Title of Invention

"MOLECULAR SIEVE SSZ-70 COMPOSITION OF MATTER AND SYNTHESIS THEREOF"

Abstract The present invention relates to new crystalline molecular sieve SSZ-70 prepared using a N, N'-diisopropyl imidazolium cation as a structure-directing agent, methods for synthesizing SSZ-70 and processes employing SSZ-70 in a catalyst.
Full Text BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to new crystalline molecular sieve SSZ-70, a method for preparing SSZ-70 using a N, N'-diisopropyl imidazolium cation as a structure directing agent and the use of SSZ-70 in catalysts for, e.g., hydrocarbon conversion reactions.
State of the Art
Because of their unique sieving characteristics, as well as their catalytic properties, crystalline molecular sieves and zeolites are especially useful in applications such as hydrocarbon conversion, gas drying and separation. Although many different crystalline molecular sieves have been disclosed, there is a continuing need for new zeolites with desirable properties for gas separation and drying, hydrocarbon and chemical conversions, and other applications. New zeolites may contain novel internal pore architectures, providing enhanced selectivities in these processes.
Crystalline aluminosilicates are usually prepared from aqueous reaction mixtures containing alkali or alkaline earth metal oxides, silica, and alumina. Crystalline borosilicates are usually prepared under similar reaction conditions except that boron is used in place of aluminum. By varying the synthesis conditions and the composition of the reaction mixture, different zeolites can often be formed.
SUMMARY OF THE INVENTION
The present invention is directed to a family of crystalline molecular sieves with unique properties, referred to herein as "molecular sieve SSZ-70" or simply "SSZ-70". Preferably, SSZ-70 is obtained in its silicate, aluminosilicate, titanosilicate, vanadosilicate or borosilicate form. The term "silicate" refers to a molecular sieve having a high mole ratio of silicon oxide relative to aluminum oxide, preferably a mole ratio greater than 100, including molecular sieves comprised entirely of silicon oxide. As used herein, the term "aluminosilicate" refers to a molecular sieve containing both aluminum oxide and silicon oxide and the term "borosilicate" refers to a molecular sieve containing oxides of both boron and silicon.
In accordance with this invention, there is provided a molecular sieve having a mole ratio greater than about 15 of (1) an oxide of a first tetravalent element to (2) an oxide of a trivalent element, pentavalent element, second tetravalent element different from said first tetravalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II.
Further, in accordance with this invention, there is provided a molecular sieve having a mole ratio greater than about 15 of (1) an oxide selected from silicon oxide, to (2) an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, vanadium oxide and mixtures thereof and having, after calcination, the X-ray diffraction lines of Table II below. It should be noted that the mole ratio of the first oxide or mixture of first oxides to the second oxide can be infinity, i.e., there is no second oxide in the molecular sieve. In these cases, the molecular sieve is an essentially all-silica molecular sieve.
The present invention further provides such a molecular sieve having a composition, as synthesized and in the anhydrous state, in terms of mole ratios as follows:
YO2/B2O3 20 - 60
M2/n/YO2 0 - 0.03
Q/YO2 0.02 - 0.05
F/YO2 0-0.10
wherein Y is silicon; M is an alkali metal cation, alkaline earth metal cation or mixtures thereof; n is the valence of M (i.e., 1 or 2); F is fluorine and Q is a N, N'-diisopropyl imidazolium cation.
In accordance with this invention, there is also provided a molecular sieve prepared by thermally treating a molecular sieve having a mole ratio of (1) silicon oxide to (2) an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, vanadium oxide and mixtures thereof greater than about 15 at a temperature of from about 200°C to about 800°C, the thus-prepared molecular sieve having the X-ray diffraction lines of Table II. The present invention also includes this thus-prepared molecular sieve which is predominantly in the hydrogen form, which
hydrogen form is prepared by ion exchanging with an acid or with a solution of an ammonium salt followed by a second calcination. If the molecular sieve is synthesized with a high enough ratio of SDA cation to sodium ion, calcination alone may be sufficient. For high catalytic activity, the SSZ-70 molecular sieve should be predominantly in its hydrogen ion form. As used herein, "predominantly in the hydrogen form" means that, after calcination, at least 80% of the cation sites are occupied by hydrogen ions and/or rare earth ions.
Also provided in accordance with the present invention is a method of preparing a crystalline material comprising (1) a first oxide comprising silicon oxide and (2) a second oxide comprising boron oxide and having a mole ratio of the first oxide to the second oxide greater than 15, said method comprising contacting under crystallization conditions sources of said oxides and a structure directing agent comprising a N, N'-diisopropyl imidazolium cation.
In accordance with the present invention there is provided a process for converting hydrocarbons comprising contacting a hydrocarbonaceous feed at hydrocarbon converting conditions with a catalyst comprising the molecular sieve of this invention. The molecular sieve may be predominantly in the hydrogen form. It may also be substantially free of acidity. The invention includes such a process wherein the molecular sieve has a mole ratio greater than about 15 of (1) silicon oxide to (2) an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide and mixtures thereof, and has, after calcination, the X-ray diffraction lines of Table II.
Further provided by the present invention is a hydrocracking process comprising contacting a hydrocarbon feedstock under hydrocracking conditions with a catalyst comprising the molecular sieve of this invention, preferably predominantly in the hydrogen form.
This invention also includes a dewaxing process comprising contacting a hydrocarbon feedstock under dewaxing conditions with a catalyst comprising the molecular sieve of this invention, preferably predominantly in the hydrogen form.
The present invention also includes a process for improving the viscosity index of a dewaxed product of waxy hydrocarbon feeds comprising contacting the waxy
hydrocarbon feed under isomerization dewaxing conditions with a catalyst comprising the molecular sieve of this invention, preferably predominantly in the hydrogen form.
The present invention further includes a process for producing a C20+ lube oil from a C20+ olefin feed comprising isomerizing said olefin feed under isomerization conditions over a catalyst comprising the molecular sieve of this invention. The molecular sieve may be predominantly in the hydrogen form. The catalyst may contain at least one Group VIII metal.
In accordance with this invention, there is also provided a process for catalytically dewaxing a hydrocarbon oil feedstock boiling above about 350°F (177°C) and containing straight chain and slightly branched chain hydrocarbons comprising contacting said hydrocarbon oil feedstock in the presence of added hydrogen gas at a hydrogen pressure of about 15-3000 psi (0.103 - 20.7 MPa) with a catalyst comprising the molecular sieve of this invention, preferably predominantly in the hydrogen form. The catalyst may contain at least one Group VIII metal. The catalyst may be a layered catalyst comprising a first layer comprising the molecular sieve of this invention, and a second layer comprising an aluminosilicate zeolite which is more shape selective than the molecular sieve of said first layer. The first layer may contain at least one Group VIII metal.
Also included in the present invention is a process for preparing a lubricating oil which comprises hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil, and catalytically dewaxing said effluent comprising hydrocracked oil at a temperature of at least about 400°F (204°C) and at a pressure of from about 15 psig to about 3000 psig (0.103 - 20.7 Mpa gauge)in the presence of added hydrogen gas with a catalyst comprising the molecular sieve of this invention. The molecular sieve may be predominantly in the hydrogen form. The catalyst may contain at least one Group VIII metal.
Further included in this invention is a process for isomerization dewaxing a raffinate comprising contacting said raffinate in the presence of added hydrogen with a catalyst comprising the molecular sieve of this invention. The raffinate may be bright stock, and the molecular sieve may be predominantly in the hydrogen form. The catalyst may contain at least one Group VIII metal.
Also included in this invention is a process for increasing the octane of a hydrocarbon feedstock to produce a product having an increased aromatics content comprising contacting a hydrocarbonaceous feedstock which comprises normal and slightly branched hydrocarbons having a boiling range above about 40°C and less than about 200°C, under aromatic conversion conditions with a catalyst comprising the molecular sieve of this invention made substantially free of acidity by neutralizing said molecular sieve with a basic metal. Also provided in this invention is such a process wherein the molecular sieve contains a Group VIII metal component.
Also provided by the present invention is a catalytic cracking process comprising contacting a hydrocarbon feedstock in a reaction zone under catalytic cracking conditions in the absence of added hydrogen with a catalyst comprising the molecular sieve of this invention, preferably predominantly in the hydrogen form. Also included in this invention is such a catalytic cracking process wherein the catalyst additionally comprises a large pore crystalline cracking component.
This invention further provides an isomerization process for isomerizing C4 to C7 hydrocarbons, comprising contacting a feed having normal and slightly branched C4 to C7 hydrocarbons under isomerizing conditions with a catalyst comprising the molecular sieve of this invention, preferably predominantly in the hydrogen form. The molecular sieve may be impregnated with at least one Group VIII metal, preferably platinum. The catalyst may be calcined in a steam/air mixture at an elevated temperature after impregnation of the Group VIII metal.
Also provided by the present invention is a process for alkylating an aromatic hydrocarbon which comprises contacting under alkylation conditions at least a molar excess of an aromatic hydrocarbon with a C2 to C20 olefin under at least partial liquid phase conditions and in the presence of a catalyst comprising the molecular sieve of this invention, preferably predominantly in the hydrogen form. The olefin may be a C2 to C4 olefin, and the aromatic hydrocarbon and olefin may be present in a molar ratio of about 4:1 to about 20:1, respectively. The aromatic hydrocarbon may be selected from the group consisting of benzene, toluene, ethylbenzene, xylene, naphthalene, naphthalene derivatives, dimethylnaphthalene or mixtures thereof.
Further provided in accordance with this invention is a process for transalkylating an aromatic hydrocarbon which comprises contacting under transalkylating conditions an aromatic hydrocarbon with a polyalkyl aromatic hydrocarbon under at least partial liquid phase conditions and in the presence of a catalyst comprising the molecular sieve of this invention, preferably predominantly in the hydrogen form. The aromatic hydrocarbon and the polyalkyl aromatic hydrocarbon may be present in a molar ratio of from about 1:1 to about 25:1, respectively.
The aromatic hydrocarbon may be selected from the group consisting of benzene, toluene, ethylbenzene, xylene, or mixtures thereof, and the polyalkyl aromatic hydrocarbon may be a dialkylbenzene.
Further provided by this invention is a process to convert paraffins to aromatics which comprises contacting paraffins under conditions which cause paraffins to convert to aromatics with a catalyst comprising the molecular sieve of this invention, said catalyst comprising gallium, zinc, or a compound of gallium or zinc.
In accordance with this invention there is also provided a process for isomerizing olefins comprising contacting said olefin under conditions which cause isomerization of the olefin with a catalyst comprising the molecular sieve of this invention.
Further provided in accordance with this invention is a process for isomerizing an isomerization feed comprising an aromatic C8 stream of xylene isomers or mixtures of xylene isomers and ethylbenzene, wherein a more nearly equilibrium ratio of ortho-, meta- and para-xylenes is obtained, said process comprising contacting said feed under isomerization conditions with a catalyst comprising the molecular sieve of this invention.
The present invention further provides a process for oligomerizing olefins comprising contacting an olefin feed under oligomerization conditions with a catalyst comprising the molecular sieve of this invention.
This invention also provides a process for converting oxygenated hydrocarbons comprising contacting said oxygenated hydrocarbon with a catalyst comprising the molecular sieve of this invention under conditions to produce liquid products. The oxygenated hydrocarbon may be a lower alcohol.
Further provided in accordance with the present invention is a process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons comprising the steps of:
(a) introducing into a reaction zone a lower molecular weight hydrocarbon-containing gas and contacting said gas in said zone under C2+ hydrocarbon synthesis conditions with the catalyst and a metal or metal compound capable of converting the lower molecular weight hydrocarbon to a higher molecular weight hydrocarbon; and
(b) withdrawing from said reaction zone a higher molecular weight hydrocarbon-containing stream.
The present invention further provides a catalyst composition for promoting polymerization of 1-olefins, said composition comprising
(A) a molecular sieve having a mole ratio greater than about 15 of (1) an oxide of a
first tetravalent element to (2) an oxide of a trivalent element, pentavalent element,
second tetravalent element which is different from said first tetravalent element or
mixture thereof and having, after calcination, the X-ray diffraction lines of Table II;
and
(B) an organotitanium or organochromium compound.
The 1-olefin polymerization catalyst composition icludes compositions wherein oxide (1) is silicon oxide, and oxide (2) is an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide.
The present invention further provides a process for polymerizing 1-olefins, which process comprises contacting 1-olefin monomer with a catalytically effective amount of a catalyst composition comprising
(A) a molecular sieve having a mole ratio greater than about 15 of (1) an oxide of a first tetravalent element to (2) an oxide of a trivalent element, pentavalent element, second tetravalent element which is different from said first tetravalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II;
and
(B) an organotitanium or organochromium compound
under polymerization conditions which include a temperature and pressure suitable
for initiating and promoting the polymerization reaction.
The polymerization process may employ a catalyst wherein oxide (1) is silicon oxide, and oxide (2) is an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide. The 1-olefin monomer may be ethylene.
The present invention further provides a process for hydrogenating a hydrocarbon feed containing unsaturated hydrocarbons, the process comprising contacting the feed and hydrogen under conditions which cause hydrogenation with a catalyst comprising the molecular sieve of this invention. The catalyst can also contain metals, salts or complexes wherein the metal is selected from the group consisting of platinum, palladium, rhodium, iridium or combinations thereof, or the group consisting of nickel, molybdenum, cobalt, tungsten, titanium, chromium, vanadium, rhenium, manganese and combinations thereof.
In accordance with this invention, there is also provided a process for hydrotreating a hydrocarbon feedstock comprising contacting the feedstock with a hydrotreating catalyst and hydrogen under hydrotreating conditions, wherein the catalyst comprises the molecular sieve of this invention.
In accordance with this invention, there is provided a method for performing an acylation reaction on an aromatic substrate ArHn to form a product ArHn-1COR, the method comprising the steps of:
providing the aromatic substrate,
intimately mixing the substrate and an acylating agent, wherein the acylating agent is selected from the group consisting of a carboxylic acid derivative, a carboxylic acid, an acid anhydride, an ester, and an acyl halide, and
exposing an intimate mixture thus formed to a catalyst comprising a molecular sieve having a mole ratio greater than about 15 of (1) an oxide of a first tetravalent element to (2) an oxide of a trivalent element, pentavalent element, second tetravalent element which is different from said first tetravalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II. There is also provided a method for performing an acylation reaction on an
aromatic substrate ArHn to form a product ArHn-1COR, the method comprising the steps
of:
providing the aromatic substrate,
intimately mixing the substrate and an acylating agent, wherein the acylating agent is selected from the group consisting of a carboxylic acid derivative, a carboxylic acid, an acid anhydride, an ester, and an acyl halide, and
exposing an intimate mixture thus formed to a catalyst comprising a molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide and mixtures thereof, and having, after calcination, the X-ray diffraction lines of Table II.
It should be noted that the mole ratio of the first oxide or mixture of first oxides to the second oxide can be infinity, i.e., there is no second oxide in the molecular sieve. In these cases, the molecular sieve is an essentially all-silica molecular sieve. The present invention also includes this thus-prepared molecular sieve which is predominantly in the hydrogen form, which hydrogen form is prepared by ion exchanging with an acid or with a solution of an ammonium salt followed by a second calcination. If the molecular sieve is synthesized with a high enough ratio of SDA cation to sodium ion, calcination alone may be sufficient. For high catalytic activity, the SSZ-70 molecular sieve may be predominantly in its hydrogen ion form. As used herein, "predominantly in the hydrogen form" means that, after calcination, at least 80% of the cation sites are occupied by hydrogen ions and/or rare earth ions.
In accordance with the present invention, there is provided a process for oxidation of hydrocarbons comprising contacting said hydrocarbon with an oxidizing agent in the presence of a catalytically effective amount of a crystalline, titanium-containing molecular sieve for a time and at a temperature effective to oxidize said hydrocarbon, wherein the crystalline titanium-containing molecular sieve is a molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II.
There is further provided in accordance with this invention a process for epoxidation of an olefin comprising contacting said olefin with hydrogen peroxide in the presence of a catalytically effective amount of a crystalline, titanium-containing molecular sieve for a time and at a temperature effective to epoxidize said olefin, wherein the crystalline titanium-containing molecular sieve is a molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II.
Further provided in accordance with the present invention is a process for oxidizing cyclohexane comprising contacting said cyclohexane with hydrogen peroxide in the presence of a catalytically effective amount of a crystalline, titanium-containing molecular sieve for a time and at a temperature effective to oxidize said cyclohexane, wherein the crystalline titanium-containing molecular sieve is a molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II.
The present invention also provides a catalytic oxidation process comprising contacting under oxidation conditions (1) a reactant which is catalytically oxidizable in the presence of hydrogen peroxide, (2) aqueous hydrogen peroxide and (3) a catalytically effective amount of an oxidation catalyst comprising a molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II.
The present invention also provides a process for the epoxidation of an olefin comprising contacting said olefin with hydrogen peroxide in the presence of a catalytically effective amount of a catalyst comprising a molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) titanium oxide, and having, after
calcination, the X-ray diffraction lines of Table II. In accordance with the present invention, there is provided a process for oxidation of hydrocarbons comprising contacting said hydrocarbon with an oxidizing agent in the presence of a catalytically effective amount of a crystalline, titanium-containing molecular sieve for a time and at a temperature effective to oxidize said hydrocarbon, wherein the crystalline titanium-containing molecular sieve is a molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II.
There is further provided in accordance with this invention a process for epoxidation of an olefin comprising contacting said olefin with hydrogen peroxide in the presence of a catalytically effective amount of a crystalline, titanium-containing molecular sieve for a time and at a temperature effective to epoxidize said olefin, wherein the crystalline titanium-containing molecular sieve is a molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II.
Further provided in accordance with the present invention is a process for oxidizing cyclohexane comprising contacting said cyclohexane with hydrogen peroxide in the presence of a catalytically effective amount of a crystalline, titanium-containing molecular sieve for a time and at a temperature effective to oxidize said cyclohexane, wherein the crystalline titanium-containing molecular sieve is a molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II.
The present invention also provides a catalytic oxidation process comprising contacting under oxidation conditions (1) a reactant which is catalytically oxidizable in the presence of hydrogen peroxide, (2) aqueous hydrogen peroxide and (3) a catalytically effective amount of an oxidation catalyst comprising a molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II.
The present invention also provides a process for the epoxidation of an olefin comprising contacting said olefin with hydrogen peroxide in the presence of a catalytically effective amount of a catalyst comprising a molecular sieve having a mole
ratio greater than about 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an X-ray diffraction pattern of SSZ-70 after it has been calcined.
FIG. 2 is an X-ray diffraction pattern of SSZ- 70 in the as-synthesized form, i.e., prior to calcination with the SDA still in the pores of the SSZ-70.
DETAILED DESCRIPTION OF THE INVENTION
The present invention comprises a family of crystalline molecular sieves designated herein "molecular sieve SSZ-70" or simply "SSZ-70". In preparing SSZ-70, a N, N'-diisopropyl imidazolium cation (referred to herein as "DIPI") is used as a structure directing agent ("SDA"), also known as a crystallization template. The SDA useful for making SSZ-70 has the following structure:
(Formula Removed)
The SDA cation is associated with an anion (X") which may be any anion that is not detrimental to the formation of the molecular sieve. Representative anions include halogen, e.g., fluoride, chloride, bromide and iodide, hydroxide, acetate, sulfate, tetrafluoroborate, carboxylate, and the like. Hydroxide is the most preferred anion.
SSZ-70 is prepared from a reaction mixture having the composition shown in Table A below.
TABLE A
Reaction Mixture
(Table Removed)

where Y, Q, M, F and n are as defined above.
In practice, SSZ-70 is prepared by a process comprising:
(a) preparing an aqueous solution containing sources of at least two
oxides capable of forming a crystalline molecular sieve and a DIPI cation having an
anionic counterion which is not detrimental to the formation of SSZ-70;
(b) maintaining the aqueous solution under conditions sufficient to
form crystals of SSZ-70; and
(c) recovering the crystals of SSZ-70.
Accordingly, SSZ-70 may comprise the crystalline material and the SDA in combination with metallic and non-metallic oxides bonded in tetrahedral coordination through shared oxygen atoms to form a cross-linked three dimensional crystal structure.
Typical sources of silicon oxide include silicates, silica hydrogel, silicic acid, fumed silica, colloidal silica, tetra-alkyl orthosilicates, and silica hydroxides. Boron can be added in forms corresponding to its silicon counterpart, such as boric acid.
A source zeolite reagent may provide a source of boron. In most cases, the source zeolite also provides a source of silica. The source zeolite in its deboronated form may also be used as a source of silica, with additional silicon added using, for example, the conventional sources listed above. Use of a source zeolite reagent for the present process is more completely described in U.S. Patent No. 5,225,179, issued July 6, 1993 to Nakagawa entitled "Method of Making Molecular Sieves", the disclosure of which is incorporated herein by reference.
Typically, an alkali metal hydroxide and/or an alkaline earth metal hydroxide, such as the hydroxide of sodium, potassium, lithium, cesium, rubidium, calcium, and magnesium, is used in the reaction mixture; however, this component can be omitted so long as the equivalent basicity is maintained. The SDA may be used to provide hydroxide ion. Thus, it may be beneficial to ion exchange, for example, the halide to hydroxide ion, thereby reducing or eliminating the alkali metal hydroxide quantity required. The alkali metal cation or alkaline earth cation may be part of the as-synthesized crystalline oxide material, in order to balance valence electron charges therein.
The reaction may also be carried out using HF to counterbalance the OH-contribution from the SDA, and run the synthesis in the absence of alkali cations. Running in the absence of alkali cations has the advantage of being able to prepare a catalyst from the synthesis product, by using calcination alone, i.e., no ion-exchange step (to remove alkali or alkaline earth cations) is necessary. In using HF, the reaction operates best when both the SDA and HF have mole ratios of 0.50 relative to YO2 (e.g., silica).
The reaction mixture is maintained at an elevated temperature until the crystals of the SSZ-70 are formed. The hydrothermal crystallization is usually conducted under autogenous pressure, at a temperature between 100°C and 200°C, preferably between 135°C and 160°C. The crystallization period is typically greater than 1 day and preferably from about 3 days to about 20 days.
Preferably, the molecular sieve is prepared using mild stirring or agitation.
During the hydrothermal crystallization step, the SSZ-70 crystals can be allowed to nucleate spontaneously from the reaction mixture. The use of SSZ-70 crystals as seed material can be advantageous in decreasing the time necessary for complete crystallization to occur. In addition, seeding can lead to an increased purity of the product obtained by promoting the nucleation and/or formation of SSZ-70 over any undesired phases. When used as seeds, SSZ-70 crystals are added in an amount between 0.1 and 10% of the weight of first tetravalent element oxide, e.g. silica, used in the reaction mixture.
Once the molecular sieve crystals have formed, the solid product is separated from the reaction mixture by standard mechanical separation techniques such as filtration. The crystals are water-washed and then dried, e.g., at 90°C to 150°C for from 8 to 24 hours, to obtain the as-synthesized SSZ-70 crystals. The drying step can be performed at atmospheric pressure or under vacuum.
SSZ-70 as prepared has a mole ratio of silicon oxide to boron oxide greater than about 15; and has, after calcination, the X-ray diffraction lines of Table II below. SSZ-70 further has a composition, as synthesized (i.e., prior to removal of the SDA from the SSZ-70) and in the anhydrous state, in terms of mole ratios, shown in Table B below.
TABLE B
As-Synthesized SSZ-70
(Table Removed)
where Y, M, n, F and Q are as defined above.
SSZ-70 can be an essentiallyall-silica material. Thus, in a typical case where oxides of silicon and boron are used, SSZ-70 can be made essentially boron free, i.e., having a silica to boron oxide mole ratio of ∞. SSZ-70 is made as a borosilicate and then the boron can then be removed, if desired, by treating the borosilicate SSZ-70 with acetic acid at elevated temperature ( as described in Jones et al., Chem. Mater., 2001, 13, 1041-1050) to produce an all-silica version of SSZ-70.
If desired, SSZ-70 can be made as a borosilicate and then the boron can be removed as described above and replaced with metal atoms by techniques known in the art. Aluminum, gallium, iron, titanium, vanadium and mixtures thereof can be added in this manner.
It is believed that SSZ-70 is comprised of a new framework structure or topology which is characterized by its X-ray diffraction pattern. SSZ-70, as-synthesized, has a crystalline structure whose X-ray powder diffraction pattern exhibit the characteristic lines shown in Table I and is thereby distinguished from other molecular sieves.
TABLE I As-Synthesized SSZ-70
(Table Removed)
(a)±0.15
(b) The X-ray patterns provided are based on a relative intensity scale in which the strongest line in the X-ray pattern is assigned a value of 100: W(weak) is less than 20; M(medium) is between 20 and 40; S(strong) is between 40 and 60; VS(very strong) is greater than 60.
Table IA below shows the X-ray powder diffraction lines for as-synthesized SSZ-70 including actual relative intensities.
TABLE IA
(a)±0.15
After calcination, the SSZ-70 molecular sieves have a crystalline structure whose X-ray powder diffraction pattern include the characteristic lines shown in Table II:
TABLE II
(Table Removed)
Table IIA below shows the X-ray powder diffraction lines for calcined SSZ-70 including actual relative intensities.

TABLE IIA
(Table Removed)
(a)±0.15
The X-ray powder diffraction patterns were determined by standard techniques. The radiation was the K-alpha/doublet of copper. The peak heights and the positions, as a function of 26 where 9 is the Bragg angle, were read from the relative intensities of the peaks, and d, the interplanar spacing in Angstroms corresponding to the recorded lines, can be calculated.
The variation in the scattering angle (two theta) measurements, due to instrument error and to differences between individual samples, is estimated at ± 0. 15 degrees.
The X-ray diffraction pattern of Table I is representative of "as-synthesized" or "as-made" SSZ-70 molecular sieves. Minor variations in the diffraction pattern can result from variations in the silica-to-boron mole ratio of the particular sample due to changes in lattice constants. In addition, sufficiently small crystals will affect the shape and intensity of peaks, leading to significant peak broadening.
Representative peaks from the X-ray diffraction pattern of calcined SSZ-70 are shown in Table II. Calcination can also result in changes in the intensities of the peaks as compared to patterns of the "as-made" material, as well as minor shifts in the diffraction pattern. The molecular sieve produced by exchanging the metal or other cations present in the molecular sieve with various other cations (such as H+or NH4+) yields essentially
the same diffraction pattern, although again, there may be minor shifts in the interplanar spacing and variations in the relative intensities of the peaks. Notwithstanding these minor perturbations, the basic crystal lattice remains unchanged by these treatments.
Crystalline SSZ-70 can be used as-synthesized, but preferably will be thermally treated (calcined). Usually, it is desirable to remove the alkali metal cation by ion exchange and replace it with hydrogen, ammonium, or any desired metal ion. The molecular sieve can be leached with chelating agents, e.g., EDTA or dilute acid solutions, to increase the silica to alumina mole ratio. The molecular sieve can also be steamed; steaming helps stabilize the crystalline lattice to attack from acids.
The molecular sieve can be used in intimate combination with hydrogenating components, such as tungsten, vanadium, molybdenum, rhenium, nickel, cobalt, chromium, manganese, or a noble metal, such as palladium or platinum, for those applications in which a hydrogenation-dehydrogenation function is desired.
Metals may also be introduced into the molecular sieve by replacing some of the cations in the molecular sieve with metal cations via standard ion exchange techniques (see, for example, U.S. Patent Nos. 3,140,249 issued July 7, 1964 to Plank et al; 3,140,251 issued July 7, 1964 to Plank et al.; and 3,140,253 issued July 7, 1964 to Plank et al.). Typical replacing cations can include metal cations, e.g., rare earth, Group IA, Group IIA and Group VIII metals, as well as their mixtures. Of the replacing metallic cations, cations of metals such as rare earth, Mn, Ca, Mg, Zn, Cd, Pt, Pd, Ni, Co, Ti, Al, Sn, and Fe are particularly preferred.
The hydrogen, ammonium, and metal components can be ion-exchanged into the SSZ-70. The SSZ-70 can also be impregnated with the metals, or the metals can be physically and intimately admixed with the SSZ-70 using standard methods known to the art.
Typical ion-exchange techniques involve contacting the synthetic molecular sieve with a solution containing a salt of the desired replacing cation or cations. Although a wide variety of salts can be employed, chlorides and other halides, acetates, nitrates, and sulfates are particularly preferred. The molecular sieve is usually calcined prior to the ion-exchange procedure to remove the organic matter present in the channels and on the surface, since this results in a more effective ion exchange. Representative ion exchange
techniques are disclosed in a wide variety of patents including U.S. Patent Nos. 3,140,249 issued on July 7, 1964 to Plank et al.; 3,140,251 issued on July 7, 1964 to Plank et al.; and 3,140,253 issued on July 7, 1964 to Plank et al.
Following contact with the salt solution of the desired replacing cation, the molecular sieve is typically washed with water and dried at temperatures ranging from 65°C to about 200°C. After washing, the molecular sieve can be calcined in air or inert gas at temperatures ranging from about 200°C to about 800°C for periods of time ranging from 1 to 48 hours, or more, to produce a catalytically active product especially useful in hydrocarbon conversion processes.
Regardless of the cations present in the synthesized form of SSZ-70, the spatial arrangement of the atoms which form the basic crystal lattice of the molecular sieve remains essentially unchanged.
SSZ-70 can be formed into a wide variety of physical shapes. Generally speaking, the molecular sieve can be in the form of a powder, a granule, or a molded product, such as extrudate having a particle size sufficient to pass through a 2-mesh (Tyler) screen and be retained on a 400-mesh (Tyler) screen. In cases where the catalyst is molded, such as by extrusion with an organic binder, the SSZ-70 can be extruded before drying, or, dried or partially dried and then extruded.
SSZ-70 can be composited with other materials resistant to the temperatures and other conditions employed in organic conversion processes. Such matrix materials include active and inactive materials and synthetic or naturally occurring zeolites as well as inorganic materials such as clays, silica and metal oxides. Examples of such materials and the manner in which they can be used are disclosed in U.S. Patent No. 4,910,006, issued May 20, 1990 to Zones et al., and U.S. Patent No. 5,316,753, issued May 31, 1994 to Nakagawa, both of which are incorporated by reference herein in their entirety.
Hydrocarbon Conversion Processes
SSZ-70 zeolites are useful in hydrocarbon conversion reactions. Hydrocarbon conversion reactions are chemical and catalytic processes in which carbon containing compounds are changed to different carbon containing compounds. Examples of hydrocarbon conversion reactions in which SSZ-70 are expected to be useful include
hydrocracking, dewaxing, catalytic cracking and olefin and aromatics formation reactions. The catalysts are also expected to be useful in other petroleum refining and hydrocarbon conversion reactions such as isomerizing n-paraffins and naphthenes, polymerizing and oligomerizing olefinic or acetylenic compounds such as isobutylene and butene-1, polymerization of 1-olefins (e.g., ethylene), reforming, isomerizing polyalkyl substituted aromatics (e.g., m-xylene), and disproportionating aromatics (e.g., toluene) to provide mixtures of benzene, xylenes and higher methylbenzenes and oxidation reactions. Also included are rearrangement reactions to make various naphthalene derivatives, and forming higher molecular weight hydrocarbons from lower molecular weight hydrocarbons (e.g., methane upgrading).
The SSZ-70 catalysts may have high selectivity, and under hydrocarbon conversion conditions can provide a high percentage of desired products relative to total products.
For high catalytic activity, the SSZ-70 zeolite should be predominantly in its hydrogen ion form. Generally, the zeolite is converted to its hydrogen form by ammonium exchange followed by calcination. If the zeolite is synthesized with a high enough ratio of SDA cation to sodium ion, calcination alone may be sufficient. It is preferred that, after calcination, at least 80% of the cation sites are occupied by hydrogen ions and/or rare earth ions. As used herein, "predominantly in the hydrogen form" means that, after calcination, at least 80% of the cation sites are occupied by hydrogen ions and/or rare earth ions.
SSZ-70 zeolites can be used in processing hydrocarbonaceous feedstocks. Hydrocarbonaceous feedstocks contain carbon compounds and can be from many different sources, such as virgin petroleum fractions, recycle petroleum fractions, shale oil, liquefied coal, tar sand oil, synthetic paraffins from NAO, recycled plastic feedstocks and, in general, can be any carbon containing feedstock susceptible to zeolitic catalytic reactions. Depending on the type of processing the hydrocarbonaceous feed is to undergo, the feed can contain metal or be free of metals, it can also have high or low nitrogen or sulfur impurities. It can be appreciated, however, that in general processing will be more efficient (and the catalyst more active) the lower the metal, nitrogen, and sulfur content of the feedstock.
The conversion of hydrocarbonaceous feeds can take place in any convenient mode, for example, in fluidized bed, moving bed, or fixed bed reactors depending on the types of process desired. The formulation of the catalyst particles will vary depending on the conversion process and method of operation.
Other reactions which can be performed using the catalyst of this invention containing a metal, e.g., a Group VIII metal such platinum, include hydrogenation-dehydrogenation reactions, denitrogenation and desulfurization reactions.
(Table Removed)
1Several hundred atmospheres 2Gas phase reaction 3Hydrocarbon partial pressure 4Liquid phase reaction 5WHSV

Other reaction conditions and parameters are provided below.
Hydrocracking
Using a catalyst which comprises SSZ-70, preferably predominantly in the hydrogen form, and a hydrogenation promoter, heavy petroleum residual feedstocks, cyclic stocks and other hydrocrackate charge stocks can be hydrocracked using the process conditions and catalyst components disclosed in the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753.
The hydrocracking catalysts contain an effective amount of at least one hydrogenation component of the type commonly employed in hydrocracking catalysts. The hydrogenation component is generally selected from the group of hydrogenation catalysts consisting of one or more metals of Group VIB and Group VIII, including the salts, complexes and solutions containing such. The hydrogenation catalyst is preferably selected from the group of metals, salts and complexes thereof of the group consisting of at least one of platinum, palladium, rhodium, iridium, ruthenium and mixtures thereof or the group consisting of at least one of nickel, molybdenum, cobalt, tungsten, titanium, chromium and mixtures thereof. Reference to the catalytically active metal or metals is intended to encompass such metal or metals in the elemental state or in some form such as an oxide, sulfide, halide, carboxylate and the like. The hydrogenation catalyst is present in an effective amount to provide the hydrogenation function of the hydrocracking catalyst, and preferably in the range of from 0.05 to 25% by weight.
Dewaxing
SSZ-70, preferably predominantly in the hydrogen form, can be used to dewax hydrocarbonaceous feeds by selectively removing straight chain paraffins. Typically, the viscosity index of the dewaxed product is improved (compared to the waxy feed) when the waxy feed is contacted with SSZ-70 under isomerization dewaxing conditions.
The catalytic dewaxing conditions are dependent in large measure on the feed used and upon the desired pour point. Hydrogen is preferably present in the reaction zone during the catalytic dewaxing process. The hydrogen to feed ratio is typically between about 500 and about 30,000 SCF/bbl (standard cubic feet per barrel) (0.089 to 5.34 SCM/liter (standard cubic meters/liter)), preferably about 1000 to about 20,000 SCF/bbl (0.178 to 3.56 SCM/liter). Generally, hydrogen will be separated from
the product and recycled to the reaction zone. Typical feedstocks include light gas oil, heavy gas oils and reduced crudes boiling above about 350°F (177°C).
A typical dewaxing process is the catalytic dewaxing of a hydrocarbon oil feedstock boiling above about 350°F (177°C) and containing straight chain and slightly branched chain hydrocarbons by contacting the hydrocarbon oil feedstock in the presence of added hydrogen gas at a hydrogen pressure of about 15-3000 psi (0.103-20.7 Mpa) with a catalyst comprising SSZ-70 and at least one Group VIII metal.
The SSZ-70 hydrodewaxing catalyst may optionally contain a hydrogenation component of the type commonly employed in dewaxing catalysts. See the aforementioned U.S. Patent No. 4,9 10,006 and U.S. Patent No. 5,3 16,753 for examples of these hydrogenation components.
The hydrogenation component is present in an effective amount to provide an effective hydrodewaxing and hydroisomerization catalyst preferably in the range of from about 0.05 to 5% by weight. The catalyst may be run in such a mode to increase isomerization dewaxing at the expense of cracking reactions.
The feed may be hydrocracked, followed by dewaxing. This type of two stage process and typical hydrocracking conditions are described in U.S. Patent No. 4,921,594, issued May 1, 1990 to Miller, which is incorporated herein by reference in its entirety.
SSZ-70 may also be utilized as a dewaxing catalyst in the form of a layered catalyst. That is, the catalyst comprises a first layer comprising zeolite SSZ-70 and at least one Group VIII metal, and a second layer comprising an aluminosilicate zeolite which is more shape selective than zeolite SSZ-70. The use of layered catalysts is disclosed in U.S. Patent No. 5,149,421, issued September 22, 1992 to Miller, which is incorporated by reference herein in its entirety. The layering may also include a bed of SSZ-70 layered with a non-zeolitic component designed for either hydrocracking or hydrofinishing.
SSZ-70 may also be used to dewax raffinates, including bright stock, under conditions such as those disclosed in U. S. Patent No. 4,181,598, issued January 1, 1980 to Gillespie et al., which is incorporated by reference herein in its entirety.
It is often desirable to use mild hydrogenation (sometimes referred to as hydrofinishing) to produce more stable dewaxed products. The hydrofinishing step can
be performed either before or after the dewaxing step, and preferably after. Hydrofinishing is typically conducted at temperatures ranging from about 190°C to about 340°C at pressures from about 400 psig to about 3000 psig (2.76 to 20.7 Mpa gauge) at space velocities (LHSV) between about 0.1 and 20 and a hydrogen recycle rate of about 400 to 1500 SCF/bbl (0.071 to 0.27 SCM/liter). The hydrogenation catalyst employed must be active enough not only to hydrogenate the olefins, diolefins and color bodies which may be present, but also to reduce the aromatic content. Suitable hydrogenation catalyst are disclosed in U. S. Patent No. 4,921,594, issued May 1, 1990 to Miller, which is incorporated by reference herein in its entirety. The hydrofinishing step is beneficial in preparing an acceptably stable product (e.g., a lubricating oil) since dewaxed products prepared from hydrocracked stocks tend to be unstable to air and light and tend to form sludges spontaneously and quickly.
Lube oil may be prepared using SSZ-70. For example, a C20+ lube oil may be made by isomerizing a C20+olefin feed over a catalyst comprising SSZ-70 in the hydrogen form and at least one Group VIII metal. Alternatively, the lubricating oil may be made by hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil, and catalytically dewaxing the effluent at a temperature of at least about 400°F (204°C) and at a pressure of from about 15 psig to about 3000 psig (0.103-20.7 Mpa gauge) in the presence of added hydrogen gas with a catalyst comprising SSZ-70 in the hydrogen form and at least one Group VIII metal.
Aromatics Formation
SSZ-70 can be used to convert light straight run naphthas and similar mixtures to highly aromatic mixtures. Thus, normal and slightly branched chained hydrocarbons, preferably having a boiling range above about 40°C and less than about 200°C, can be converted to products having a substantial higher octane aromatics content by contacting the hydrocarbon feed with a catalyst comprising SSZ-70. It is also possible to convert heavier feeds into BTX or naphthalene derivatives of value using a catalyst comprising SSZ-70.
The conversion catalyst preferably contains a Group VIII metal compound to have sufficient activity for commercial use. By Group VIII metal compound as used herein is meant the metal itself or a compound thereof. The Group VIII noble metals and
their compounds, platinum, palladium, and iridium, or combinations thereof can be used. Rhenium or tin or a mixture thereof may also be used in conjunction with the Group VIII metal compound and preferably a noble metal compound. The most preferred metal is platinum. The amount of Group VIII metal present in the conversion catalyst should be within the normal range of use in reforming catalysts, from about 0.05 to 2.0 weight percent, preferably 0.2 to 0.8 weight percent.
It is critical to the selective production of aromatics in useful quantities that the conversion catalyst be substantially free of acidity, for example, by neutralizing the zeolite with a basic metal, e.g., alkali metal, compound. Methods for rendering the catalyst free of acidity are known in the art. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a description of such methods.
The preferred alkali metals are sodium, potassium, rubidium and cesium. The zeolite itself can be substantially free of acidity only at very high silica:alumina mole ratios.
Catalytic Cracking
Hydrocarbon cracking stocks can be catalytically cracked in the absence of hydrogen using SSZ-70, preferably predominantly in the hydrogen form.
When SSZ-70 is used as a catalytic cracking catalyst in the absence of hydrogen, the catalyst may be employed in conjunction with traditional cracking catalysts, e.g., any aluminosilicate heretofore employed as a component in cracking catalysts. Typically, these are large pore, crystalline aluminosilicates. Examples of these traditional cracking catalysts are disclosed in the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No 5,316,753. When a traditional cracking catalyst (TC) component is employed, the relative weight ratio of the TC to the SSZ-70 is generally between about 1:10 and about 500:1, desirably between about 1:10 and about 200:1, preferably between about 1:2 and about 50:1, and most preferably is between about 1:1 and about 20:1. The novel zeolite and/or the traditional cracking component may be further ion exchanged with rare earth ions to modify selectivity.
The cracking catalysts are typically employed with an inorganic oxide matrix component. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for examples of such matrix components.
Isomerization
The present catalyst is highly active and highly selective for isomerizing C4 to C7 hydrocarbons. The activity means that the catalyst can operate at relatively low temperature which thermodynamically favors highly branched paraffins. Consequently, the catalyst can produce a high octane product. The high selectivity means that a relatively high liquid yield can be achieved when the catalyst is run at a high octane.
The present process comprises contacting the isomerization catalyst, i.e., a catalyst comprising SSZ-70 in the hydrogen form, with a hydrocarbon feed under isomerization conditions. The feed is preferably a light straight run fraction, boiling within the range of 30°F to 250°F (-1°C to 121°C) and preferably from 60°F to 200°F (16°C to 93°C). Preferably, the hydrocarbon feed for the process comprises a substantial amount of C4 to C7 normal and slightly branched low octane hydrocarbons, more preferably C5 and C6 hydrocarbons.
It is preferable to carry out the isomerization reaction in the presence of hydrogen. Preferably, hydrogen is added to give a hydrogen to hydrocarbon ratio (H2/HC) of between 0.5 and 10 H2/HC, more preferably between 1 and 8 H2/HC. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a further discussion of isomerization process conditions.
A low sulfur feed is especially preferred in the present process. The feed preferably contains less than 10 ppm, more preferably less than 1 ppm, and most preferably less than 0.1 ppm sulfur. In the case of a feed which is not already low in sulfur, acceptable levels can be reached by hydrogenating the feed in a presaturation zone with a hydrogenating catalyst which is resistant to sulfur poisoning. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a further discussion of this hydrodesulfurization process.
It is preferable to limit the nitrogen level and the water content of the feed. Catalysts and processes which are suitable for these purposes are known to those skilled in the art.
After a period of operation, the catalyst can become deactivated by sulfur or coke. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a
further discussion of methods of removing this sulfur and coke, and of regenerating the catalyst.
The conversion catalyst preferably contains a Group VIII metal compound to have sufficient activity for commercial use. By Group VIII metal compound as used herein is meant the metal itself or a compound thereof. The Group VIII noble metals and their compounds, platinum, palladium, and iridium, or combinations thereof can be used. Rhenium and tin may also be used in conjunction with the noble metal. The most preferred metal is platinum. The amount of Group VIII metal present in the conversion catalyst should be within the normal range of use in isomerizing catalysts, from about 0.05 to 2.0 weight percent, preferably 0.2 to 0.8 weight percent.
Alkylation and Transalkylation
SSZ-70 can be used in a process for the alkylation or transalkylation of an aromatic hydrocarbon. The process comprises contacting the aromatic hydrocarbon with a C2 to C16 olefin alkylating agent or a polyalkyl aromatic hydrocarbon transalkylating agent, under at least partial liquid phase conditions, and in the presence of a catalyst comprising SSZ-70.
SSZ-70 can also be used for removing benzene from gasoline by alkylating the benzene as described above and removing the alkylated product from the gasoline.
For high catalytic activity, the SSZ-70 zeolite should be predominantly in its hydrogen ion form. It is preferred that, after calcination, at least 80% of the cation sites are occupied by hydrogen ions and/or rare earth ions.
Examples of suitable aromatic hydrocarbon feedstocks which may be alkylated or transalkylated by the process of the invention include aromatic compounds such as benzene, toluene and xylene. The preferred aromatic hydrocarbon is benzene. There may be occasions where naphthalene or naphthalene derivatives such as dimethylnaphthalene may be desirable. Mixtures of aromatic hydrocarbons may also be employed.
Suitable olefins for the alkylation of the aromatic hydrocarbon are those containing 2 to 20, preferably 2 to 4, carbon atoms, such as ethylene, propylene, butene-1, trans-butene-2 and cis-butene-2, or mixtures thereof. There may be instances
where pentenes are desirable. The preferred oleftns are ethylene and propylene. Longer chain alpha olefins may be used as well.
When transalkylation is desired, the transalkylating agent is a polyalkyl aromatic hydrocarbon containing two or more alkyl groups that each may have from 2 to about 4 carbon atoms. For example, suitable polyalkyl aromatic hydrocarbons include di-, tri-and tetra-alkyl aromatic hydrocarbons, such as diethylbenzene, triethylbenzene, diethylmethylbenzene (diethyltoluene), di-isopropylbenzene, di-isopropyltoluene, dibutylbenzene, and the like. Preferred polyalkyl aromatic hydrocarbons are the dialkyl benzenes. A particularly preferred polyalkyl aromatic hydrocarbon is di-isopropylbenzene.
When alkylation is the process conducted, reaction conditions are as follows. The aromatic hydrocarbon feed should be present in stoichiometric excess. It is preferred that molar ratio of aromatics to olefins be greater than four-to-one to prevent rapid catalyst fouling. The reaction temperature may range from 100°F to 600°F (38°C to 315°C), preferably 250°F to 450°F (121°C to 232°C). The reaction pressure should be sufficient to maintain at least a partial liquid phase in order to retard catalyst fouling. This is typically 50 psig to 1000 psig (0.345 to 6.89 Mpa gauge) depending on the feedstock and reaction temperature. Contact time may range from 10 seconds to 10 hours, but is usually from 5 minutes to an hour. The weight hourly space velocity (WHSV), in terms of grams (pounds) of aromatic hydrocarbon and olefin per gram (pound) of catalyst per hour, is generally within the range of about 0.5 to 50.
When transalkylation is the process conducted, the molar ratio of aromatic hydrocarbon will generally range from about 1:1 to 25:1, and preferably from about 2:1 to 20:1. The reaction temperature may range from about 100°F to 600°F (38°C to 315°C), but it is preferably about 250°F to 450°F (12PC to 232°C). The reaction pressure should be sufficient to maintain at least a partial liquid phase, typically in the range of about 50 psig to 1000 psig (0.345 to 6.89 Mpa gauge), preferably 300 psig to 600 psig (2.07 to 4.14 Mpa gauge). The weight hourly space velocity will range from about 0.1 to 10. U.S. Patent No. 5,082,990 issued on January 21, 1992 to Hsieh, et al. describes such processes and is incorporated herein by reference.
Conversion of Paraffins to Aromatics
SSZ-70 can be used to convert light gas C2-C6 paraffins to higher molecular weight hydrocarbons including aromatic compounds. Preferably, the zeolite will contain a catalyst metal or metal oxide wherein said metal is selected from the group consisting of Groups IB, IIB, VIII and IIIA of the Periodic Table. Preferably, the metal is gallium, niobium, indium or zinc in the range of from about 0.05 to 5% by weight.
Isomerization of Olefins
SSZ-70 can be used to isomerize olefins. The feed stream is a hydrocarbon stream containing at least one C4-6 olefin, preferably a C4-6 normal olefin, more preferably normal butene. Normal butene as used in this specification means all forms of normal butene, e.g., 1-butene, cis-2-butene, and trans-2-butene. Typically, hydrocarbons other than normal butene or other C4-6 normal olefins will be present in the feed stream. These other hydrocarbons may include, e.g., alkanes, other olefins, aromatics, hydrogen, and inert gases.
The feed stream typically may be the effluent from a fluid catalytic cracking unit or a methyl-tert-butyl ether unit. A fluid catalytic cracking unit effluent typically contains about 40-60 weight percent normal butenes. A methyl-tert-butyl ether unit effluent typically contains 40-100 weight percent normal butene. The feed stream preferably contains at least about 40 weight percent normal butene, more preferably at least about 65 weight percent normal butene. The terms iso-olefin and methyl branched iso-olefin may be used interchangeably in this specification.
The process is carried out under isomerization conditions. The hydrocarbon feed is contacted in a vapor phase with a catalyst comprising the SSZ-70. The process may be carried out generally at a temperature from about 625°F to about 950°F (329-510°C), for butenes, preferably from about 700°F to about 900°F (371-482°C), and about 350°F to about 650°F (177-343°C) for pentenes and hexenes. The pressure ranges from subatmospheric to about 200 psig (1.38 Mpa gauge), preferably from about 15 psig to about 200 psig (0.103 to 1.38 Mpa gauge), and more preferably from about 1 psig to about 150 psig (0.00689 to 1.03 Mpa gauge).
The liquid hourly space velocity during contacting is generally from about 0.1 to about 50 hr-1, based on the hydrocarbon feed, preferably from about 0.1 to about 20 hr-1,
more preferably from about 0.2 to about 10 hr-1, most preferably from about 1 to about 5 hr-1. A hydrogen/hydrocarbon molar ratio is maintained from about 0 to about 30 or higher. The hydrogen can be added directly to the feed stream or directly to the isomerization zone. The reaction is preferably substantially free of water, typically less than about two weight percent based on the feed. The process can be carried out in a packed bed reactor, a fixed bed, fluidized bed reactor, or a moving bed reactor. The bed of the catalyst can move upward or downward. The mole percent conversion of, e.g., normal butene to iso-butene is at least 10, preferably at least 25, and more preferably at least 35.
Xylene Isomerization
SSZ-70 may also be useful in a process for isomerizing one or more xylene isomers in a Cg aromatic feed to obtain ortho-, meta-, and para-xylene in a ratio approaching the equilibrium value. In particular, xylene isomerization is used in conjunction with a separate process to manufacture para-xylene. For example, a portion of the para-xylene in a mixed C8 aromatics stream may be recovered by crystallization and centrifugation. The mother liquor from the crystallizer is then reacted under xylene isomerization conditions to restore ortho-, meta- and para-xylenes to a near equilibrium ratio. At the same time, part of the ethylbenzene in the mother liquor is converted to xylenes or to products which are easily separated by filtration. The isomerate is blended with fresh feed and the combined stream is distilled to remove heavy and light byproducts. The resultant C8 aromatics stream is then sent to the crystallizer to repeat the cycle.
Optionally, isomerization in the vapor phase is conducted in the presence of 3.0 to 30.0 moles of hydrogen per mole of alkylbenzene (e.g., ethylbenzene). If hydrogen is used, the catalyst should comprise about 0.1 to 2.0 wt.% of a
hydrogenation/dehydrogenation component selected from Group VIII (of the Periodic Table) metal component, especially platinum or nickel. By Group VIII metal component is meant the metals and their compounds such as oxides and sulfides.
Optionally, the isomerization feed may contain 10 to 90 wt. of a diluent such as toluene, trimethylbenzene, naphthenes or paraffins.
Oligomerization
It is expected that SSZ-70 can also be used to oligomerize straight and branched chain olefins having from about 2 to 21 and preferably 2-5 carbon atoms. The oligomers which are the products of the process are medium to heavy olefms which are useful for both fuels, i.e., gasoline or a gasoline blending stock and chemicals.
The oligomerization process comprises contacting the olefin feedstock in the gaseous or liquid phase with a catalyst comprising SSZ-70.
The zeolite can have the original cations associated therewith replaced by a wide variety of other cations according to techniques well known in the art. Typical cations would include hydrogen, ammonium and metal cations including mixtures of the same. Of the replacing metallic cations, particular preference is given to cations of metals such as rare earth metals, manganese, calcium, as well as metals of Group II of the Periodic Table, e.g., zinc, and Group VIII of the Periodic Table, e.g., nickel. One of the prime requisites is that the zeolite have a fairly low aromatization activity, i.e., in which the amount of aromatics produced is not more than about 20% by weight. This is accomplished by using a zeolite with controlled acid activity [alpha value] of from about 0.1 to about 120, preferably from about 0.1 to about 100, as measured by its ability to crack n-hexane.
Alpha values are defined by a standard test known in the art, e.g., as shown in U.S. Patent No. 3,960,978 issued on June 1, 1976 to Givens et al. which is incorporated totally herein by reference. If required, such zeolites may be obtained by steaming, by use in a conversion process or by any other method which may occur to one skilled in this art.
Condensation of Alcohols
SSZ-70 can be used to condense lower aliphatic alcohols having 1 to 10 carbon atoms to a gasoline boiling point hydrocarbon product comprising mixed aliphatic and aromatic hydrocarbon. The process disclosed in U.S. Patent No. 3,894,107, issued July 8, 1975 to Butter et al., describes the process conditions used in this process, which patent is incorporated totally herein by reference.
The catalyst may be in the hydrogen form or may be base exchanged or impregnated to contain ammonium or a metal cation complement, preferably in the range
of from about 0.05 to 5% by weight. The metal cations that may be present include any of the metals of the Groups I through VIII of the Periodic Table. However, in the case of Group IA metals, the cation content should in no case be so large as to effectively inactivate the catalyst, nor should the exchange be such as to eliminate all acidity. There may be other processes involving treatment of oxygenated substrates where a basic catalyst is desired.
Methane Upgrading
Higher molecular weight hydrocarbons can be formed from lower molecular weight hydrocarbons by contacting the lower molecular weight hydrocarbon with a catalyst comprising SSZ-70 and a metal or metal compound capable of converting the lower molecular weight hydrocarbon to a higher molecular weight hydrocarbon. Examples of such reactions include the conversion of methane to C2+ hydrocarbons such as ethylene or benzene or both. Examples of useful metals and metal compounds include lanthanide and or actinide metals or metal compounds.
These reactions, the metals or metal compounds employed and the conditions under which they can be run are disclosed in U.S. Patents No. 4,734,537, issued March 29, 1988 to Devries et al.; 4,939,311, issued July 3, 1990 to Washecheck et al.; 4,962,261, issued October 9, 1990 to Abrevaya et al.; 5,095,161, issued March 10, 1992 to Abrevaya et al.; 5,105,044, issued April 14, 1992 to Han et al.; 5,105,046, issued April 14, 1992 to Washecheck; 5,238,898, issued August 24, 1993 to Han et al.; 5,321,185, issued June 14, 1994 to van der Vaart; and 5,336,825, issued August 9, 1994 to Choudhary et al., each of which is incorporated herein by reference in its entirety.
Polymerization of 1-Olefins
The molecular sieve of the present invention may be used in a catalyst for the polymerization of 1-olefins, e.g., the polymerization of ethylene. To form the olefin polymerization catalyst, the molecular sieve as hereinbefore described is reacted with a particular type of organometallic compound. Organometallic compounds useful in forming the polymerization catalyst include trivalent and tetravalent organotitanium and organochromium compounds having alkyl moieties and, optionally, halo moieties. In the context of the present invention the term "alkyl" includes both straight and branched chain alkyl, cycloalkyl and alkaryl groups such as benzyl.
Examples of trivalent and tetravalent organochromium and organotitanium compounds are disclosed in U. S. Patent No. 4,376,722, issued March 15, 1983 to Chester et al., U. S. Patent No. 4,377,497, issued March 22, 1983 to Chester et al., U. S. Patent No. 4,446,243, issued May 1, 1984 to Chester et al., and U. S. Patent No. 4,526,942, issued July 2, 1985 to Chester et al. The disclosure of the aforementioned patents are incorporated herein by reference in their entirety.
Examples of the organometallic compounds used to form the polymerization catalyst include, but are not limited to, compounds corresponding to the general formula:
MYnXm-n
wherein M is a metal selected from titanium and chromium; Y is alkyl; X is halogen (e.g., Cl or Br); n is 1-4; and m is greater than or equal to n and is 3 or 4.
Examples of organotitanium and organochromium compounds encompassed by such a formula include compounds of the formula CrY4, CrY3, CrY3X, CrY2X, CrY2X2, CrYX2, CrYX3, TiY4, TiY3, TiY3X, TiY2X, TiY2X2, TiYX2, TiYX3 , wherein X can be Cl or Br and Y can be methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, isohexyl, neohexyl, 2-ethybutyl, octyl, 2-ethylhexyl, 2,2-diethylbutyl, 2-isopropyl-3-methylbutyl, etc., cyclohexylalkyls such as, for example, cyclohexylmethyl, 2-cyclohexylethyl, 3-cyclyhexylpropyl, 4-cyclohexylbutyl, and the corresponding alkyl-substituted cyclohexyl radicals as, for example, (4-methylcyclohexyl)methyl, neophyl, i.e., beta, beta-dimethyl-phenethyl, benzyl, ethylbenzyl, and p-isopropylbenzyl. Preferred examples of Y include C1-5 alkyl, especially butyl.
The organotitanium and organochromium materials employed in the catalyst can be prepared by techniques well known in the art. See, for example the aforementioned Chester et al. patents.
The organotitanium or organochromium compounds can be with the molecular sieve of the present invention, such as by reacting the organometallic compound and the molecular sieve, in order to form the olefin polymerization catalyst. Generally, such a reaction takes place in the same reaction medium used to prepare the organometallic
compound under conditions which promote formation of such a reaction product. The molecular sieve can simply be added to the reaction mixture after formation of the organometallic compound has been completed. Molecular sieve is added in an amount sufficient to provide from about 0.1 to 10 parts by weight, preferably from about 0.5 to 5 parts by weight, of organometallic compound in the reaction medium per 100 parts by weight of molecular sieve.
Temperature of the reaction medium during reaction of organometallic compound with molecular sieve is also maintained at a level which is low enough to ensure the stability of the organometallic reactant. Thus, temperatures in the range of from about -150° C. to 50° C., preferably from about -80° C. to 0° C. can be usefully employed. Reaction times of from about 0.01 to 10 hours, more preferably from about 0.1 to 1 hour, can be employed in reacting the organotitanium or organochromium compound with the molecular sieve.
Upon completion of the reaction, the catalyst material so formed may be recovered and dried by evaporating the reaction medium solvent under a nitrogen atmosphere. Alternatively, olefin polymerization reactions can be conducted in this same solvent based reaction medium used to form the catalyst.
The polymerization catalyst can be used to catalyze polymerization of 1-olefins. The polymers produced using the catalysts of this invention are normally solid polymers of at least one mono-1-olefin containing from 2 to 8 carbon atoms per molecule. These polymers are normally solid homopolymers of ethylene or copolymers of ethylene with another mono-1-olefin containing 3 to 8 carbon atoms per molecule. Exemplary copolymers include those of ethylene/propylene, ethylene/1-butene, ethylene/1-hexane, and ethylene/1-octene and the like. The major portion of such copolymers is derived from ethylene and generally consists of about 80-99, preferably 95-99 mole percent of ethylene. These polymers are well suited for extrusion, blow molding, injection molding and the like.
The polymerization reaction can be conducted by contacting monomer or monomers, e.g., ethylene, alone or with one or more other olefins, and in the substantial absence of catalyst poisons such as moisture and air, with a catalytic amount of the supported organometallic catalyst at a temperature and at a pressure sufficient to initiate
the polymerization reaction. If desired, an inert organic solvent may be used as a diluent and to facilitate materials handling if the polymerization reaction is conducted with the reactants in the liquid phase, e.g. in a particle form (slurry) or solution process. The reaction may also be conducted with reactants in the vapor phase, e.g., in a fluidized bed arrangement in the absence of a solvent but, if desired, in the presence of an inert gas such as nitrogen.
The polymerization reaction is carried out at temperatures of from about 30° C. or less, up to about 200° C. or more, depending to a great extent on the operating pressure, the pressure of the olefin monomers, and the particular catalyst being used and its concentration. Naturally, the selected operating temperature is also dependent upon the desired polymer melt index since temperature is definitely a factor in adjusting the molecular weight of the polymer. Preferably, the temperature used is from about 30° C. to about 100° C. in a conventional slurry or "particle forming" process or from 100° C. to 150° C. in a "solution forming" process. A temperature of from about 70° C to 110° C. can be employed for fluidized bed processes.
The pressure to be used in the polymerization reactions can be any pressure sufficient to initiate the polymerization of the monomer(s) to high molecular weight polymer. The pressure, therefore, can range from subatmospheric pressures, using an inert gas as diluent, to superatmospheric pressures of up to about 30,000 psig or more. The preferred pressure is from atmospheric (0 psig) up to about 1000 psig. As a general rule, a pressure of 20 to 800 psig is most preferred.
The selection of an inert organic solvent medium to be employed in the solution or slurry process embodiments of this invention is not too critical, but the solvent should be inert to the supported organometallic catalyst and olefin polymer produced, and be stable at the reaction temperature used. It is not necessary, however, that the inert organic solvent medium also serve as a solvent for the polymer to be produced. Among the inert organic solvents applicable for such purposes may be mentioned saturated aliphatic hydrocarbons having from about 3 to 12 carbon atoms per molecule such as hexane, heptane, pentane, isooctane, purified kerosene and the like, saturated cycloaliphatic hydrocarbons having from about 5 to 12 carbon atoms per molecule such as cyclohexane, cyclopentane, dimethylcyclopentane and methylcyclohexane and the like
and aromatic hydrocarbons having from about 6 to 12 carbon atoms per molecule such as benzene, toluene, xylene, and the like. Particularly preferred solvent media are cyclohexane, pentane, hexane and heptane.
Hydrogen can be introduced into the polymerization reaction zone in order to decrease the molecular weight of the polymers produced (i.e., give a much higher Melt Index, MI). Partial pressure of hydrogen when hydrogen is used can be within the range of 5 to 100 psig, preferably 25 to 75 psig. The melt indices of the polymers produced in accordance with the instant invention can range from about 0.1 to about 70 or even higher.
More detailed description of suitable polymerization conditions including examples of particle form, solution and fluidized bed polymerization arrangements are found in Karapinka; U.S. Pat. No. 3,709,853; Issued Jan. 9, 1973 and Karol et al; U.S. Pat. No. 4,086,408; Issued Apr. 25, 1978. Both of these patents are incorporated herein by reference.
Hydrotreating
SSZ-70 is useful in a hydrotreating catalyst. During hydrotreatment, oxygen, sulfur and nitrogen present in the hydrocarbonaceous feed is reduced to low levels. Aromatics and olefins, if present in the feed, may also have their double bonds saturated. In some cases, the hydrotreating catalyst and hydrotreating conditions are selected to minimize cracking reactions, which can reduce the yield of the most desulfided product (typically useful as a fuel).
Hydrotreating conditions typically include a reaction temperature between 400-900°F (204-482°C), preferably 650-850°F (343-454°C); a pressure between 500 and 5000 psig (3.5-34.6 Mpa), preferably 1000 to 3000 psig (7.0-20.8 MPa); a feed rate (LHSV) of 0.5 hr-1 to 20 hr-1 (v/v); and overall hydrogen consumption 300 to 2000 scf per barrel of liquid hydrocarbon feed (53.4-356 m3 H2/m3 feed). The hydrotreating catalyst will typically be a composite of a Group VI metal or compound thereof, and a Group VIII metal or compound thereof supported on the molecular sieve of this invention.. Typically, such hydrotreating catalyst are presulfided.
Catalysts useful for hydrotreating hydrocarbon feeds are disclosed in U. S. Patents No. 4,347,121, issued August 31,1982 to Mayer et al, and 4,810,357, issued March 7,
1989 to Chester et al, both of which are incorporated herein by reference in their entirety. Suitable catalysts include noble metals from Group VIII, such as Fe, Co, Ni, Pt or Pd, and/or Group VI metals, such as Cr, Mo, Sn or W. Examples of combinations of Group VIII and Group VI metals include Ni-Mo or Ni-Sn. Other suitable catalysts are described in U. S. Patents No. 4,157,294, issued June 5, 1979 to Iwao et al, and 3,904,513, issued September 9, 1975 to Fischer et al. U. S. Patent No. 3,852,207, issued December 3, 1974 to Strangeland et al, describes suitable noble metal catalysts and mild hydrotreating conditions. The contents of these patents are hereby incorporated by reference.
The amount of hydrogenation component(s) in the catalyst suitably range from about 0.5% to about 10% by weight of Group VIII component(s) and from 5% to about 25% by weight of Group VI metal component(s), calculated as metal oxide(s) per 100 parts by weight of total catalyst., where the percentages by weight are based on the weight of the catalyst before sulfiding. The hydrogenation component(s) in the catalyst may be in the oxidic and/or sulfidic form.
Hydrogenation
SSZ-70 can be used in a catalyst to catalyze hydrogenation of a hydrocarbon feed containing unsaturated hydrocarbons. The unsaturated hydrocarbons can comprise olefins, dienes, polyenes, aromatic compounds and the like.
Hydrogenation is accomplished by contacting the hydrocarbon feed containing unsaturated hydrocarbons with hydrogen in the presence of a catalyst comprising SSZ-70. The catalyst can also contain one or more metals of Group VIB and Group VIII, including salts, complexes and solutions thereof. Reference to these catalytically active metals is intended to encompass such metals or metals in the elemental state or in some form such as an oxide, sulfide, halide, carboxylate and the like. Examples of such metals include metals, salts or complexes wherein the metal is selected from the group consisting of platinum, palladium, rhodium, iridium or combinations thereof, or the group consisting of nickel, molybdenum, cobalt, tungsten, titanium, chromium, vanadium, rhenium, manganese and combinations thereof.
The hydrogenation component of the catalyst (i.e., the aforementioned metal) is present in an amount effective to provide the hydrogenation function of the catalyst, preferably in the range of from 0.05 to 25% by weight.
Hydrogenation conditions, such as temperature, pressure, space velocities, contact time and the like are well known in the art.
In accordance with this invention, there is provided a process for the reduction of oxides of nitrogen contained in a gas stream wherein said process comprises contacting the gas stream with a molecular sieve, the molecular sieve having a mole ratio greater than about 15 of an oxide of a first tetravalent element to an oxide of a second tetravalent element different from said first tetravalent element, trivalent element, pentavalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II. There is also provided a process for the reduction of oxides of nitrogen contained in a gas stream in the presence of oxygen wherein said process comprises contacting the gas stream with a molecular sieve, the molecular sieve having a mole ratio greater than about 15 of (1) silicon oxide to (2) an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide and mixtures thereof, and having, after calcination, the X-ray diffraction lines of Table II. The molecular sieve may contain a metal or metal ions (such as cobalt, copper, platinum, iron, chromium, manganese, nickel, zinc, lanthanum, palladium, rhodium or mixtures thereof) capable of catalyzing the reduction of the oxides of nitrogen, and the process may be conducted in the presence of a stoichiometric excess of oxygen. In a preferred embodiment, the gas stream is the exhaust stream of an internal combustion engine.
SSZ-70 may be used for the catalytic reduction of the oxides of nitrogen in a gas stream. Typically, the gas stream also contains oxygen, often a stoichiometric excess thereof. Also, the SSZ-70 may contain a metal or metal ions within or on it which are capable of catalyzing the reduction of the nitrogen oxides. Examples of such metals or metal ions include cobalt, copper, platinum, iron, chromium, manganese, nickel, zinc, lanthanum, palladium, rhodium and mixtures thereof.
One example of such a process for the catalytic reduction of oxides of nitrogen in the presence of a zeolite is disclosed in U.S. Patent No. 4,297,328, issued October 27, 1981 to Ritscher et al., which is incorporated by reference herein. There, the catalytic process is the combustion of carbon monoxide and hydrocarbons and the catalytic reduction of the oxides of nitrogen contained in a gas stream, such as the exhaust gas from an internal combustion engine. The zeolite used is metal ion-exchanged, doped or
loaded sufficiently so as to provide an effective amount of catalytic copper metal or copper ions within or on the zeolite. In addition, the process is conducted in an excess of oxidant, e.g., oxygen.
The molecular sieve of the present invention can be used in a catalyst for acylating an aromatic substrate ArHn, where n is at least 1, by reacting the aromatic substrate with an acylating agent in the presence of the catalyst. The product of the acylation reaction is ArHn-1COR where R is an organic radical.
Examples of the aromatic substrate include, but are not limited to, benzene, toluene, anisole and 2-naphthol. Examples of the acylating agent included, but are not limited to, carboxylic acid derivatives, carboxylic acids, acid anhydrides, esters, and acyl halides.
Reaction conditions are known in the art (see, for example, U. S. Patent No. 6,630,606, issued October 7, 2003 to Poliakoff et al., U. S. Patent No. 6,459,000, issued October 1, 2002 to Choudhary et al., and U. S. Patent No. 6,548,722, issued April 15, 2003 to Choudhary et al., all of which are incorporated herein by reference in their entirety). Typically, the acylation reaction is conducted with a weight ratio of the catalyst to the acylating agent of about 0.03 to about 0.5, a mole ratio of aromatic substrate to acylating agent of about 1.0 to about 20, a reaction temperature in the range of about 20°C to about 200°C, a reaction pressure in the range of about 1 atm to about 5 atm, and a reaction time of about 0.05 hours to about 20 hours.
The partial oxidation of low value hydrocarbons such as alkanes and alkenes into high value products such as alcohols and epoxides is of great commercial interest. These oxidation products are not only valuable as is, but also as intermediates for specialty chemicals including pharmaceuticals and pesticides.
U.S. Patent No. 4,410,501, issued October 18, 1983 to Esposito et al., discloses a titanium-containing analogue of the all-silica ZSM-5 molecular sieve. This material (known as "TS-1") has been found to be useful in catalyzing a wide range of partial oxidation chemistries, for example the production of catechol and hydroquinone from phenol and hydrogen peroxide (H2O2) and the manufacture of propylene oxide and cyclohexanone oxime from propylene and cyclohexanone, respectively. In addition, TS-1 can be used to catalyze the reaction of alkanes and aqueous H2O2 to form alcohols and
ketones. (See Huybrechts, D.R.C. et al., Nature 1990, 345, 240-242 and Tatsumi, T. et al,J.C.S. Chem. Commun. 1990,476-477.)
TS-1 has many salient features, other than its catalytic abilities, which make it attractive as a commercial catalyst. Most importantly, it is a solid. This allows for easy separation from the reactants and products (typically liquids) by simple, inexpensive filtration. Moreover, this solid has high thermal stability and a very long lifetime. Calcination in air at moderate temperatures (550°C) restores the material to its original catalytic ability. TS-1 performs best at mild temperatures ( While a catalyst system based on TS-1 has many useful features, it has one serious drawback. The zeolite structure of TS-1 includes a regular system of pores which are formed by nearly circular rings often silicon atoms (called 10-membered rings, or simply "10 rings") creating pore diameters of approximately 5.5 A. This small size results in the exclusion of molecules larger than 5.5 A. Because the catalytically active sites are located within the pores of the zeolite, any exclusion of molecules from the pores results in poor catalytic activity.
SSZ-70 containing titanium oxide (Ti-SSZ-70) is useful as a catalyst in oxidation reactions, particularly in the oxidation of hydrocarbons. Examples of such reactions include, but are not limited to, the epoxidation of olefins, the oxidation of alkanes, and the oxidation of sulfur-containing, nitrogen-containing or phosphorus-containing compounds.
The amount of Ti-SSZ-70 catalyst employed is not critical, but should be sufficient so as to substantially accomplish the desired oxidation reaction in a practicably short period of time (i.e., a catalytically effective amount). The optimum quantity of catalyst will depend upon a number of factors including reaction temperature, the reactivity and concentration of the substrate, hydrogen peroxide concentration, type and concentration of organic solvent, as well as the activity of the catalyst. Typically,
however, the amount of catalyst will be from about 0.001 to 10 grams per mole of substrate.
Typically, the Ti-SSZ-70 is thermally treated (calcined) prior to use as a catalyst.
The oxidizing agent employed in the oxidation processes of this invention is a hydrogen peroxide source such as hydrogen peroxide (H2O2) or a hydrogen peroxide precursor (i.e., a compound which under the oxidation reaction conditions is capable of generating or liberating hydrogen peroxide).
The amount of hydrogen peroxide relative to the amount of substrate is not critical, but must be sufficient to cause oxidation of at least some of the substrate. Typically, the molar ratio of hydrogen peroxide to substrate is from about 100:1 to about 1:100, preferably 10:1 to about 1:10. When the substrate is an olefin containing more than one carbon-carbon double bond, additional hydrogen peroxide may be required. Theoretically, one equivalent of hydrogen peroxide is required to oxidize one equivalent of a mono-unsaturated substrate, but it may be desirable to employ an excess of one reactant to optimize selectivity to the epoxide. In particular, the use of a moderate to large excess (e.g., 50 to 200%) of olefin relative to hydrogen peroxide may be advantageous for certain substrates.
If desired, a solvent may additionally be present during the oxidation reaction in order to dissolve the reactants other than the Ti-SSZ-70, to provide better temperature control, or to favorably influence the oxidation rates and selectivities. The solvent, if present, may comprise from 1 to 99 weight percent of the total oxidation reaction mixture and is preferably selected such that it is a liquid at the oxidation reaction temperature. Organic compounds having boiling points at atmospheric pressure of from about 50°C to about 150°C are generally preferred for use. Excess hydrocarbon may serve as a solvent or diluent. Illustrative examples of other suitable solvents include, but are not limited to, ketones (e.g., acetone, methyl ethyl ketone, acetophenone), ethers (e.g., tetrahydrofuran, butyl ether), nitriles (e.g., acetonitrile), aliphatic and aromatic hydrocarbons, halogenated hydrocarbons, and alcohols (e.g., methanol, ethanol, isopropyl alcohol, t-butyl alcohol, alpha-methyl benzyl alcohol, cyclohexanol). More than one type of solvent may be utilized. Water may also be employed as a solvent or diluent.
The reaction temperature is not critical, but should be sufficient to accomplish substantial conversion of the substrate within a reasonably short period of time. It is generally advantageous to carry out the reaction to achieve as high a hydrogen peroxide conversion as possible, preferably at least about 50%, more preferably at least about 90%, most preferably at least about 95%, consistent with reasonable selectivities. The optimum reaction temperature will be influenced by catalyst activity, substrate reactivity, reactant concentrations, and type of solvent employed, among other factors, but typically will be in a range of from about 0°C to about 150°C (more preferably from about 25°C to about 120°C). Reaction or residence times from about one minute to about 48 hours (more desirably from about ten minutes to about eight hours) will typically be appropriate, depending upon the above-identified variables. Although subatmospheric pressures can be employed, the reaction is preferably performed at atmospheric or at elevated pressure (typically, between one and 100 atmospheres), especially when the boiling point of the substrate is below the oxidation reaction temperature. Generally, it is desirable to pressurize the reaction vessel sufficiently to maintain the reaction components as a liquid phase mixture. Most (over 50%) of the substrate should preferably be present in the liquid phase.
The oxidation process of this invention may be carried out in a batch, continuous, or semi-continuous manner using any appropriate type of reaction vessel or apparatus such as a fixed bed, transport bed, fluidized bed, stirred slurry, or CSTR reactor. The reactants may be combined all at once or sequentially. For example, the hydrogen peroxide or hydrogen peroxide precursor may be added incrementally to the reaction zone. The hydrogen peroxide could also be generated in situ within the same reactor zone where oxidation is taking place.
Once the oxidation has been carried out to the desired degree of conversion, the oxidized product may be separated and recovered from the reaction mixture using any appropriate technique such as fractional distillation, extractive distillation, liquid-liquid extraction, crystallization, or the like.
Olefin Epoxidation
One of the oxidation reactions for which Ti-SSZ-70 is useful as a catalyst is the epoxidation of olefins. The olefin substrate epoxidized in the process of this invention
may be any organic compound having at least one ethylenically unsaturated functional group (i.e., a carbon-carbon double bond) and may be a cyclic, branched or straight-chain olefin. The olefin may contain aryl groups (e.g., phenyl, naphthyl). Preferably, the olefin is aliphatic in character and contains from 2 to about 20 carbon atoms. The use of light (low-boiling) C2 to C10 mono-olefins is especially advantageous.
More than one carbon-carbon double bond may be present in the olefin, i.e., dienes, trienes and other polyunsaturated substrates may be used. The double bond may be in a terminal or internal position in the olefin or may alternatively form part of a cyclic structure (as in cyclooctene, for example).
Other examples of suitable substrates include unsaturated fatty acids or fatty acid derivatives such as esters.
The olefin may contain substituents other than hydrocarbon substituents such as halide, carboxylic acid, ether, hydroxy, thiol, nitro, cyano, ketone, acyl, ester, anhydride, amino, and the like.
Exemplary olefins suitable for use in the process of this invention include ethylene, propylene, the butenes (i.e., 1,2-butene, 2,3-butene, isobutylene), butadiene, the pentenes, isoprene, 1-hexene, 3-hexene, 1-heptene, 1-octene, diisobutylene, 1-nonene, 1-tetradecene, pentamyrcene, camphene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, the trimers and tetramers of propylene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclooctadiene, dicyclopentadiene, methylenecyclopropane, methylenecyclopentane, methylenecyclohexane, vinyl cyclohexane, vinyl cyclohexene, methallyl ketone, allyl chloride, the dichlorobutenes, allyl alcohol, allyl carbonate, allyl acetate, alkyl acrylates and methacrylates, diallyl maleate, diallyl phthalate, and unsaturated fatty acids, such as oleic acid, linolenic acid, linoleic acid, erucic acid, palmitoleic acid, and ricinoleic acid and their esters (including mono-, di-, and triglyceride esters) and the like.
Olefins which are especially useful for epoxidation are the C2-C20 olefins having the general structure
R3R4C=CR5R6
wherein R3, R4, R5 and R6 are the same or different and are selected from the group consisting of hydrogen and C1-C18 alkyl.
Mixtures of olefins may be epoxidized and the resulting mixtures of epoxides either employed in the mixed form or separated into the different component epoxides.
The present invention further provides a process for oxidation of hydrocarbons comprising contacting said hydrocarbon with hydrogen peroxide in the presence of a catalytically effective amount of Ti-SSZ-70 for a time and at a temperature effective to oxidize said hydrocarbon.
EXAMPLES
The following examples demonstrate but do not limit the present invention.
Examples 1-6 Synthesis of Borosilicate SSZ-70 (B-SSZ-70)
B-SSZ-70 is synthesized by preparing the gel compositions, i.e., reaction mixtures, having the compositions, in terms of mole ratios, shown in the table below. The resulting gel is placed in a Parr bomb reactor and heated in an oven at the temperature (°C) indicated in the table while rotating at 43 rpm. Amounts in the table are in millimoles. Products are analyzed by X-ray diffraction (XRD) and found to be B-SSZ-70 or a mixture of B-SSZ-70 and amorphous material.

(Table Removed)
AM = amorphous material
The X-ray diffraction lines for as-synthesized SSZ-70 are shown in the table below.
As-Synthesized SSZ-70 XRD
(Table Removed)
a)±0.15


Example 7
A run is set up as in the table above but the mole ratios are as follows: SiO2 = 16 mmoles, DIPI = 5 mmoles, H3BO3 = 4 mmoles and water = 240 mmoles. No HF component is used. The reaction is run for only seven days at 43 RPM at 170°C. The product is SSZ-70.
Example 8 Calcination of SSZ-70
SSZ-70 is calcined to remove the structure directing agent (SDA) as described below. A thin bed of SSZ-70 in a calcination dish is heated in a muffle furnace from room temperature to 120°C at a rate of l°C/minute and held for 2 hours. Then, the temperature is ramped up to 540°C at a rate of l°C/minute and held for 5 hours. The temperature is ramped up again at l°C/minute to 595°C and held there for 5 hours. A 50/50 mixture of air and nitrogen passes through the muffle furnace at a rate of 20 standard cubic feet (0.57 standard cubic meters) per minute during the calcination process. The XRD lines for calcined SSZ-70 are shown in the table below.

(Table Removed)

Example 9
Replacement of Boron with Aluminum
Calcined SSZ-70 (about 5 grams) is combined with 500 grams of 1 M aqueous A1(NO3)3 solution and treated under reflux for 100 hours. The resulting aluminum-containing SSZ-70 product is then washed with 100 ml 0.01N HC1 and then with one liter of water, filtered and air dried at room temperature in a vacuum filter.
Example 10 Constraint Index
The hydrogen form of calcined SSZ-70 is pelletized at 3 KPSI, crushed and granulated to 20-40 mesh. A 0.6 gram sample of the granulated material is calcined in air at 540°C for 4 hours and cooled in a desiccator to ensure dryness. Then, 0,5 gram is packed into a 3/8 inch stainless steel tube with alundum on both sides of the molecular sieve bed. A Lindburg furnace is used to heat the reactor tube. Helium is introduced into the reactor tube at 10 cc/min. and at atmospheric pressure. The reactor is heated to about 427°C (800°F), and a 50/50 feed of n-hexane and 3-methylpentane is introduced into the reactor at a rate of 8 µl/min. The feed is delivered by a Brownlee pump. Direct sampling into a GC begins after 10 minutes of feed introduction. The Constraint Index (CI) value is calculated from the GC data using methods known in the art. The results are shown in the table below.

(Table Removed)
2-MP = 2-methylpentane
Example 11
Hydrocracking of n-Hexadecane
A 1 gm sample of calcined SSZ-70 is suspended in 10 gm de-ionized water. To this suspension, a solution of Pt(NH3)4.(NO3)2 at a concentration which would provide 0.5 wt. % Pt with respect to the dry weight of the molecular sieve sample is added. The pH of the solution is adjusted to pH of ~9 by a drop-wise addition of dilute ammonium

hydroxide solution. The mixture is then allowed to stand at 25°C for 48 hours. The mixture is then filtered through a glass frit, washed with de-ionized water, and air-dried. The collected Pt-SSZ-70 sample is slowly calcined up to 288°C in air and held there for three hours.
The calcined Pt/SSZ-70 catalyst is pelletized in a Carver Press and granulated to yield particles with a 20/40 mesh size. Sized catalyst (0.5 g) is packed into a % inch OD tubing reactor in a micro unit for n-hexadecane hydroconversion. The table below gives the run conditions and the products data for the hydrocracking test on n-hexadecane.
The results shown in the table below show that SSZ-70 is effective as a hydrocracking catalyst. The data show that the catalyst has a very high selectivity for hydrocracking to linear paraffins, rather than isomerization selectivity. Also, a high ratio of liquid/gas (C5+/C4-) is achieved.

(Table Removed)
Example 12 Micropore Volume
SSZ-70 has a micropore volume of 0.071 cc/gm based on argon adsorption isotherm at 87.5° K (-186°C) recorded on ASAP 2010 equipment from Micromerities. The sample is first degassed at 400°C for 16 hours prior to argon adsorption. The low-pressure dose is 2.00 cm3/g (STP). A maximum of one hour equilibration time per dose is used and the total run time is 37 hours. The argon adsorption isotherm is analyzed using the density function theory (DFT) formalism and parameters developed for activated carbon slits by Olivier (Porous Mater. 1995, 2, 9) using the Saito Foley adaptation of the Horvarth-Kawazoe formalism (Microporous Materials, 1995, 3, 531)
and the conventional t-plot method (J. Catalysis, 1965, 4, 319) (micropore volume by the t-plot method is 0.074 cc/gm).




We Claim:
1. A molecular sieve having a mole ratio greater than 15 of ( 1 ) an oxide of a first tctravalent element to (2) an oxide of a trivalent element, pentavalent element, second tetravalent element which is different from said first tetravalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II
(Table Removed)
2. A molecular sieve having a mole ratio greater than 15 of (1) silicon oxide to (2) an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide and mixtures thereof, and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-70
(Table Removed)
1. A molecular sieve according to claim 2 wherein the oxides comprise silicon oxide and aluminum oxide.
4 A molecular sieve according to claim 2 wherein the oxides comprise silicon oxide and boron oxide.
5. A molecular sieve according to claim 2 wherein the molecular sieve comprises essentially all silicon oxide.
6. A molecular sieve according to claim 1 wherein said molecular sieve is predominantly in the hydrogen form.
7 A molecular sieve according to claim 1 wherein said molecular sieve is free of acidity.
8 A molecular sieve according to claim 2 wherein said molecular sieve is predominantly in the hydrogen form.

9. A molecular sieve according to claim 2 wherein said molecular sieve is free of acidity.
10. A molecular sieve having a composition, as synthesized and in the anhydrous state, in
terms of mole ratios as follows:
YO2/H2O3 20-60
M2/n/YO2 0.01-0.03
Q/YO2 002 - 0-05
F/YO2 0-0.10
wherein Y is silicon; M is an alkali metal cation, alkaline earth metal cation or mixtures thereof: n is the valence of M; F is fluorine and Q is a N, N'-diisopropyl imidazolium cation . and
having, after calcination, the X-ray diffraction lines of Table II:
TABLE II
Calcined SSZ-70
(Table Removed)
11. A method of preparing a crystalline material comprising (1) a first oxide comprising silicon oxide and (2) a second oxide comprising boron oxide and having a mole ratio of
the first oxide to the second oxide greater than 15 and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II
Calcined SSZ-70
(Table Removed)
said method comprising contacting under crystallization conditions sources of said oxides and a structure directing agent comprising a N, N'-diisopropyl imidazolium cation
12. The method according to claim 11 wherein the molecular sieve is prepared from a reaction mixture comprising, in term of mole ratios:
YO2/B2O3 5 - 60
OH-/YO2 0.10-0.50
Q/YO2 0.05-0.50
M2/n/YO2 0.02-0.40
HO/YO2 30-80
F/YO2 0-0.50
where Y is silicon; M is an alkali metal cation, alkaline earth metal cation or mixtures thereof: n is the valence of M; F is fluorine and Q is a N, N'-diisopropyl imidazolium cation.
13. A process for converting hydrocarbons comprising contacting a hydrocarbonaceous
feed at hydrocarbon converting conditions with a catalyst comprising a molecular sieve
having a mole ratio greater than 15 of (1) an oxide of a first terra valent element to (2) an
oxide of a trivalcnt element, pentavalent element, second tetravalent element which is
different from said first tetravalent element or mixture thereof and having, after
calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-70
(Table Removed)
14. The process of claim 13 wherein the molecular sieve is free of acidity.
15. The process of claim 13 wherein the process is a hydrocracking process comprising contacting the catalyst with a hydrocarbon feedstock under hydrocracking conditions.
16. The process of claim 13 wherein the process is a dewaxing process comprising contacting the catalyst with a hydrocarbon feedstock under dewaxing conditions.
17. The process of claim 13 wherein the process is a process for improving the viscosity index of a dewaxed product of waxy hydrocarbon feeds comprising contacting the catalyst with a waxy hydrocarbon feed under isomerization dewaxing conditions.
18. The process of claim 13 wherein the process is a process for producing a C20+ lube oil from a C20+ olefin feed comprising isomerizing said olefin feed under isomerization conditions over the catalyst.
19. The process of claim 18 wherein the catalyst further comprises at least one Group VIII metal.
20. The process of claim 13 wherein the process is a process for catalytically dewaxing a hydrocarbon oil feedstock boiling above 350°F (177°C) and containing straight chain and slightly branched chain hydrocarbons comprising contacting said hydrocarbon oil feedstock in the presence of added hydrogen gas at a hydrogen pressure of 15-3000 psi (0.103-20.7 MPa) under dewaxing conditions with the catalyst.
21. The process of claim 20 wherein the catalyst further comprises at least one Group VIII metal.
22. The process of claim 20 wherein said catalyst comprises a layered catalyst comprising a first layer comprising the molecular sieve and at least one Group VIII metal, and a second layer comprising an aluminosilicate zeolite which is more shape selective than the molecular sieve of said first layer.
23 The process of claim 13 wherein the process is a process for preparing a lubricating oil which comprises:
hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil; and
catalytically dewaxing said effluent comprising hydrocracked oil at a temperature of at least 400°F (2040C) and at a pressure of from 15 psig to 3000 psig (0.103 to 20.7 MPa gauge) in the presence of added hydrogen gas with the catalyst.
24. The process of claim 23 wherein the catalyst further comprises at least one Group VIII metal.
25. The process of claim 13 wherein the process is a process for isomerization dewaxing a raffinatc comprising contacting said raffinate in the presence of added hydrogen under isomerization dewaxing conditions with the catalyst.
26. The process of claim 25 wherein the catalyst further comprises at least one Group VIII metal.
27. The process of claim 25 wherein the raffinate is bright stock.
28. The process of claim 13 wherein the process is a process for increasing the octane of a hydrocarbon feedstock to produce a product having an increased aromatics content comprising contacting a hydrocarbonaceous feedstock which comprises normal and slightly branched hydrocarbons having a boiling range above 40°C and less than 200°C under aromatic conversion conditions with the catalyst.
29. The process of claim 28 wherein the molecular sieve is free of acid.

30. The process of claim 28 wherein the molecular sieve contains a Group VIII metal component.
31. The process of claim 13 wherein the process is a catalytic cracking process comprising contacting a hydrocarbon feedstock in a reaction zone under catalytic cracking conditions in the absence of added hydrogen with the catalyst.
32. The process of claim 31 wherein the catalyst additionally comprises a large pore crystalline cracking component.
33. The process of claim 13 wherein the process is an isomerization process for isomerizing C1 to C7 hydrocarbons, comprising contacting a feed having normal and slightly branched C1 to C7 hydrocarbons under isomerizing conditions with the catalyst.
34. The process of claim 33 wherein the molecular sieve has been impregnated with at least one Group VIII metal.
35. The process of claim 33 wherein the catalyst has been calcined in a steam/air mixture at an elevated temperature after impregnation of the Group VIII metal.
36. The process of claim 34 wherein the Group VIII metal is platinum.
37. The process of claim 13 wherein the process is a process for alkylating an aromatic hydrocarbon which comprises contacting under alkylation conditions at least a molar excess of an aromatic hydrocarbon with a C2 to C20 olefin under at least partial liquid phase conditions and in the presence of the catalyst.
38. The process of claim 37 wherein the olefin is a C2 to C4 olefin.
39. The process of claim 38 wherein the aromatic hydrocarbon and olefin are present in a molar ratio of 4: 1 to 20: 1 Respectively.
40. The process of claim 38 wherein the aromatic hydrocarbon is selected from the group consisting of benzene, toluene, ethylbenzene, xylene, naphthalene, naphthalene derivatives, dimethylnaphthalene or mixtures thereof.
41. The process of claim 13 wherein the process is a process for transalkylating an aromatic hydrocarbon which comprises contacting under transalkylating conditions an aromatic hydrocarbon with a polyalkyl aromatic hydrocarbon under at least partial liquid phase conditions and in the presence of the catalyst.
42. The process of claim 41 wherein the aromatic hydrocarbon and the polyalkyl aromatic hydrocarbon arc present in a molar ratio of from 1 : 1 to 25: 1 , respectively.
43. The process of claim 41 wherein the aromatic hydrocarbon is selected from the group consisting of benzene, toluene, ethylbenzene, xylene, or mixtures thereof.
44. The process of claim 41 wherein the polyalkyl aromatic hydrocarbon is a
dialkylbcn/.ene.
45. The process of claim 13 wherein the process is a process to convert paraffins to aromatics which comprises contacting paraffins under conditions which cause paraffins to convert to aromatics with a catalyst comprising the molecular sieve and gallium, zinc, or a compound of gallium or zinc.
46. The process of claim 13 wherein the process is a process for isomerizing olefins comprising contacting said olefin under conditions which cause isomerization of the olefin with the catalyst.
47. The process of claim 13 wherein the process is a process for isomerizing an isomcrization feed comprising an aromatic Cg stream of xylene isomers or mixtures of xylene isomers and ethylbcnzene, wherein a more nearly equilibrium ratio of ortho-, mela and para-xylenes is obtained, said process comprising contacting said feed under isomcrization conditions with the catalyst.
48. The process of claim 13 wherein the process is a process for oligomerizing olefins comprising contacting an olefin feed under oligomerization conditions with the catalyst.
49. A process for converting oxygenated hydrocarbons comprising contacting said oxygenated hydrocarbon under conditions to produce liquid products with a catalyst comprising a molecular sieve having a mole ratio greater than 15 of an oxide of a first tetravalent element to an oxide of a second tetravalent element which is different from said first tetravalent element, trivalent element, pentavalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II
(Table Removed)
50. The process of claim 49 wherein the oxygenated hydrocarbon is a lower alcohol.
51. The process of claim 50 wherein the lower alcohol is methanol.
52. The process of claim 13 wherein the process is a process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons comprising the steps of:

(a) introducing into a reaction zone a lower molecular weight hydrocarbon- containing gas and contacting said gas in said zone under C2+ hydrocarbon synthesis conditions with the catalyst and a metal or metal compound capable of converting the lower molecular weight hydrocarbon to a higher molecular weight hydrocarbon; and
(b) withdrawing from said reaction zone a higher molecular weight hydrocarbon-containing stream.
53. The process of claim 52 wherein the metal or metal compound comprises a lanthanide
or actinide metal or metal compound.
54. The process of claim 52 wherein the lower molecular weight hydrocarbon is methane.
55. A catalyst composition for promoting polymerization of 1 -olefins, said composition comprising:
(A) a molecular sieve having a mole ratio greater than 15 of (1) an oxide of a first
tetravalcnt element to (2) an oxide of a trivalent element, pentavalent element, second
tetravalcnl element which is different from said first tetravalent element or mixture
thereof and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-70
(Table Removed)
and
(B) an organotitanium or organochromium compound.
56. The catalyst composition of claim 55 wherein oxide (1) is silicon oxide, and oxide (2)
is an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide,
titanium oxide, indium oxide.
57. The process of claim 13 wherein the process is a process for polymerizing 1 -olefins, which process comprises contacting 1 -olefin monomer with a catalytically effective amount of a catalyst composition comprising
(A) a molecular sieve having a mole ratio greater than 15 of (1) an oxide of a first tetravalent element to (2) an oxide of a trivalent element, pentavalent element, second tctravalent element which is different from said first tetravalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II; and
(B) an organotitanium or organochromium compound
under polymerization conditions which include a temperature and pressure suitable for initiating and promoting the polymerization reaction.
58. The process of claim 57 wherein oxide (1) is silicon oxide, and oxide (2) is an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide
59. The process of claim 57 wherein the 1 -olefin monomer is ethylene.
60. The process of claim 58 wherein the 1 -olefin monomer is ethylene.

61. The process of claim 13 wherein the process is a process for hydrogenating a hydrocarbon feed containing unsaturated hydrocarbons, the process comprising contacting the feed with hydrogen under conditions which cause hydrogenation with the catalyst.
62. The process of claim 61 wherein the catalyst contains metals, salts or complexes wherein the metal is selected from the group consisting of platinum, palladium, rhodium, indium or combinations thereof, or the group consisting of nickel, molybdenum, cobalt, tungsten, titanium, chromium, vanadium, rhenium, manganese and combinations thereof.
63. A process for hydrotreating a hydrocarbon feedstock comprising contacting the feedstock with a hydrotreating catalyst and hydrogen under hydrotreating conditions, wherein the catalyst comprises a molecular sieve having a mole ratio greater than 15 of (1) an oxide of a first tetravalent element to (2) an oxide of a trivalent element, pentavalent element, second tetravalent element which is different from said first
tctravalcnt element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II :
TABLE II Calcined SSZ-70
(Table Removed)
64. The process of claim 63 wherein the catalyst contains a Group VIII metal or
compound, a Group VI metal or compound or combinations thereof.
65. The process of claim 63 wherein oxide (1) is silicon oxide, and oxide (2) is an oxide
selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide,
indium oxide.
66. A process for converting hydrocarbons comprising contacting a hydrocarbonaceous feed at hydrocarbon converting conditions with a catalyst comprising a molecular sieve having a mole ratio greater than 15 of ( 1) silicon oxide to (2) an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide and mixtures thereof, and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-70
(Table Removed)
67. The process of claim 66 wherein the molecular sieve wherein the molecular sieve is free of acidity
68. The process of claim 13, 15, 16, 17, 18, 20, 23, 25, 31, 33, 37, 41 or 66 wherein the molecular sieve is predominantly in the hydrogen form.
69. A process for the reduction of oxides of nitrogen contained in a gas stream wherein said process comprises contacting the gas stream with a molecular sieve, the molecular sieve having a mole ratio greater than 15 of (1) an oxide of a first tetravalent element to (2) an oxide of a trivalent element, pentavalent element, second tetravalent element which is different from said first tetravalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-70
(Table Removed)
70. A process for the reduction of oxides of nitrogen contained in a gas stream in the presence of oxygen wherein said process comprises contacting the gas stream with a molecular sieve, the molecular sieve having a mole ratio greater than 15 of (1) silicon oxide to (2) an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide and mixtures thereof, and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-70
(Table Removed)
71. The process of claim 69 or 70 conducted in the presence of oxygen.
72. The process of claim 69 or 70 wherein said molecular sieve contains a metal or metal ions capable of catalyzing the reduction of the oxides of nitrogen.

73. The process of claim 72 wherein the metal is cobalt, copper, platinum, iron, chromium, manganese, nickel, zinc, lanthanum, palladium, rhodium or mixtures thereof.
74. The process of claim 69 or 70 wherein the gas stream is the exhaust stream of an internal combustion engine.
75. The process of claim 73 wherein the gas stream is the exhaust stream of an internal combustion engine.
76. A method for performing an acylation reaction on an aromatic substrate ArHn to form a product ArHn-|COR, the method comprising the steps of:
providing the aromatic substrate,
intimately mixing the substrate and an acylating agent, wherein the acylatirig agent is selected from the group consisting of a carboxylic acid derivative, a carboxylic acid, an acid anhydride, an ester, and an acyl halide, and
exposing an intimate mixture thus formed to a catalyst comprising a molecular sieve having a mole ratio greater than 15 of (1) an oxide of a first tetravalent element to (2) an oxide of a trivalent element, pentavalent element, second tetravalent element which is different from said first tetravalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-70
(Table Removed)
77. A method for performing an acylation reaction on an aromatic substrate ArHn to form a product ArHn-iCOR, the method comprising the steps of:
providing the aromatic substrate,
intimately mixing the substrate and an acylating agent, wherein the acylating agent is selected from the group consisting of a carboxylic acid derivative, a carboxylic acid, an acid anhydride, an ester, and an acyl halide, and
exposing an intimate mixture thus formed to a catalyst comprising a molecular sieve having a mole ratio greater than 15 of (1) silicon oxide to (2) an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide and mixtures thereof, and having, after calcination, the X-ray diffraction lines of Table 11:
TABLE II Calcined SSZ-70
(Table Removed)

78. The method of claim 77 wherein the organic substrate is selected from the group consisting of ben/.ene, toluene, anisole and 2-naphthol.
79. The method of claim 78 wherein the organic substrate is anisole.
80. The method of claim 77 wherein the acylating agent is selected from the group consisting of carboxylic acid derivatives, carboxylic acids, acid anhydrides, esters, and acyl halidcs.
81. A process for oxidation of hydrocarbons comprising contacting said hydrocarbon with an oxidizing agent in the presence of a catalytically effective amount of a crystalline, titanium-containing molecular sieve for a time and at a temperature effective to oxidize said hydrocarbon, wherein the crystalline titanium-containing molecular sieve
is a molecular sieve having a mole ratio greater than 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Tabic II;
TABLE II Calcined SSZ-70
(Table Removed)
82. A process for epoxidation of an olefin comprising contacting said olefin with hydrogen peroxide in the presence of a catalytically effective amount of a crystalline, titanium-containing molecular sieve for a time and at a temperature effective to epoxidize said olefin, wherein the crystalline titanium-containing molecular sieve is a molecular sieve having a mole ratio greater than 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-70
(Table Removed)
83. A process for oxidizing cyclohexane comprising contacting said cyclohexane with
hydrogen peroxide in the presence of a catalytically effective amount of a crystalline,
titanium-containing molecular sieve for a time and at a temperature effective to oxidize
said cyclohexane. wherein the crystalline titanium-containing molecular sieve is a
molecular sieve having a mole ratio greater than 15 of (1) silicon oxide to (2) titanium
oxide, and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-70
(Table Removed)
84. A catalytic oxidation process comprising contacting under oxidation conditions (1) a reactant which is catalytically oxidizable in the presence of hydrogen peroxide, (2) aqueous hydrogen peroxide and (3) a catalytically effective amount of an oxidation catalyst comprising a molecular sieve having a mole ratio greater than 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-7Q
(Table Removed)
85. The process of claim 84 wherein the elemental mole ratio of titanium to silicon is 0.005 to 0.2.
86. The process of claim 84 wherein the elemental mole ratio of titanium to silicon is 0.01 to 0.05.
87. The process of claim 84 wherein the oxidizable reactant is a hydrocarbon.
88. A process for the epoxidation of an olefin comprising contacting said olefin with hydrogen peroxide in the presence of a catalytically effective amount of a catalyst comprising a molecular sieve having a mole ratio greater than 15 of (1) silicon oxide to (2) titanium oxide, and having, after calcination, the X-ray diffraction lines of Table II:
TABLE II Calcined SSZ-70
(Table Removed)
89. The process of claim 88 wherein the elemental mole ratio of titanium to silicon is
0.005 to 0.2
90. The process of claim 88 wherein the elemental mole ratio of titanium to silicon is 0.01 to 0.05.

Documents:

5403-delnp-2007-abstract.pdf

5403-DELNP-2007-Claims-(14-11-2011).pdf

5403-DELNP-2007-Claims-(29-06-2012).pdf

5403-delnp-2007-Claims-(31-12-2012).pdf

5403-delnp-2007-claims.pdf

5403-delnp-2007-Correpondence Others-(31-12-2012).pdf

5403-DELNP-2007-Correspondence Others-(02-02-2012).pdf

5403-delnp-2007-Correspondence Others-(03-12-2012).pdf

5403-DELNP-2007-Correspondence Others-(14-11-2011).pdf

5403-delnp-2007-Correspondence Others-(15-07-2013).pdf

5403-delnp-2007-Correspondence Others-(18-07-2012).pdf

5403-DELNP-2007-Correspondence Others-(29-06-2012).pdf

5403-DELNP-2007-Correspondence-Others-(18-02-2013).pdf

5403-delnp-2007-correspondence-others.pdf

5403-delnp-2007-description (complete).pdf

5403-delnp-2007-drawings.pdf

5403-DELNP-2007-Form-1-(02-02-2012).pdf

5403-delnp-2007-form-1.pdf

5403-delnp-2007-Form-13-(31-12-2012).pdf

5403-delnp-2007-form-2.pdf

5403-DELNP-2007-Form-3-(14-11-2011).pdf

5403-DELNP-2007-Form-3-(18-02-2013).pdf

5403-DELNP-2007-Form-3-(29-06-2012).pdf

5403-delnp-2007-form-3.pdf

5403-delnp-2007-form-5.pdf

5403-DELNP-2007-GPA-(02-02-2012).pdf

5403-delnp-2007-pct-101.pdf

5403-delnp-2007-pct-210.pdf

5403-delnp-2007-pct-220.pdf

5403-delnp-2007-pct-237.pdf

5403-delnp-2007-pct-301.pdf

5403-delnp-2007-pct-304.pdf

5403-delnp-2007-pct-311.pdf


Patent Number 258400
Indian Patent Application Number 5403/DELNP/2007
PG Journal Number 02/2014
Publication Date 10-Jan-2014
Grant Date 07-Jan-2014
Date of Filing 12-Jul-2007
Name of Patentee CHEVRON U.S.A.INC.
Applicant Address 6001 BOLLINGER CANYON ROAD, BUILDING T,3RD FLOOR, SAN RAMON, CA 94583, USA.
Inventors:
# Inventor's Name Inventor's Address
1 ZONES, STACEY, I. 1874 9TH AVENUE, SAN FRANCISCO, CA 94122, USA.
2 BURTON, ALLEN W.,JR. 91 BAYSIDE COURT, RICHMOND, CA 94804, USA.
PCT International Classification Number C01B 21/20
PCT International Application Number PCT/US2005/039648
PCT International Filing date 2005-11-02
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/639,215 2004-12-23 U.S.A.
2 60/639,212 2004-12-23 U.S.A.
3 60/639,221 2004-12-23 U.S.A.
4 60/638,475 2004-12-23 U.S.A.
5 60/639,218 2004-12-23 U.S.A.