Title of Invention

A PROCESS FOR THE PREPARATION OF 2-(2-AMINO ETHOXY) ETHANOL (2AEE) AND MORPHOLINE WITH 2AEE: MORPHOLINE>3

Abstract The invention relates to a process for the preparation of 2-(2-aminoethoxy) ethanol (2AEE) and morpholine with 2AEE: morpholine >3.
Full Text FORM2
THE PATENTS ACT, 1970
(39 of 1970)
& Patent Rules 2003
Provisional SPECIFICATION
(See section 10; rule 13)


1. Title of the invention. - A process for the preparation of 2-(2-
aminoethoxy) ethanol (2AEE) and morpholine with 2AEE: morpholine >3
2. Applicant (a) Alkyl Amines Chemicals Ltd
(b) 401 - 407 Nirman Vyapar Kendra, Plot
No.10
Vashi, Navi Mumbai 400703
(c) an Indian Company.
The following specification discloses the invention


Field of the invention
The invention relates to a process for the preparation of 2-(2-aminoethoxy) ethanol (2AEE) and morpholine with 2AEE: morpholine >3.
Background of the invention
Amination of alcohols such as diethylene glycol (DEG) with aminating agent such as ammonia produces amines such as 2-(2-aminoethoxy) ethanol (2AEE) and morpholine in varying ratios depending on the catalyst used and the reaction conditions. Generally the catalysts used are metals, metal oxides supported on oxides such as silica, alumina, thoria, zirconia and their like. The ammonia: DEG molar ratio is generally in the range upto 50 and the reaction is carried out at temperatures in the range of 100 - 300 °C and pressures in the range of 10 to 260 Bar. These reactions are carried out in batch, continuous and semi-continuous modes in diverse phases such as liquid, vapour, and liquid-vapour phases.
US 4532324 discloses the reductive amination of DEG in the presence of catalyst consisting of cobalt, copper and ceria and/or thoria. The molar ratio of ammonia: DEG is 50, temperatures 150-260 °C, pressures of 500 -3500 psig. The ratio of the products 2AEE: morpholine is maximum 5 (wt/wt) when the reaction is carried out at 2500 psig and ammonia.DEG molar ratio of 6.
US 4645834 discloses the reaction of DEG and ammonia carried out in presence of nickel, cobalt and chromium catalysts on supports such as silica, kieselguhr, alumina or mixtures thereof. The molar ratio of ammonia: DEG is 1-100, preferably 4-16, temperatures 140-280 °C, pressures of 125 - 500psig. The ratio of the products 2AEE: morpholine is 0.37 -2.21.
US 4709028 teaches the use of alumina and silica as support and a component selected from Cobalt, Nickel or Copper. The molar ratio of ammonia: DEG is 1 -100, preferably 10, temperatures 140 -280 °C, pressures of 125 - 500psig. The ratio of the products 2AEE: morpholine is 0.12 to 0.31.
US 5288911 teaches the use of catalyst essentially containing Iron with optional addition of cobalt. The molar ratio of ammonia: DEG is about 10, temperatures 150 -300 °C, pressures of 50 - 300 Bar. The ratio of the products 2AEE: morpholine is 14 when operated at 200 Bar and 240 °C under nitrogen and 2AEE: morpholine is 2.4 when operated at 200 Bar and 240 °C under hydrogen using mixed iron and cobalt catalyst.
GB 1530570 teaches use of catalysts selected from Cu, Ni, Cr, Co, Mn, Mo, Pd, Pt, Rh, and their oxides and mixtures thereof. The molar ratio of ammonia: DEG is 1 -10, temperatures 190 -230 °C, pressures of 700 - 1800 psig, the pressure sufficient to maintain the reactant in the liquid phase. The ratio of the products 2AEE: morpholine is 0.3 to 2.


US 3155657 teaches the use of Ru on gamma alumina, charcoal, etc as catalysts. The continuous process uses molar ratio of ammonia: DEG upto 10, temperatures 180 -300 °C, pressures of 100 - 300 Bar. The ratio of the products 2AEE: morpholine is 0.3 to 3.1.
US 4508896 teaches the use of catalysts selected from copper, nickel, chromium, cobalt, manganese, molybdenum, palladium, platinum, rhodium, oxides of said metals, and mixtures thereof wherein the ammonia : DEG ratio is about 6, the reaction being carried out at a temperature range of 190 °C to 230 °C, substantially in the absence of added hydrogen, and at a pressure ranging from 700 psig to about 2200 psig, recovering from the resulting reaction mixture of products in the ratio of 2AEE: morpholine ranging from 0.5 to 1.78. The catalyst optionally uses alumina as support.
US 4647663 teaches the use of hydrogenation/dehydrogenation catalysts such as oxides of nickel, copper, cobalt and chromium on supports such as alumina and silica, kieselguhr wherein the metal by weight of the catalyst including support is from 0.01% to 70%, typically between 20 to 40%.
US 2529923 teaches the use of catalysts comprising metallic nickel, copper-chromite, copper, nickel chromite, iron, cobalt, titanium, copper, etc on supports such as kieselguhr. The mixture of the catalyst and DEG is saturated with ammonia and autoclaved at temperatures of 160 - 400 °C to give a mixture of 2AEE and morpholine, in good yields.
US 5011926 teaches the use of dual nickel based catalysts with Ni-Cr-Co oxide with Ni on alumina. The molar ratio of ammonia: DEG is 1 -10, temperatures 150 -300 °C, pressures of 200 - 5000psig. The ratio of the products 2AEE: morpholine is 0.09 to 0.67.
US 5166433 and US 5002922 teach use of zirconium oxide as support with mixed metal oxides for reactions of DEG with ammonia. The mixed metal oxides are from 1 to 30% by weight calculated as CuO of oxygen containing compounds of copper and from 1 to 40% by weight each calculated as CoO or NiO respectively, of oxygen containing compounds of Cobalt and of Nickel. These are used for amination of alcohols under hydrogenating conditions. US 5166433 claims a process for the amination of alcohols under hydrogenating conditions and US 5002922 claims catalyst compositions. The examples cited in these patents use ammonia:DEG ratio of 12.8; temperature of 200 °C, pressure of 30 Bar to yield 2AEE:Morpholine of 0.12 to 0.4 and at a pressure of 200 Bar the yield of 2AEE:Morpholine is 0.005 to 0.24.
US Patent Application No 2008/0255351 teaches the use of a catalytically active composition, which prior to treatment with hydrogen, comprises a mixture of oxygen-containing compounds of copper, nickel, cobalt on zirconia, the catalyst being used is small shaped bodies. The ammonia : DEG molar ratio in the examples is 6.5, the temperature is 190-200 °C and pressure of 200 Bar results in 2AEE: morpholine ratio of 0.98, 0.66 and 0.34 when 1.5x2 mm shaped bodies are used at temperatures of 192 °C , 195 °C , and 198 °C respectively (example no. 1).


In the above patent application no 2008/0255351, the object of the invention as is stated in page 3 paragraph [0038] is to obtain high ADG selectivity when catalyst is used in the form of small shaped bodies.
There is a long felt need in industry to provide cost effective industrial processes for the production of 2AEE wherein
> The selectivity towards 2AEE is significantly higher, such that the ratio of 2AEE: morpholine > 3 is obtained
> The operating pressures is as low as Thus in accordance with this invention, 2AEE: morpholine ratios of >3 is obtained wherein,
> DEG and Ammonia is reacted in a continuous mode in hydrogen atmosphere in the presence of a catalyst at temperatures of 150°Cto 250 °C and pressure of 10 Bar to 20 Bar the products being separated by distillation;.
> the catalyst used is metal oxide on silica or alumina support
> the molar ratio of ammonia: DEG being > 20;
> the molar ratio of hydrogen : DEG being 1 to 20;
optionally the reactants being fed in a downward flow mode.
The metal oxides are selected from transition metals preferably cobalt.
The metal on the support is 10 to 50 %
The preferred supports selected from silica, alumina and kieselguhr.
The invention will now be illustrated with non-limiting examples.
Example 1
50 gms of catalyst comprising Cobalt Oxide on Alumina (equivalent to 15 wt% Co) was charged in a tubular reactor and reduced at 200 °C under hydrogen flow. DEG (62 gms/hr), ammonia (325 gms/hr) and 53 NL/hr of hydrogen gas was fed in the downflow mode into the reactor at 180 °C and pressure 14 Bar (g) for 6.5 hours to yield weight ratio of 2AEE : Morpholine 4.3
Example 2
50 gms of catalyst comprising Cobalt Oxide on Alumina (equivalent to 15 wt% Co) was charged in a tubular reactor and reduced at 200 °C under hydrogen flow. DEG (73 gms/hr), ammonia (382 gms/hr) and 62 NL/hr of hydrogen gas was fed in the downflow mode into the reactor at 180 °C and pressure 14 Bar (g) for 6.5 hours to yield weight ratio of 2AEE : Morpholine 6.2


Example 3
50 gms of catalyst comprising Cobalt Oxide on Keiselguhr (equivalent to 40 wt% Co) was charged in a tubular reactor and reduced at 200 °C under hydrogen flow. DEG (62 gms/hr), ammonia (310 gms/hr) and 42 NL/hr of hydrogen gas was fed in the downflow mode into the reactor at 210 °C and pressure 14 Bar (g) for 6.75 hours to yield weight ratio of 2AEE : Morpholine 3.1.
Example 4
50 gms of catalyst comprising Cobalt Oxide on Keiselguhr (equivalent to 40 wt% Co) was charged in a tubular reactor and reduced at 200 °C under hydrogen flow. DEG (62.5 gms/hr), ammonia (320 gms/hr) and 43 NL/hr of hydrogen gas was fed in the downflow mode into the reactor at 210 °C and pressure 14 Bar (g) for 7 hours to yield weight ratio of 2AEE : Morpholine 3.8.
-6 OCT 2009
The processes in the prior art to yield 2AEE: morpholine ratios >3 are carried out at high pressures of over 200 Bar. In contrast the present invention provides a cost effective and viable industrially scalable process to achieve 2AEE:morpholine ratio >3 at significantly low pressures (

Documents:

2306-MUM-2009-ABSTRACT(14-9-2010).pdf

2306-MUM-2009-ABSTRACT(GRANTED)-(31-1-2014).pdf

2306-MUM-2009-CLAIMS(19-8-2010).pdf

2306-MUM-2009-CLAIMS(AMENDED)-(21-11-2012).pdf

2306-MUM-2009-CLAIMS(AMENDED)-(5-12-2011)-.pdf

2306-MUM-2009-CLAIMS(AMENDED)-(5-12-2011).pdf

2306-MUM-2009-CLAIMS(GRANTED)-(31-1-2014).pdf

2306-MUM-2009-CORRESPONDENCE(14-9-2010).pdf

2306-MUM-2009-CORRESPONDENCE(19-8-2010).pdf

2306-MUM-2009-CORRESPONDENCE(5-12-2011)-.pdf

2306-MUM-2009-CORRESPONDENCE(5-12-2011).pdf

2306-MUM-2009-CORRESPONDENCE(IPO)-(31-1-2014).pdf

2306-mum-2009-correspondence.pdf

2306-MUM-2009-DESCRIPTION(COMPLETE)-(19-8-2010).pdf

2306-MUM-2009-DESCRIPTION(GRANTED)-(31-1-2014).pdf

2306-mum-2009-description(provisional).doc

2306-mum-2009-description(provisional).pdf

2306-MUM-2009-FORM 1(19-8-2010).pdf

2306-mum-2009-form 1.pdf

2306-MUM-2009-FORM 13(5-12-2011).pdf

2306-MUM-2009-FORM 18(19-8-2010).pdf

2306-mum-2009-form 2(19-8-2010).pdf

2306-MUM-2009-FORM 2(GRANTED)-(31-1-2014).pdf

2306-MUM-2009-FORM 2(TITLE PAGE)-(GRANTED)-(31-1-2014).pdf

2306-mum-2009-form 2(title page).pdf

2306-mum-2009-form 2.doc

2306-mum-2009-form 2.pdf

2306-MUM-2009-FORM 26(21-11-2012).pdf

2306-MUM-2009-FORM 3(19-8-2010).pdf

2306-MUM-2009-FORM 3(21-11-2012).pdf

2306-MUM-2009-FORM 3(5-12-2011).pdf

2306-mum-2009-form 3.pdf

2306-MUM-2009-FORM 5(19-8-2010).pdf

2306-MUM-2009-FORM PCT-IPEA-409(21-11-2012).pdf

2306-MUM-2009-FORM PCT-IPEA-416(21-11-2012).pdf

2306-MUM-2009-PCT-IPEA-409(5-12-2011).pdf

2306-MUM-2009-PCT-ISA-210(5-12-2011).pdf

2306-MUM-2009-PCT-ISA-220(5-12-2011).pdf

2306-MUM-2009-PETITION UNDER RULE-137(21-11-2012).pdf

2306-MUM-2009-PETITION UNDER RULE-137(5-12-2011).pdf

2306-MUM-2009-REPLY TO EXAMINATION REPORT(21-11-2012).pdf

2306-MUM-2009FORM 2(TITLE PAGE)-(19-8-2010).pdf


Patent Number 258685
Indian Patent Application Number 2306/MUM/2009
PG Journal Number 06/2014
Publication Date 07-Feb-2014
Grant Date 31-Jan-2014
Date of Filing 06-Oct-2009
Name of Patentee ALKYL AMINES CHEMICALS LTD
Applicant Address 401-407 NIRMAN VYAPAR KENDRA, PLOT NO. 10, VASHI, NAVI MUMBAI 400703
Inventors:
# Inventor's Name Inventor's Address
1 SAMEER SHARAD KATDARE 2, MANJUSHA B, GULMOHAR PATH, ERANDWANE, PUNE 411 004
2 PRASANNA KRISHNA SOMALWAR FLAT NO 1 GODAVARI, MUKAND CO OP. HOUSING SOCIETY, THANE WEST 400 601
3 RAMASWAMY VISHWANATHAN 2/147, PUSHPA PARK, GARODIA NAGAR, GHATKOPAR EAST, MUMBAI 400 077
4 SRINIVASAN SAIMANI C 2-17, SHANTIBAN HOUSING SOCIETY, CHINCHWADI, PUNE 411 033
PCT International Classification Number C07C213/02
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA