Title of Invention

HANDLING OF IDENTITIES IN A TRUST DOMAIN OF AN NETWORK

Abstract A method for handling user identity and privacy, wherein a first Session Initiation Protocol (SIP) proxy is about to forward a SIP request to a next SiP proxy includes the step of determining whether Transport Layer Security (TLS) is supported in a hop to a next SIP proxy. When TLS is supported, the method includes establishing a TLS connection to the hop to the next SIP proxy, requesting a certificate from the next SIP proxy, receiving the certificate, verifying the certificate and trustworthiness of a network of the next SIP proxy and retaining identity information when the certificate and the trustworthiness of the network is verified. When TLS is not supported, or when the certificate is not verified, or when the trustworthiness of the network is not verified, the identity information is removed. Thereafter, the SIP request is forwarded over the TLS connection.
Full Text HANDLING OF IDENTITIES IN A TRUST DOMAIN OF AN IP NETWORK
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001J This application claims priority of United States Provisional Patent Application Serial No. 60/567,760, filed on May 3, 2004. The subject matter of this earlier filed application is hereby incorporated by reference.
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[0002] The present invention relates to the handling of identities in portions of a
network. The present invention further relates to the insertion or the removal of user
asserted identities when crossing the boundary of the trust domain and honoring user
privacy requirements with respect to asserted identities.
DESCRIPTION OF THE RELATED ART
[0003] In the 3rd Generation Partnership Project (3GPP) IP Multimedia Subsystem (IMS), Release 5, a system is considered to be a closed network of trusted parties. IMS sessions always originate or terminate in an IMS network and all IMS networks trust each other. This model precludes the establishment of an IMS session that originates or terminates in the public Internet. On the other hand, as all the IMS networks trust each other, Session Initiation Protocol (SIP) proxies (Call Session Control Function (CSCF), Breakout Gateway Control Function (BGCF), etc.) need not take any action about asserted identities in SIP requests. If an asserted identity is present when a request is received from another IMS (trusted) network, it is to be

trusted. If the SIP proxy is going to send a SIP request to another network, the asserted identity is kept in the message.
[0004] 3 GPP IMS Release 6 allows IMS sessions to be established to and from internet SIP clients. This, however, requires a new trust model because, for a particular network, only selected (IMS or non-IMS) networks are considered to be trusted. It is required that SIP proxies (e.g., CSCF, BGCF, etc.) are able to take an action (e.g., removal) on asserted identities when traffic is routed to a non-trusted network. If a SIP proxy receives a SIP request from a trusted network and there is an asserted identity, it is kept. However, if a SIP proxy receives a SIP request from an untrusted network and there is an asserted identity, the SIP proxy removes the identity since it is not trusted. Similarly, if a SIP proxy is about to forward a request to a trusted network, it keeps any asserted identity. But if a SIP proxy is about to forward a request to an untrusted network, the asserted identity is removed. [0005] The concept of the trust network in IMS is supported by the existence of an interconnection agreement between the two networks that trust each other. When two networks sign an interconnection agreement, they exchange security information. 3 GPP IMS Release 5 does not support a mixture of trusted and untrusted nodes. The 3GPP IMS Release 5 specifies that all the IMS networks trust each other; in other words, connections to non-IMS networks are not allowed. 3GPP IMS Release 5 provides Internet Protocol security (IPsec) gateways and IPsec tunnels between any two IMS networks. However, IPsec gateways are not useful for the trusted/untrusted model in Release 6, since IPsec gateways operate with the IP layer, not the SIP layer, and since IPsec gateways are physically and logically different elements than SIP

proxies. Additionally, the existence of an IPsec tunnel between two IMS operators is not enough to assume that there is a trust relationship at the SIP level between these operators.
[0006] Thus, there is a need for a method to determine whether a particular request is received from a trusted or untrusted source for a particular SIP proxy that is receiving a SIP request. Furthermore, it is also necessary to determine, prior to forwarding the SIP request, whether the next SIP proxy is trusted or not for a particular SIP proxy that is about to forward a SIP request to another network.
SUMMARY OF THE INVENTION
[0007] The present invention discloses a method for handling user identity and privacy, wherein a first Session Initiation Protocol (SIP) proxy is about to forward a SIP request to a next SIP proxy and includes the step of determining whether Transport Layer Security (TLS) is supported in a hop to a next SIP proxy. When TLS is supported, the method includes establishing a TLS connection to the hop to the next SIP proxy, requesting a certificate from the next SIP proxy, receiving the certificate, verifying the certificate and trustworthiness of a network of the next SIP proxy and retaining identity information when the certificate and the trustworthiness of the network is verified. When TLS is not supported, or when the certificate is not verified, or when the trustworthiness of the network is not verified, the identity information is removed. Thereafter, the SIP request is forwarded over the TLS connection. [0008] The present invention is also directed to a method for determining whether a first SIP proxy belongs to a trusted network for purposes of handling user identity and privacy, wherein a next Session Initiation Protocol (SIP) proxy receives a SIP request

from the first SIP proxy. The method includes the steps of receiving a SIP request from a first SIP proxy and determining whether the SIP request was received via TLS. When the SIP request was received via TLS, the method includes requesting a certificate from the first SIP proxy, receiving the certificate, verifying the certificate and trustworthiness of a network of the first SIP proxy and retaining identity information when the certificate and the trustworthiness of the network is verified. When TLS is not supported, or when the certificate is not verified, or when the trustworthiness of the network is not verified, the identity information is removed. Thereafter, the method includes responding to the SIP request.
[0009] The present invention is also directed to a communications device including establishing means for establishing a Transport Layer Security (TLS) connection to a hop to a next SIP proxy, determining means for determining whether TLS is supported in the hop to the next SIP proxy, requesting means for requesting a certificate from the next SIP proxy, receiving means for receiving the certificate, verifying means for verifying the certificate and trustworthiness of a network of the next SIP proxy and forwarding means for forwarding the SIP request over the TLS connection. The communications device is configured to retain identity information when the certificate is verified, when the trustworthiness of the network is verified and when TLS is supported, and configured to remove the identity information when TLS is not supported or the certificate is not verified or when the trustworthiness of the network is not verified.
[0010] The present invention is also directed to a communications system including a Transport Layer Security (TLS) connection establisher, configured to establish a

TLS connection to a hop to a next SIP proxy, a TLS support analyzer, configured to determining whether TLS is supported in the hop to the next SIP proxy, a verification module, configured to request a certificate from the next SIP proxy, receive the certificate and verify the certificate and trustworthiness of a network of the next SIP proxy and a SIP request handler; configured to forward the SIP request over the TLS connection. The communications system is configured to retain identity information when the certificate is verified, when the trustworthiness of the network is verified and when TLS is supported, and configured to remove the identity information when TLS is not supported or the certificate is not verified or when the trustworthiness of the network is not verified.
[0011] These and other features, aspects, and advantages of embodiments of the present invention will become apparent with reference to the following description in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for the purposes of illustration and not as a definition of the limits of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention that together with the description serve to explain the principles of the invention, wherein: [0013] Fig. 1 illustrates a the IMS security architecture; and
[0014] Fig. 2 illustrates a flowchart showing privacy handling, according to one embodiment of the present invention;

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS [0015] In the Packet-Switched (PS) domain, service is not provided until a security association is established between the mobile equipment and the network. IP Multimedia Core Network Subsystem (IMS) is essentially an overlay to the PS-Domain and has a low dependency of the PS-domain. Consequently a separate security association is required between the multimedia client and the IMS before access is granted to multimedia services. The IMS Security Architecture is shown in the Fig. 1.
[0016] Fig. 1 illustrates the relationship between the home/serving network 110, the visited/home network 120 and the user equipment 102, with the home/serving network having a Home Subscriber Server 111 (HSS). Fig. 1 illustrates the call control protocol between a mobile device (i.e., user equipment 102 (UE), subscriber, etc.) and various network elements such as a Serving Call Session Control Function 113 (S-CSCF), Proxy Call Session Control Function 121 (P-CSCF), and Interrogating Call Session Control Function 112 (I-CSCF).
[0017] IMS authentication keys and functions at the user side are stored on a Universal Integrated Circuit Card (UICC). It is possible for the IMS authentication keys and functions to be logically independent and the keys and functions used for PS domain authentication. However, this does not preclude common authentication keys and functions from being used for IMS and PS domain authentication. The IP Multimedia Services Identity Module 103 (ISIM) provides the collection of IMS security data and functions on a UICC.

[0018] There are five different security associations and different needs for security protection for IMS and they are numbered 1,2, 3, 4 and 5 in Fig. 1. The first association, number 1, provides mutual authentication. The HSS delegates the performance of subscriber authentication to the S-CSCF. However the HSS is responsible for generating keys and challenges. The long-term key in the ISIM and the HSS is associated with the IMPI. The subscriber will have one (network internal) user private identity (IMPI) and at least one external user public identity (IMPU). The second association, number 2, provides a secure link and a security association between the UE and a P-CSCF for protection of the Gm reference point. Data origin authentication is provided i.e. the corroboration that the source of data received is as claimed.
[0019] The third association, number 3, provides security within the network domain internally for the Cx-interface. The fourth association, number 4, provides security between different networks for SIP capable nodes. This security association is only applicable when the P-CSCF resides in the VN and if the P-CSCF resides in the HN, then number five applies. The last association, number 5, provides security within the network internally between SIP capable nodes.
[0020] There exist other interfaces and reference points in IMS, which have not been addressed above. Those interfaces and reference points reside within the IMS, either within the same security domain or between different security domains. Mutual authentication is required between the UE and the HN. An independent IMS security mechanism provides additional protection against security breaches. For example, if

the PS-Domain security is breached, the IMS would continue to be protected by it's own security mechanism.
[0021] Support for the trust model is guaranteed by the existence of interconnect agreements between trusted networks, as discussed above. Every SIP proxy contains a database that contains the list of trusted networks together with the security parameters visible in a certificate. The security parameters may be a certificate authority or a common name or organization.
[0022] Privacy may, in many instances, be equivalent to confidentiality. This can include hiding the information, using encryption and encryption keys, from all entities except those who are authorized to understand the information. The SIP Privacy Extensions for IMS Networks do not provide for such confidentiality. The purpose of the mechanism is rather to give an IMS subscriber the possibility to withhold certain identity information. It is useful that the privacy mechanism for IMS networks does not create states in the CSCFs other than the normal SIP states. [0023] According to at least one embodiment, when a Rel-6 (Release 6) IMS is interworking with a non-IMS network, the CSCF in IMS network decides the trust relation, based on whether the security mechanism for the interworking is applied as well as the availability of an inter-working agreement. If the interworking network is not trusted, the privacy information is removed from the traffic towards to the foreign network. When receiving SIP signalling, the CSCF also verifies if any privacy information is already contained. If the interworking network is not trusted, the information is removed by the CSCF, and retained otherwise.

[0024] Because absence of the security mechanism, when the interworking network indicates an untrusted non-IMS network, separate CSCFs are usually needed to interface with IMS and non-IMS networks. The CSCF interfacing with IMS networks implicitly trusts all IMS networks reachable via the SEG that establishes security. A Rel-5 (Release 5) CSCF always assumes this trust relationship and network configuration. For a Rel-6 CSCF, this implicit trust setting is a configuration option that an operator can set according to the network and interface configuration. [0025] Fig. 2 illustrates a flowchart showing privacy handling in accordance with an embodiment of the invention. An IMS SIP proxy, that is about to forward a SIP request to the next SIP proxy, establishes a Transport Layer Security (TLS), step 201, connection to that next hop. If TLS is not supported in the next hop, then the network is untrusted and privacy information is removed, in step 203. If TLS is supported, decision 202, the IMS SIP proxy requests a certificate from the other SIP proxy, step 204, On reception of the certificate, the IMS SIP proxy evaluates whether the certificate is valid, in step 205, and if it belongs to a trusted network. In case it belongs to a trusted network, the IMS proxy keeps the asserted identity, otherwise it removes it. Then, it forwards the SIP request over the TLS connection, in step 206. It is also possible that the SIP proxy already has a certificate for the other party as a result of previous connection. Then it may be enough to just verify that the certificate is still valid.
[0026] Similarly, an IMS SIP proxy that receives a SIP request, applies these same rules. If the request is not received via TLS, the sending SIP proxy is not trusted. If the request is sent via TLS, the IMS SIP proxy request the sending SIP proxy a

certificate. Then the IMS SIP proxy verifies the certificate against the list of trusted networks, determining whether the sending SIP proxy is trusted or not. Again, there may be a certificate from earlier connection.
[0027] Additionally, each IMS network configures the Domain Name Server (DNS) Naming Authority Pointer (NAPTR) records to give higher preference to TLS over User Datagram Protocol (UDP), Transmission Control Protocol (TCP), Stream Control Transmission Protocol (SCTP) (or other transport protocols) for the SIP service. This allows an IMS network to always try first TLS as a transport protocol. [0028] Regarding the interoperability with a Rel-5 network, a Rel-6 IMS network uses a backward compatible solution, i.e. Internet Protocol security (IPsec) via a Security gateway (SGW). The receiving SGW needs to change the port number of the SIP messages to the protected port of the CSCFs so as to indicate the receiving CSCF that packets have been IPsec protected. If there is interconnection agreement, then the user identity is forwarded or trusted at reception. Otherwise the user identity is removed. Another aspect of the invention is directed to how to provide backward compatibility between IMS Release 5 nodes and IMS Release 6. [0029] In a first example, an IMS Rel-5 SIP proxy is sending a SIP request to an IMS Rel-6 node. The IMS Rel-5 SIP proxy does not take any action on the asserted identity, since it considers the IMS Release 6 network trusted. However, the IMS Rel-6 SIP proxy will remove the asserted identity, since the request does not use TLS. [0030] According to embodiments of the instant invention, as the request traverses interdomain boundaries between two IMS networks, the SIP message will traverse a SGW in the IMS Rel-5 network, and then another SGW in the IMS Rel-6 network.

This traffic is protected using IPSec ESP. The SOW in the IMS Rel-6 network can retarget the destination port number (of the SIP proxy in the Rel-6 network) to a protected port number. The SIP proxy in the IMS Rel-6 network allocates two port numbers, one where regular traffic is received, another one where the Security Gateway sends traffic that has been received via an IPsec tunnel (from the IMS Rel-5 network). The existence of the IPsec tunnel indicates that the other end is an IMS network (and trusted by Rel-5 guidelines).
[0031] In a second example, an IMS Rel-5 SIP proxy is receiving a SIP request from an IMS Rel-6 network. Since the IMS Rel-5 network considers everything trusted, the IMS Rel-5 SIP proxy will not take any action on asserted identities. According to release 5 guidelines the request should come via security gateways in this case but this does not affect the action.
[0032] In a third example, an IMS Rel-6 SIP proxy is sending a SIP request to an IMS Rel-5 network. By default, since the IMS Rel-5 does not support TLS, the IMS Rel-6 SIP proxy will remove the asserted identity. According to embodiments of the present invention, the preferred action is to do nothing further. If the asserted identities need to be sent for some reason, then the operators have to do an interconnect agreement that contains an exempt from using TLS on the grounds that the other party is release 5. Now, the sending proxy will have to indicate to the security gateway of its own network that IPsec ESP must be applied. This indication could be done by using a dedicated source IP address for the sending proxy. [0033] In a fourth example, an IMS Rel-6 SIP proxy is receiving a SIP request from an IMS Rel-5 network. Since the IMS Rel-5 network does not support TLS, then the

IMS Rel-6 SIP proxy, by default, will consider the request coming from a non-trusted network. In this case, the solution is the same as that discussed for the first example above.
[0034] SIP signalling protected by Transport Layer Security (TLS) may be used to protect the SIP interoperation between an IMS CSCF with a proxy/CSCF located in a foreign network. The CSCF may request the TLS connection with a foreign Proxy by publishing sips: URI in DNS server, that can be resolved via NAPTR/SRV mechanism. When sending/receiving the certificate during the TLS handshaking phase, the CSCF verifies the name on the certificate against the list of the interworking partners. The TLS session can be initiated from either network. A TLS connection is capable of carrying multiple SIP dialogs. -
[0035] The foregoing description has been directed to specific embodiments of this invention. It will be apparent, however, that other variations and modifications may be made to the described embodiments, with the attainment of some or all of their advantages. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.



, A method for handling user identity and privacy, wherein a first Session Initiation Protocol (SIP) proxy is about to forward a SIP request to a next SIP proxy, comprising the steps of:
determining whether Transport Layer Security (TLS) is supported in a hop to a next SIP proxy;
when TLS is supported,
establishing a TLS connection to the hop to the next SIP proxy; requesting a certificate from the next SIP proxy; receiving the certificate;
verifying the certificate and trustworthiness of a network of the next SIP proxy;
retaining identity information when the certificate and the trustworthiness of the network is verified;
when TLS is not supported, or when the certificate is not verified, or when the trustworthiness of the network is not verified,
removing the identity information; and forwarding the SIP request over the TLS connection.
2. The method according to claim 1, wherein the step of verifying the certificate comprises determining whether the certificate is valid.

3. The method according to claim 1, wherein the step of verifying the trustwor
thiness of the network comprises determining whether the network belongs to a group
of trusted networks.
4. The method according to claim 3, wherein the step of determining whether
the network belongs to a group of trusted networks comprises determining whether the
network is on a list of trusted networks.
5. The method according to claim 1, wherein the next SIP proxy previously
sent a prior certificate and the step of verifying the certificate comprises determining
whether the prior certificate is still valid.
6. The method according to claim 1, further comprising maintaining separate
Call Session Control Functions (CSCFs) for trusted and non-trusted SIP proxies.
7. The method according to claim 1, further comprising configuring a Domain
Name Server (DNS) Naming Authority Pointer (NAPTR) to give higher preference to
TLS.
8. A method for determining whether a first SIP proxy belongs to a trusted net
work for purposes of handling user identity and privacy, wherein a next Session Initia
tion Protocol (SIP) proxy receives a SIP request from the first SIP proxy, comprising
the steps of:
receiving a SIP request from a first SIP proxy; determining whether the SIP request was received via TLS; when the SIP request was received via TLS,

requesting a certificate from the first SIP proxy;
receiving the certificate;
verifying the certificate and trustworthiness of a network of the first SIP proxy;
retaining identity information when the certificate and the trustworthiness of the network is verified;
when TLS is not supported, or when the certificate is not verified, or when the trustworthiness of the network is not verified,
removing the identity information; and responding to the SIP request.
9. The method according to claim 8, wherein the step of verifying the certifi
cate comprises determining whether the certificate is valid.
10. The method according to claim 8, wherein the step of verifying the trust
worthiness of the network comprises determining whether the network belongs to a
group of trusted networks.
11. The method according to claim 10, wherein the step of determining whether
the network belongs to a group of trusted networks comprises determining whether the
network is on a list of trusted networks.
12. The method according to claim 8, wherein the first SIP proxy previously
sent a prior certificate and the step of verifying the certificate comprises determining
whether the prior certificate is still valid.

13. The method according to claim 8, further comprising maintaining separate
Call Session Control Functions (CSCFs) for trusted and non-trusted SIP proxies.
14. The method according to claim 8, further comprising configuring a Domain
Name Server (DNS) Naming Authority Pointer (NAPTR) to give higher preference to
TLS.
15. A communications device, comprising:
establishing means for establishing a Transport Layer Security (TLS) connection to a hop to a next SIP proxy;
determining means for determining whether TLS is supported in the hop to the next SIP proxy;
requesting means for requesting a certificate from the next SIP proxy;
receiving means for receiving the certificate;
verifying means for verifying the certificate and trustworthiness of a network of the next SIP proxy; and
forwarding means for forwarding the SIP request over the TLS connection,
wherein the communications device is configured to retain identity information when the certificate is verified, when the trustworthiness of the network is verified and when TLS is supported, and configured to remove the identity information when TLS is not supported or the certificate is not verified or when the trustworthiness of the network is not verified.

16. The communications device according to claim 15, wherein the verifying
means comprises means for determining whether the certificate is valid.
17. The communications device according to claim 15, wherein the verifying
means comprises means for determining whether the network belongs to a group of
trusted networks.
18. The communications device according to claim 17, wherein the means for
determining the network belongs to a group of trusted networks comprises means for
determining whether the network is on a list of trusted networks.
19. The communications device according to claim 15, wherein when the next
SIP proxy previously sent a prior certificate, and the verifying means comprises
means for determining whether the prior certificate is still valid.
20. The communications device according to claim 15, further comprising
means for maintaining separate Call Session Control Functions (CSCFs) for trusted
and non-trusted SIP proxies.
21. The communications device according to claim 15, further comprising
means for configuring a Domain Name Server (DNS) Naming Authority Pointer
(NAPTR) to give higher preference to TLS.
22. A communications system, comprising:
a Transport Layer Security (TLS) connection establisher, configured to establish a TLS connection to a hop to a next SIP proxy;

a
L TLS support analyzer, configured to determining whether TLS is supported in the hop to the next SIP proxy;
a verification module, configured to request a certificate from the next SIP proxy, receive the certificate and verify the certificate and trustworthiness of a network of the next SIP proxy; and
a SIP request handler; configured to forward the SIP request over the TLS connection,
wherein the communications system is configured to retain identity information when the certificate is verified, when the trustworthiness of the network is verified and when TLS is supported, and configured to remove the identity information when TLS is not supported or the certificate is not verified or when the trustworthiness of the network is not verified..
23. The communications system according to claim 15, wherein the verification
module is configured to determine whether the certificate is valid.
24. The communications system according to claim 15, wherein the verification
module is configured to determine whether the network belongs to a group of trusted
networks.
25. The communications system according to claim 17, wherein the verification
module is configured to determine whether the network is on a list of trusted net
works.

26. The communications device according to claim 15, wherein when the next
SIP proxy previously sent a prior certificate, and the verification module is configured
to determine whether the prior certificate is still valid.
27. A computer program embodied on a computer readable medium for han
dling user identity and privacy, wherein a first Session Initiation Protocol (SIP) proxy
is about to forward a SIP request to a next SIP proxy, the computer program control
ling a data-processing device to perform the steps of:
determining whether Transport Layer Security (TLS) is supported in a hop to a next SIP proxy;
when TLS is supported,
establishing a TLS connection to the hop to the next SIP proxy; requesting a certificate from the next SIP proxy; receiving the certificate;
verifying the certificate and trustworthiness of a network of the next SIP proxy;
retaining identity information when the certificate and the trustworthiness of the network is verified;
when TLS is not supported, or when the certificate is not verified, or when the trustworthiness of the network is not verified,
removing the identity information; and forwarding the SIP request over the TLS connection.

28. The computer program according to claim 27, wherein the step of verifying
the certificate comprises determining whether the certificate is valid.
29. The computer program according to claim 27, wherein the step of verifying
the trustworthiness of the network comprises determining whether the network be
longs to a group of trusted networks.
30. The computer program according to claim 29, wherein the step of determin
ing whether the network belongs to a group of trusted networks comprises determin
ing whether the network is on a list of trusted networks.
31. The computer program according to claim 27, wherein the next SEP proxy
previously sent a prior certificate and the step of verifying the certificate comprises
determining whether the prior certificate is still valid.
32. A computer program embodied on a computer readable medium for deter
mining whether a first SIP proxy belongs to a trusted network for purposes of han
dling user identity and privacy, wherein a next Session Initiation Protocol (SIP) proxy
receives a SIP request from the first SIP proxy, the computer program controlling a
data-processing device to perform the steps of:
receiving a SIP request from a first SIP proxy; determining whether the SIP request was received via TLS; when the SIP request was received via TLS,
requesting a certificate from the first SIP proxy;
receiving the certificate;

verifying the certificate and trustworthiness of a network of the first SIP proxy;
retaining identity information when the certificate and the trustworthiness of the network is verified;
when TLS is not supported, or when the certificate is not verified, or when the trustworthiness of the network is not-verified,
removing the identity information; and responding to the SIP request.
33. The computer program according to claim 32, wherein the step of verifying
the certificate comprises determining whether the certificate is valid.
34. The computer program according to claim 32, wherein the step of verifying
the trustworthiness of the network comprises determining whether the network be
longs to a group of trusted networks.
35. The computer program according to claim 34, wherein the step of determin
ing whether the network belongs to a group of trusted networks comprises determin
ing whether the network is on a list of trusted networks.
36. The computer program according to claim 32, wherein the first SEP proxy
previously sent a prior certificate and the step of verifying the certificate comprises
determining whether the prior certificate is still valid.

Documents:

6840-delnp-2006- abstract.pdf

6840-delnp-2006- claims.pdf

6840-delnp-2006- description (complete).pdf

6840-delnp-2006- drawings.pdf

6840-delnp-2006- form-2.pdf

6840-delnp-2006- form-3.pdf

6840-delnp-2006- form-5.pdf

6840-delnp-2006- gpa.pdf

6840-delnp-2006- pct- search report.pdf

6840-delnp-2006- pct-304.pdf

6840-delnp-2006-Abstract-(08-03-2013).pdf

6840-delnp-2006-Claims-(08-03-2013).pdf

6840-delnp-2006-Correspondence Others-(08-03-2013).pdf

6840-delnp-2006-Correspondence Others-(10-12-2012).pdf

6840-delnp-2006-Correspondence Others-(14-03-2013).pdf

6840-delnp-2006-Correspondence Others-(24-05-2012).pdf

6840-delnp-2006-Correspondence-Others-(15-03-2013).pdf

6840-delnp-2006-correspondence-others-1.pdf

6840-delnp-2006-correspondence-others.pdf

6840-delnp-2006-form-1.pdf

6840-delnp-2006-form-18.pdf

6840-delnp-2006-Form-2-(08-03-2013).pdf

6840-delnp-2006-Form-3-(08-03-2013).pdf

6840-delnp-2006-Form-3-(10-12-2012).pdf

6840-delnp-2006-GPA-(15-03-2013).pdf

6840-delnp-2006-Petition-137-(14-03-2013).pdf


Patent Number 258656
Indian Patent Application Number 6840/DELNP/2006
PG Journal Number 05/2014
Publication Date 31-Jan-2014
Grant Date 28-Jan-2014
Date of Filing 16-Nov-2006
Name of Patentee NOKIA CORPORATION
Applicant Address KEILALAHDENTIE 4, FIN - 02150 ESPOO FINLAND
Inventors:
# Inventor's Name Inventor's Address
1 BAJKO GABOR NAGYSZALONTA U, 6B H - 1202 BUDAPEST HUNGARY
2 GARCIA MARTIN MIGUEL A PYKALATIE 5 A FIN - 00690 HELSINKI FINLAND
3 NIEMI VALTTERI TALBERGINKATU 3 AS 43 FIN - 00180 HELSINKI FINLAND
4 HAUKKA, TAO TASKILANTIE 18, FIN - 90580 OULU FINLAND
PCT International Classification Number H04L 12/56
PCT International Application Number PCT/IB2005/001168
PCT International Filing date 2005-04-29
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/567,760 2004-05-03 U.S.A.