCLE CONTROL"

Abstract This invention relates to a digital clock generator circuit with in-built frequency and duty cycle control comprising: pulse generator block for generating a start pulse, the said pulse generator is connected to a ring oscillator block to generate multiple signals of a specified frequency and programmable duty cycles, the said ring oscillator block is further connected to a multiplexer block which selectively connects one of the outputs of said ring oscillator to the final output to produce a signal of the specified frequency and specified duty cycle, the arrangement being such that the duty cycle is adjustable over a wide range and across the full frequency band of operation
Full Text FIELD OF THE INVENTION
The present invention relates to the field of electronic circuits, and, more particularly, to a digital clock generator circuit with built-in frequency and duty cycle control.
BACKGROUND OF THE INVENTION
More and more circuitry is being included in application specific integrated circuit (ASIC) chips. The technology trends are following Moore's law. As a result, every year the technology shrinks roughly by a factor of 1.5. For example, high speed clock generation, which formerly was done externally (e.g., using automatic test equipment), is now being done on-board the chip itself.
The variable duty cycle generator can be produced by performing Boolean operations on the clock and by phase delay of the clock. Phase delay is obtained by using a chain of delay logic elements. Outputs are taken at various points along the chain to get clocks with different phase. If both phase change and variable frequency are required, then two different circuits will be needed. If the duty cycle variation is done through a separate circuit, the resolution of the duty cycle can be maintained at sufficient levels, but the range of the duty cycle will be low. Further, a good ratio of the duty cycle resolution to the clock frequency cannot be maintained with decreasing frequency.

SUMMARY OF THE INVENTION
An object of the invention is to provide a digital clock generator circuit with built-in frequency and duty cycle control which provides a good range of duty cycle for the full frequency range.
Another object of the invention is to provide a digital clock generator circuit with built-in frequency and duty cycle control, independent of the technology process used for manufacture, as well as special patterns for frequency generation.
Yet another object of the invention is to provide a circuit which provides a variable duty cycle at various frequencies where the variation is automatically proportionate to the frequency of the clock. To achieve the said objective this invention provides a digital clock generator circuit with in-built frequency and duty cycle control comprising: pulse generator block for generating a start pulse, the said pulse generator is connected to a ring oscillator block to generate multiple signals of a specified frequency and programmable duty cycles,
the said ring oscillator block is further connected to a multiplexer block which selectively connects one of the outputs of said ring oscillator to the final output to produce a signal of the specified frequency and specified duty cycle, the arrangement being such that the duty cycle is adjustable over a wide range and across the full frequency band of operation

The pulse width of said start pulse is controlled through a pulse width
controller built in said pulse generator.
The said ring oscillator block comprising:
flip-flops connected in cascade with the output of one flip-flop
connected to the clock input of the next flip-flop and the output
of the last flip-flop is connected to the clock input of the first
flip-flop to form a ring,
said flip-flops are in two halves, each containing equal number
of flip flops, the clear input of flip flops of each are connected
to a global reset,
a programmable delay means is provided in the global reset
path to avoid recovery and hold time problems, and
a multiplexer block to selectively change the number of flip
fops connected in said cascade to vary the frequency generated.
The number of flip-flops in each of the halves may depend upon the frequency of generation and duty cycle. The duration of the pulse output from the pulse generator may be programmable between four different values based on the logic levels of the input signals PW_STROBEO and PW_STROBE1, for example. The data input of each of the flip-flops of both the halves may be connected to logic 1 if the global reset is connected to its clear input, and to a logic 0 if the global reset is connected to its preset input.
The multiplexer block may select one of the outputs from the ring oscillator to provide a signal of the required duty cycle. The resolution of the high time adjustment may be defined as Td=l/NF, and the duty cycle variation may be defined as Tdc=l/N, where N is the number of flip-flops in the ring of flip-

flops and F is the frequency at any point of the chain. Also, the digital clock generator circuit may be used to measure the propagation delay of the flip-flop elements included therein.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described with reference to the accompanying drawings, in which:
FIG. 1 is a schematic block diagram of a variable frequency and duty cycle generator according to the invention;
FIG. 2 is a schematic block diagram of the ring oscillator of FIG. 1;
FIG. 3 is a flow diagram illustrating operation of the ring oscillator of FIG. 2; and
FIG. 4 is a waveform diagram for the ring oscillator of FIG. 2. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Turning now to FIG. 1, a pulse generator 1.1 generates a start pulse PULSE which is fed to one input of a ring oscillator 1.2. The width of the pulse is controlled by a pulse width controller (not shown) built into the pulse generator 1.1. A programmable delay circuit (not shown) based on the value of inputs PW_STROBEO and PW_STROBE1, the delay can have four different values starting from a minimum [0,0] to a maximum [1,1].

The output of the ring oscillator 1.2 is fed to the input of the multiplexer in the form of multiple signals of single frequency but varying duty cycle. The •multiplexer block 1.3 selects one of the input signals based on the value of selection signal DUTY SELECT as the final output of the circuit.
Referring to FIG. 2, the ring oscillator block 1.2 includes a ring of flip-flops, the inputs and outputs of which are as illustratively shown. All the flip-flops are connected in cascade so that the output of one flip-flop is the clock of the next flip-flop and so on until the output of the last flip-flop 2.4 becomes the clock of the first flip-flop 2.1 after ORing with the external signal PULSE.
There are two halves of flip-flops in the ring, each including an equal number of flip-flops (i.e., the first half includes the flip-flops 2.1, 2.2, and the second half includes the flip-flops 2.3, 2.4, which are delineated with dotted lines in FIG. 2). The clear inputs of the flip-flops of the two halves are connected to a global reset INITIALIZE. The number of flip-flops in each of the halves depends upon the frequency of generation and duty cycle. A multiplexer block in the ring oscillator (not shown) selectively changes the number of flip-flops connected in the cascade to vary the frequency generation. Also, programmable delay elements P.sub.d are placed in the reset paths to get a first pulse width (which can be used as a clock) and to assure that no problem such as recovery or removal occurs at the flip-flop which resets itself.
The data input to the flip-flops of the two halves are connected to a logic 1 for flip-flops which have a clear input. For the flip-flops with a preset input

instead of a clear input, the data inputs are tied to logic 0. The resolution of the high time adjustment is Td=l/NF and the duty cycle variation is Tdc=l/N, where N is the number of flip-flops used in the whole ring of flip-flops and F is the frequency taken at any point on the chain.
A flow diagram of the operation of the ring oscillator 1.2 is illustrated in FIG. 3. Global reset is done through the initialize pins, thus the Q pins of all flip-flops are in a 0 state, at Block 3.1, and the start pin is switched from logic 0 to logic 1, at Block 3.2. The first clock pulse comes to the clock input of the first flip-flop (Block 3.3), and the data logic 1 is passed on with some delay (Td) at the output of the first flip-flop, at Block 3.4. Further, the positive transition from logic 0 to logic 1 at the output of the first flip-flop becomes the clock "posedge" for the next flip-flop. Here also logic 1 is passed to the output of the next flip-flop, at Block 3.5.
The transition at the output of the second flip-flop 2.2 in the first half resets the first flip-flop 2.1 and the second flip-flop 2.2. This causes the first and second flip-flops 2.1, 2.2 in the first half to give another positive transition at their respective outputs Ql 1, Q12 (Block 3.6). The clock effect continues to propagate and covers the second half of the ring of flip-flops in the same manner. At the second flip-flop 2.4 of the second half of the ring oscillator, the transition at the output resets the flip-flops 2.3,2.4 of the second half. At the same time, the transition at the output of the second flip-flop 2.4 of the second half of the ring oscillator becomes the clock to the first flip-flop 2.1 of the first half.
A waveform diagram for the ring oscillator block 1.2 is illustratively shown

in FIG. 4. The diagram illustrates a period beginning shortly before the first clock pulse is generated by the pulse generator 1.1 and fed to the ring oscillator 1.2. The various waveforms at the various stages of the flip-flops are as illustratively shown. In the figure, T.sub.d is the CP2Q delay of one flip-flop, T.sub.d is the total delay of all of the flip-flops, and P.sub.d is the programmable delay in the reset path.



We claim:
1. A digital clock generator circuit with in-built frequency and duty cycle control comprising:
pulse generator (1.1) block for generating a start pulse, the said pulse generator (1.1) is connected to a ring oscillator (1.2) block to generate multiple signals of a specified frequency and programmable duty cycles,
the said ring oscillator (1.2) block is further connected to a multiplexer (1.3) block which selectively connects one of the outputs of said ring oscillator (1.2) to the final output to produce a signal of the specified frequency and specified duty cycle,
the arrangement being such that the duty cycle is adjustable over a wide range and across the full frequency band of operation
2. A digital clock generator circuit with in-built frequency and duty
cycle control as claimed in claim 1, wherein pulse width of said start
pulse is controlled through a pulse width controller built in said pulse
generator (1.1).
3. A digital clock generator circuit with in-built frequency and duty
cycle control as claimed in claim 1, wherein said ring oscillator (1.2)
block comprising:
flip-flops (2.1, 2.2, 2.3, 2.4) connected in cascade with the output of one flip-flop connected to the clock input of the next

flip-flop and the output of the last flip-flop is connected to the
clock input of the first flip-flop to form a ring,
said flip-flops are in two halves, each containing equal number
of flip flops, the clear input of flip flops of each are connected
to a global reset,
a programmable delay means is provided in the global reset
path to avoid recovery and hold time problems, and
a multiplexer block to selectively change the number of flip
fops connected in said cascade to vary the frequency generated.
4. A digital clock generator circuit with in-built frequency and duty
cycle control as claimed in claim 3, wherein the number of flip flops
in each of the said halves depend upon the frequency of generation
and duty cycle.
5. A digital clock generator circuit with in-built frequency and duty
cycle control as claimed in claim 1, wherein the duration of the pulse
output from said pulse generator is programmable between four
different values based on the logic levels of the input signals
PW_strobeO and PW_strobel.
6. A digital clock generator circuit with in-built frequency and duty
cycle control as claimed in claim 1, wherein the data input to each of
said flip flops of both the halves is connected to logic 1 if the global
reset is connected to its clear input, and to a logic 0 if the global reset
is connected to its preset input.

7. A digital clock generator circuit with in-built frequency and duty
cycle control as claimed in claim 1 , wherein said multiplexer block is
a multiplexer to select one of the output from said ring oscillator in
order to provide a signal of the required duty cycle.
8. A digital clock generator circuit with in-built frequency and duty
cycle control as claimed in claim 1, wherein the resolution of the high
time adjustment is Td = 1/NF and the duty cycle variation is Tdc =
1/N, where N = number of flip flops used in the whole ring, F =
frequency coming out at any point of the chain.
9. A digital clock generator circuit with in-built frequency and duty
cycle control as claimed in claim 1, wherein the said circuit is used to
measure the propagation delay of the flip flop elements utilized in its
construction.
10. A digital clock generator circuit with in-built frequency and duty
cycle control substantially as herein described with reference to and as
illustrated in the accompanying drawings.

Documents:


Patent Number 259567
Indian Patent Application Number 1049/DEL/2000
PG Journal Number 12/2014
Publication Date 21-Mar-2014
Grant Date 18-Mar-2014
Date of Filing 23-Nov-2000
Name of Patentee STMICROELECTRONICS LTD.,
Applicant Address PLOT NO. 2 & 3, SECTOR 16A, INSTITUTIONAL AREA, NOIDA-201 3001, UTTAR PRADESH, INDIA.
Inventors:
# Inventor's Name Inventor's Address
1 DUBEY, PRASHANT 522, SEC-37, NOIDA-201301, UTTAR PRADESH, INDIA.
2 BALAGAM BHARATHI INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY, HYDERABAD-500 07, ANDHRA PRADESH, INDIA
3 MANNEPALLI LAKSHMI KANTAM INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY, HYDERABAD-500 07, ANDHRA PRADESH, INDIA
4 CHINTA REDDY VENKAT REDDY INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY, HYDERABAD-500 07, ANDHRA PRADESH, INDIA
5 KONDAPURAM VIJAYA RAGHAVAN INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY, HYDERABAD-500 07, ANDHRA PRADESH, INDIA
PCT International Classification Number G06F 1/04
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA