Title of Invention

"BATTERY SEPARATOR WITH Z-DIRECTON STABILITY"

Abstract A method of preventing or reducing sudden thermal runaway in a battery having electrodes comprising the step of: placing a thermoplastic microporous membrane having an inert thermally non-deforming particulate dispersed throughout between the electrodes of the battery, said thermoplastic being selected from the group consisting of: polyolefins, polyvinyl halogens, nylons, and polystyrenes, whereby, during sudden thermal runaway, physical contact of the electrodes is prevented by the particulate.
Full Text BATTERY SEPARATOR WITH Z-DIRECTION STABILITY
This application is a continuation-in-part of co-pending U.S. patent Application Serial No. 10/9-71,310 filed October 22, 2004 .
Field of the Invention
The present invention is directed to preventing "sudden" thermal runaway in batteries, e.g. , lithium batteries.
Background of the Invention
In batteries, for example, lithium ion batteries, thermal runaway is a potential problem. Therma.1 runaway may be initiated by, among other things, physical contact between the anode and cathode of the battery, due to the internal force created by the volume changes of the anode and the cathode during normal cycling, which, in turn, causes a rapid evolution of heat. The rapid evolution of heat may cause ignition of thermal chemical reactions of anode/electrolyte, cathode/electrolyte, anode/cathode, or electrolyte/electrolyte. The ignition scenario may lead to a hazardous situation for the battery.

Thermal runaway may be categorized as "sudden' thermal runaway or 'delayed' thermal runaway. Sudden thermal runaway refers to very rapid heat evolution, i.e., arising in less than 1 second after inception. Delayed thermal runaway refers to heat evolution, i.e., arising in more than 3 seconds after inception. In lithium ion batteries, over 99% of failures are caused by sudden thermal runaway. Delayed thermal runaway ma.~y be safeguarded against by the use of a 'shutdown' separator (e.g., a separator that responds to increasing heat by pore closure that stops ionic flow between the anode and cathode), or by the rapid dissipation of tieat from the cell. Sudden thermal runaway, however, has not been successfully dealt with.
Sudden thermal runaway of the Li-ion cells may be simulated in battery safety, tests referred to as: the 'nail penetration' test or the 'crush' test (crush tests include: ball crush, bar crush, and plate crush) . In each of these tests, an external force, applied via a nail, ball, bar, or plate, is exerted on the housing (or 'can') of the battery which, in turn, may cause the anode and cathode to come into physical contact.
The foregoing safety tests exacerbate the tight fitting situation already existing within the battery housing. For example, lithium ion batteries are, most often, produced in

cylindrical and prismatic forms. The anode/separator/cathode are wound or folded, without electrolyte, into shape and then snuggly fit into their housing (can) and capped shut. When electrolyte is added, the anode/separator/cathode swell. This causes internal forces within the can to increase. Later, during 'formation' (i.e., when the battery is given an initial charge), the anode and cathode expand again (e.g. , the anode may expand by about 10% and the cathode may expand by about 3%) . The expansion during formation again causes internal forces within the can to increase. These internal forces, such as those from the nail penetration and crush, tests mentioned above, are directed toward the center of the battery. When the external forces are exerted on the can, those forces are also directed toward the center of the battery. The result is extraordinary pressures within the batterry and those pressures are forcing the anode and cathode into ph_ysical contact by compressing the microporous membrane separator placed therebetween.
The use of microporous membranes as battery separators is known. For example, microporous membranes are used as battery separators in lithium ion batteries. Such separators may be single layered or multi-layered thin films made of polyolefins. These separators often have a 'shut-down' property such that

xvhen the temperature of the battery reaches a predetermined temperature, the pores of the membrane close and thereby prevent the flow of ions between the electrodes of the battery. Increasing temperature in the battery may be caused by internal shorting, i.e., physical contact of the anode and cathode. The physical contact may be caused by, for example, physical damage to the battery, damage to the separator during battery manufacture, dendrite growth, excessive charging, and the like. As such, the separator, a thin (e.g., typically about 8-25 microns thickness) microporous membrane, must have good dimensional stability.
Dimensional stability, as it applies to battery separators, refers to the ability of the separator not to shrink or not to excessively shrink as a result of exposure to elevated temperatures. This shrinkage is observed in the X and Y axes of the planar film. This term has not, to date, referred to the Z-direction dimensional stability.
Puncture strength, as it applies to battery separators, is the film's ability to resist puncture in the Z-direction. Puncture strength is measured, by observing the force necessary to pierce a membrane with a moving needle of known physical dimensions .

To date, nothing has been done to improve the Z-direction dimensional stability of these battery separators. Z-direction. refers to the thickness of the separator. A battery is tightly-wound to maximize its energy density. Tightly winding means, for a cylindrically wound battery, that forces are directed radially inward, causing a. coinpressive force on the separator across its thickness dimension. In the increasing temperature situation, as the material of the separator starts to flow and blind the pores, the electrodes of the battery may move toward one another. As they move closer to one another, the risk of physical contact increases. The contact of the electrodes must be avoided.
Accordingly, there is a need for a battery separator, particularly a battery separator for a lithium ion battery, having improved Z-direction stability, and for a battery separator that can prevent or- reduce failure arising from sudden thermal runaway.
In the prior art, it is known to mix filler into a separator for a lithium battery. In U.S.. Patent No. 4,650,730, a multi-layered battery separator is disclosed. The first layer, the 'shut down' layer, is an unfilled microporous

membrane. The second layer, the dimensionally stable layer, is a particulate filled raicroporous layer. The second layer, in final form (i.e., after extraction of the plasticizer), has a composition weight ratio of 7-35/50-93/0-15 for
polymer/filler/plasticizer . There is no mention of Z-directiom dimensional stability; instead, dimensional stability refers to the length and breadth dimensions of the separator. The filler-is used as a processing aid so that the high molecular weight polymer can be efficiently extruded into a film. In U.S. Patent No. . 6 , 432 , 586, a multi -layered battery separator for a high-energy lithium battery is disclosed. The separator has a firs t microporous membrane and a second nonporous ceramic composite layer. The ceramic composite layer consists of a matrix material and inorganic par-tides. The matrix material may be selected from the group off polyethylene oxide (PEO), polyvinylidene fluoride (PVDF) , polytetrafluoroethylene (PTFE) , polyurethane, polyarcylonitrile (PAN) , polymethylmethacrylate (PMMA) , polytetraethylene glycol diacrylate, copolymers thereof and mixtures thereof. The inorganic particles may be selected from the group of silicon dioxide (SiO2) , aluminum oxide (A1203) , calcium carbonate (CaC03) , titanium dioxide (TiO2) , SiS2, SiPO4 , and the like. The particialate makes up about 5-80% by weight of the ceramic composite layer, but most preferably 40-60%. Therre

is no mention of Z-direction stability, and the particulate Is chosen for its conductive properties.
Summarry of the Invention
A method for preventing or reducing sudden thermal runaway in a battery is disclosed. In this method, a thermoplastic microporous membrane havin_ Description of the Drawings
For the purpose of illustrating the invention, there is shown in the drawing infoirmation about the preferred embodiment of the invention; it being understood, however, that this invention is not limited to the precise information shown.
Figure 1 is a graphical illustration of TMA compression curves for several differing membranes.
Figure 2 is a graphical illustration of TMA compression curves for several differing membranes.

Figure 3 is a graphical, illustration of the external (or housing) temperature (°C) as a function of time (sec) of an 18650 cell subjected to a nail penetration test.
Figure 4 is a graphical illustration of the cell voltage (V) as a function of time (sec) of a prismatic cell subject to a ball crush test.
Figure 5 is a graphical illustration of the cycle performance of a prismatic cell.
Description of the Invention
A battery, as used herein, refers to a charge storage device, e.g., a chemical generator of emf (electromotive force} or a capacitor. Typically, the battery is a device comprising , in general, an anode, a catriode, a separator, an electrolyte, and a housing (or can) . The battery, which is believed to havo the greatest potential to benefit from the present invention, is a rechargeable lithium battery, e.g., having a lithium metal (Li), lithium alloy (LiSix, LiSnx, LiAlx, etc.), or a lithiated carbon material (LixCs, where X lithium batteries are also known as lithium ion batteries or lithium polymer batteries. The cathodes, electrolytes, and housinqs for such batteries are well known and conventional. The separator, by which the improvement discussed herein is obtained, is discussed in greater detail hereinafter.
A battery separator, as used herein, refers to a. thin, microporous membrane that is placed between the electrodes of a battery. Typically, it physically separates the electrodes to prevent their contact, allows ions to pass through the pores between the electrodes during discharging and charging, acts as a reservoir for the electrolyte, and may have a x shut down' function.
Microporous membranes typically have porosities in the range of 20-80%, alternatively in the range of 28-60%. The average pores size is typically in the range of 0.02 to 2. O microns, alternatively in the range of 0.04 to 0.25 microns. The membrane typically has a Gurley Number in the range of 5 to 150 sec, alternatively 20 to 80 sec (Gurley Numbers refers to the time it takes for 10 cc of air at 12.2 inches of water to pass through one square inch of membrane) . The membrane may range in thickness from about 0.1 to 75 microns, alternatively 8 to 25 microns. Membranes may be single layered or multi-

layered. In multi-layered membranes, at least one of the membranes will include the filler discussed in greater detail below. A multi-layered separator may have three layers where the filled layer is sandwiched between two other layers or two-filled layer may sandwich another membrane. Other layer, as used herein, refers to any layer, including coatings, other than the inventive layer. Other configurations are readily apparent to one of ordinary skill .
Thermoplastic polymer generally refers to any synthetic thermoplastic polymer triat softens when heated and returns to its original condition when cooled. Such thermoplastic polymers include: polyolefins, polyvinyl halogens (e.g.,, PVC) , nylons, fluorocarbons, polystyrenes, and the like. Of the thermoplastics, polyolefins are the most interesting. Polyolefins include, but are not limited to, polyethylene, ultra high molecular weight polyethylene (not considered a thermoplastic by some, but included herein nevertheless) , polypropylene, polybutene, polymethylpentene, polyisoprene, copolymers thereof, and blends thereof. Exemplary blends include, but are not limited to, blends containing two or more of the following polyetriylene, ultra high molecular weight polyethylene, and polypropylene, as well as, blends of the foregoing with copolymerrs such as ethylene-butene copolymer and

ethylene-hexene copolymer and blends of those polymers and co-polymers with differing molecular weights.
Inert, thermal non-deforming particulate filler refers to any material that when uniformly blended into the foregoing thermoplastic polymer does not interact nor chemically react with the thermoplastic polymer to substantially alter its fundamental nature and will not, when used as a component of the membrane of a battery separator, have a material adverse impact upon the chemistry of trie battery. This filler may be any material that is thermally stable, i.e., maintains or substantially maintains its physical shape at temperatunres above, for example, 200° C. Particulate most often refeors to a small 'bead or grain, but may also describe a flat or planar object or a rod or fiber- like object. The filler is small, and by small is meant an average particle size in the submicron (less than 1 micron) range with a maximum particle size no larger than 40% of the membrane layer thickness, alternatively no larger than 10% of trie layer's thickness. In some applications (e.g., when making membranes with a thickness of about 1 micron or less)r filler with nano-sized average particle sizes is beneficial.

Inert, thermally non-deforming particulate filler may be selected from the following group of materials: carbon based materials, metal oxides and hydroxides, metal carbonates , minerals, synthetic and natural zeolites, cements, silicates, glass particles, sulfur-containing salts, synthetic polymers, and mixtures thereof. Exemplary carbon based materials include: carbon black, coal dusty and graphite. Exemplary metal oxides and hydroxides include those having such materials as silicon, aluminum, calcium, magnesium, barium, titanium, iron, zinc, and tin. Specific examples include: TiO2, MgO, SiO2, A1203, SiS2, and SiP04. Exemplary metal carbonates include those having such materials as: calcium and magnesium. Specific examples include: CaCO3. Exemplary minerals include: mica, montmorillonit The particulate (or filler) may comprise any weight -%r of the membrane, so long as at the lowest end, there is suffi-cient particulate to prevent the electrodes from touching and at the upper end there is sufficient thermoplastic to hold the separator together durring manufacture of the separator anci battery and to hold trie separator together between the electrodes. Such a range may be about 1% to about 99% wej_ght of particulate based upon the total weight of the separator. Most often, the range should be between about 1% to about 70% (including all possible subsets of values therebetween).
The foregoing membranes may be made by any conventional process. The two most widely used processes for making microporous membranes for battery separators are know as the dry-stretch (or Celgarrd) process and the wet (or extraction, or TIPS) process. The major difference between these processes is the method by which trie microporous structure is formed. In the dry-stretch process, the pore structure is formed by stretching. In the wet process/ trie pore structure is formed by the extraction of a component. Both processes are similar in that the material components are mixed, typically in an extruder or via master-batching, and then formed into a thin film precursor before pore formation -
The present invention may be manufactured by either process, so long as the inert particulate filler is uniformly mixed into the thermoplastic polymer prior to extrusion of the precursor.
In addition to the above combination of thermoplastic polymer and particulate filler, the mixture may include conventional stabilizers, antioxidants, additives, and processing aids as known to those skilled in the art.
TMA (thermal mechianical analysis) measures the mechand-cal response of a polymer system as the temperature changes. IThe compression TMA measures the loss of thickness of a film wlien a constant force is applied in the Z-direction to the film as a function of increasing temperature. In this test, a mechaxiical probe is used to apply a controlled force to a constant aroa of the sample as the temperature is increased. The movement of the probe is measured as a function of temperature. The compression TMA is used to measure the mechanical integrity of the filTn.
A standard TMA machine (Model No. TMA/SS/150C, Seiko Instruments Inc., Paramus, NJ) with a probe (quartz cylindrical probe, 3mm diameter) is used. The load on the probe is 12 5g.
The temperature is increased at the rate of 5°C/min. The film sample size is a single film with the dimensions of 5x5mm.
In Figures 1 and 2, the X-axis represents temperature and the Y-axis represents % TMA. % TMA is percentage reduction, in thickness of the membrane as a result of increasing tempera-ture For example, at 0°C, the membrane's thickness is 100% under- the specified load. In the instant membrane, a maximum compression of 95% (or 5% of tlie original thickness) is suitable to present electrode contact.
Referring to Figure 1, there is shown four (4) TMA compression curves of four different membranes. Each membr~ane is a microporous membrane of polypropylene. Curve A is the; controlv (i.e., no filler) . Curve B has 4% by volume talc. Curve C has 8% talc. Curve D has 12% talc. Note that the control has a maximum compression of 100% at.250°C/ whereas Curves C and D never cross the 80% compression lines.
Referring to Figure 2, there is shown four (4) TMA compression curves of four different membranes. Each membrrane is a microporous membrane of polypropylene. Curve A is the control (i.e., no filler) . Curve B has 2.5% by volume TiO2 Curve C has 5% TiO2 - Curve D has 8.5% Ti02. Note that the
control has a maximum compression of 100% at 250°C, whereas Curve B has a maximum compression of about 95% and Curves C and D have a maximum compression of about 90%.
The nail penetration test and the crush test (e.g., ba.ll crush) measure battery response to the catastrophic destruction of a cell . Both tests are internal short circuit tests recommended by Underwriters Laboratory Inc. of Northbrook, IL to evaluate the safety of a lithium ion cell. The parameters involved include: celLl voltage, nail/ball crush speed, nail, size/ball diameter, and operating temperature. The procedutre is as follows: 1. charge the Li-ion cell to the required voltage, 2. adjust the required temperature of the chamber in which the test will be done and. place the cell over the stand designed for the test, 3. attach two or more thermocouples over the surface of the cell, 4. connect the voltage sensing leads to the positive and negative terminals of the cell, 5. connect theB temperature sensing leads to the thermocouples attached to the cell, 6. the entire setup is controlled by a lab view progaram, 7. choose the appropriate nail (a typical nail will be an ilnch long, 3-4 mm thick, and having a sharp point) or metal baljL (6 mm - 12 mm diameter steel ball), 8. once the setup is compHete, choose the speed of the test (usual speed ranges from 2-8 mm/sec), 9. the test is started by the lab view control.
Referring to Figure 3, there is shown five (5) cur~ves illustrating temperature (°C) increase arising from 'nail penetration' as a. function of time (sec). Each cell tested was in an 18650 design for a lithium ion cell. The curves labeled A represent the present invention. Specifically, the memb-rane comprised a microporous membrane of an ultra-high molecular weight polymer (PE) having approximately 53% by weight silica and being made by a wet process. This membrane had an electrical resistance of 1.49 ohm-cm2, a mix penetration strength of 70 kgf (kilogiram force) , and a dielectric breakdown of 558 V. The curves labeled B represent a prior art separator (tinfilled polyolefin) . Note the rate of increase in temperature of the conventional (unfilled) separators, while the inventive separator saw little to no temperature increase. The iLnventive separator's external temperature did not rise above 10O°C from an initial temperature of 25°C for at least 25 seconds after the nail penetration.
Referring to Figure 4, there is shown several curves illustrating voltage (V) decrease arising from a "ball crush' test as a function of time (sec) . The ball used in the test had a diameter of about 9.4 mm. Each cell tested was in a prismatic design for a littiium ion cell. The curves labeled A represent
the present invention. Specifically, the membrane comprised a microporous membrane of an ultra-high molecular weight polymer (PE) having approximately 53% by weight silica and being made by a wet process. This membrane had an electrical resistance of 1.49 ohm-cm2, a mix penetration strength of 70 kgf, and a dielectric breakdown of 558 V. The curves labeled B a.nd C represent prior art separators (unfilled polyolefin) . Note that separators A show delayed failure, that all separators A passed the test and none of the other separators (B and C) passed, and that the time for trie rise in the external cell temperature (not shown in the Figure) is also higher for separators A than for separators B & C. The inventive separators' voltage ^remained within 10% of its initial voltage for at least five (5) seconds after being crushed.
A cycling performance test is used to observe the battery operation over its life. The cycling performance test procedure is as follows: 1. charge the cell a C/2 rate to EOCV of 4.2 V, 2. maintain the cell voltage at 4.2 V until the charging current drops to approximately C/50 rate, 3. discharge the cell at a 1C rate to EODV of 3.0 V, 4. rest the cell for 1-2 minutes, 5. steps 1-4 are called one cycle of charge and discharge. Repeat them to get the cycling performance for the desired nxamber of cycles. The following is a definition of the terms: the "C'
rate is a current ttiat is numerically equal to the A-hr orating of the cell (e.g., C/2 rate for a lA-hr cell is 500 mA) , EOCV is end of charge voltage, and EODV is end of discharge voltage.
Referring to Figure 5, there is shown two (2) curves illustrating the cycle performance of the instant invent ion against a prior art separator. In this graph, discharges capacity (Ah) is shown as a function of cycle number. Each cell tested was in a prismatic design for a lithium ion cell. The curve labeled A represents the present invention. Specifically, the membrane comprised a microporous membrane of an ultrra-high molecular weight polymer (PE) having approximately 53% b»y weight silica and being made by a wet process. This membrane hxad an electrical resistance of 1.49 ohm-cm2, a mix penetration, strength of 70 kgf, and a dielectric breakdown of 558 V. The currve labeled C represents a prior art separator (unfilled polyolefin) . Typically, when the strength of a separator is increase the cycle performance of the separator decreases. In the present invention, however, the cycle performance is improved.
The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the
appended claims, rather than to the foregoing specification, as indicated the scope of the invention


We Claim:
1. A method of preventing or reducing sudden thermal runaway in a battery having
electrodes comprising the step of:
placing a thermoplastic microporous membrane having an inert thermally non-deforming particulate dispersed throughout between the electrodes of the battery, said thermoplastic being selected from the group consisting of: polyolefms, polyvinyl halogens, nylons, and polystyrenes, whereby, during sudden thermal runaway, physical contact of the electrodes is prevented by the particulate.
2. The method as claimed in claim 1, wherein sudden thermal runaway being an internal short circuit arising in under one second after inception.
3. The method as claimed in claim 2, wherein the internal short circuit being defined as an increase of internal battery temperature to at least 100°C from 25°C within 3 second of inception.

4. The method as claimed in claim 2, wherein the internal short circuit being defined as ' an 80% voltage drop within 5 seconds of inception.
5. The method as claimed in claim 1, wherein the battery being a lithium ion battery.

6. The method as claimed in claim 5, wherein the lithium ion battery having an electrode comprising an intercalation compound containing lithium.
7. The method as claimed in claim 5, wherein the lithium ion battery having an electrode comprising lithium metal.
8. The method as claimed in claim 1, wherein said thermoplastic being selected from the group consisting of: polyethylene, polypropylene, polybutene, polymethylpentene, ultrahigh molecular weight polyethylene, copolymers thereof, and blends of the foregoing.
9. The method as claimed in claim 1, wherein said inert thermally non-deforming particulate having an average particle diameter of less than 1 micron.
10. The method as claimed in claim 1, wherein said inert thermally non-deforming particulate being selected from the group consisting of: carbon based materials, metal oxides and hydroxides, metal carbonates, minerals, synthetic and natural zeolites, cements, silicates, glass particles, sulfur-containing salts, synthetic polymers, and mixtures thereof.
11. The method as claimed in claim 1, wherein the particulate comprising 1 to 49% by weight of said membrane.
12. A method of improving a lithium ion battery's resistance to thermal runaway, the battery having an anode, a cathode, a separator, an electrolyte, and a housing, and wherein the battery's external temperature remains at less than 100°C from an initial temperature of 25°C for at least 25 seconds after being penetrated by a nail, comprising the step of:
providing said separator comprising a thermoplastic microporous membrane having an inert thermally non-deforming particulate dispersed throughout between the electrodes of the battery, said thermoplastic being selected from the group consisting of: polyolefins, polyvinyl halogens, nylons, and polystrenes, whereby, during thermal runaway, physical contact of the electrodes is prevented by the particulate.
13. The method as claimed in claim 12, wherein the lithium ion battery having an electrode "comprising an intercalation compound containing lithium.
14. The method as claimed in claim 12, wherein the lithium ion battery having an electrode comprising lithium metal.
15. The method as claimed in claim 12, wherein said thermoplastic being selected from the group consisting of: polyethylene, polypropylene, polybutene, polymethylpentene, ultrahigh molecular weight polyethylene, copolymers thereof, and blends of the foregoing.
16. The method as claimed in claim 12, wherein said inert thermally non-deforming
particulate having an average particle diameter of less than 1 micron.
17. The method as claimed in claim 12, wherein said inert thermally non-deforming particulate being selected from the group consisting of: carbon based materials, metal oxides and hydroxides, metal carbonates, minerals, synthetic and natural zeolites, cements, silicates, glass particles, sulfur-containing salts, synthetic polymers, and mixtures thereof.
18. The method as claimed in claim 12, wherein the particulate comprising 1 to 949% by weight of said membrane.
19. A method of improving a lithium ion battery's resistance to thermal runaway, the battery having an anode, a cathode, a separator, an electrolyte, and a housing, and wherein the battery's voltage remains within 10% of its initial voltage for at least 5 seconds after being crushed by a ball having a diameter of 9.4 mm, comprising the step of:
providing said separator comprising a thermoplastic microporous membrane having
an inert thermally non-deforming particulate dispersed throughout between the electrodes of
the battery, said thermoplastic being selected from the group consisting of: polyolefins,
. polyvinyl halogens, nylons, and polystrenes, whereby, during thermal runaway, physical
contact of the electrodes is prevented by the particulate.
20. The method as claimed in claim 19, wherein the lithium ion battery having an electrode comprising an intercalation compound containing lithium.
21. The method as claimed in claim 19, wherein the lithium ion battery having an electrode comprising lithium metal.
22. The method as claimed in claim 19, wherein said thermoplastic being selected from the group consisting of: polyethylene, polypropylene, polybutene, polymethylpentene, ultrahigh molecular weight polyethylene, copolymers thereof, and blends of the foregoing.
23. The method as claimed in claim 19, wherein said inert thermally non-deforming particulate having an average particle diameter of less than 1 micron.
24. The method as claimed in claim 19, wherein said inert thermally non-deforming particulate being selected from the group consisting of: carbon based materials, metal oxides and hydroxides, metal carbonates, minerals, synthetic and natural zeolites, cements, silicates, glass particles, sulfur-containing salts, synthetic polymers, and mixtures thereof.
25. The method as claimed in claim 19, wherein the particulate comprising 1 to 49% by weight of said membrane.
26. A method of improving a battery separator's resistance to thermal runaway, wherein the
separator exhibits a maximum Z-direction compression of 95% of the original membrane
thickness, comprising the step of:
providing a microporous membrane for the separator, said membrane comprising a thermoplastic polymer and an inert particulate filler, said filler being dispersed throughout said polymer, said thermoplastic polymer being selected from the group consisting of: polyolefms, polyvinyl halogens, nylons, and polystrenes, whereby, during thermal runaway, physical contact of the electrodes is prevented by the particulate.
27. The method as claimed in claim 26, wherein said thermoplastic polymer being selected from the group consisting of: polyethylene, polypropylene, polybutene, polymethylpentene, ultrahigh molecular weight polyethylene, copolymers thereof, and blends of the foregoing.
28. The method as claimed in claim 26, wherein said inert particulate filler being selected from the group consisting of: carbon based materials, metal oxides and hydroxides, metal carbonates, minerals, synthetic and natural zeolites, cements, silicates, glass particles, sulfur-containing salts, synthetic polymers, and mixtures thereof.
29. The method as claimed in claim 26, wherein the particulate comprising 1 to 49% by weight of said membrane.
30. The method as claimed in claim 26, wherein said membrane exhibits a maximum Z-direction compression of 85% of the original membrane thickness.
31. A method of improving a battery separator's resistance to thermal runaway, wherein the separator having a TMA compression curve with a first substantially horizontal slope between ambient temperature and 125°C, a second substantially horizontal slope at greater than 225°C, wherein a Y-axis represents % compression from original thickness and a X-axis represents temperature, said curve of said first slope having a lower % compression than said curve of said second slope, and said curve of said second slope not being less than 5% compression, comprising the step of:
providing a microporous membrane as the battery separator, the membrane comprising a thermoplastic polymer and an inert particulate filler, said filler being dispersed throughout said polymer, said thermoplastic polymer being selected from the group consisting of: polyolefins, polyvinyl halogens, nylons, and polystrenes, whereby, during thermal runaway, physical contact of the electrodes is prevented by the particulate.

Documents:


Patent Number 259216
Indian Patent Application Number 2427/DELNP/2007
PG Journal Number 10/2014
Publication Date 07-Mar-2014
Grant Date 03-Mar-2014
Date of Filing 30-Mar-2007
Name of Patentee CELGARD LLC
Applicant Address 13800 SOUTH LAKES DRIVE CHARLOTTE, NC 28273, UNITED STATES OF AMERICA,
Inventors:
# Inventor's Name Inventor's Address
1 ZHENGMING ZHANG 10314 LADY CANDICE LANE, CHARLOTTE, NORTH CAROLINE 28270 USA,
2 KHUY V. NGUYEN 1106 LAND GRANT ROAD CHARLOTTE, NORTH CARLONIA 28217, USA
3 PANKAJ ARORA 8431 COMPATIBLE WAY , APT . 307 CHARLOTTE NORTH CAROLINA 28262 USA
4 RONALD W.CALL 2261 BULERIDGE WAY ROCK HILL SOUTH CAROLINA 29732, USA
5 DONALD K . SIMMONS 2026 EAST 9TH STREET CHARLOTTE , NORTH CAROLINA 28204 USA
6 TIEN DAO 7821 ROYAL POINT DRIVE # 203, CHARLOTTE, NORTH CAROLINA 28273 USA
PCT International Classification Number H01M 2/16
PCT International Application Number PCT/US2005/037135
PCT International Filing date 2005-10-18
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/971,310 2004-10-22 U.S.A.