Title of Invention

METHOD FOR SUPPORTING ASYMMETRIC SERVICE FLEXIBLY IN MULTI - CARRIER TIME DIVISION DUPLEX MOBILE COMMUNICATION SYSTEM

Abstract The present invention relates to a method for supporting asymmetric service flexibly in multi-carrier time division duplex mobile communication system, supporting asymmetric services with different switching point between downlink and uplink on a plurality of carrier frequencies in the adjacent cells and a plurality of carrier frequencies in the same cell. When the requirement of the requested service cannot be supported by the ratio between service slots for uplink and downlink initially set, the requested service is supported by changing the ratio between service slots for uplink and downlink. Before accepting the requested services, the interference to the other frequencies in the same cell and the services in the adjacent cells when the slot arrangement of the uplink and downlink for a carrier frequency is changed is analyzed, and rapid DCA technology is used to adjust the above mentioned services determined to be interfered. When the requested service is completed, the slot ratio between uplink and downlink is restored to the ratio originally set. Separate and isolated uplink and downlink needs to be set up in w&. base station to support different switching point between uplink and downlink.
Full Text FORM 2
THE PATENTS ACT, 1970
(39 of 1970)
&
THE PATENTS RULES, 2003
COMPLETE SPECIFICATION (See section 10, rule 13)
"METHOD FOR SUPPORTING ASYMMETRIC SERVICE FLEXIBLY IN MULTI-CARRIER TIME DIVISION DUPLEX MOBILE COMMUNICATION
SYSTEM"
DA TANG MOBILE COMMUNICATIONS EQUIPMENT CO., LTD., No 40, Xueyuan Road, Haidian District, Beijing 100083, P.R. China
The following specification particularly describes the invention and the manner in which it is to be performed.

Attornoy Dockot H&.
Method for SupportirmAsymmetric Service Flexibly in Multi-Carrier Time ^Division DuplexJVkrblle Communication System
FIELD [0001] The present invention relates generally to Time Division Duplex Mobile Communication Technology, and more specifically to a method for supporting asymmetric service flexibly in Multi-carrier Time Division Duplex Mobile Communication System with different carriers of cells or base stations using different switching point between downlink and uplink.
BACKGROUND [0002] In the current standard for the time division duplex (TDD) communication method for mobile communication of the third generation (refers to the technical standards related to 3GPP), only the method for operation with single carrier is defined. The base station should be designed to be able to operate with multiple carriers in order to satisfy the communication need under the environment of applications of high density, however. In the "multi-carrier time division duplex mobile communication system" designed based on such a thought, the radio base station operates with multiple carriers, and multiple carriers, such as with three frequencies of fO, f1 and f2, may be used within one cell to increase the capacity of the cell, or more specifically, to increase the capacity of the system while lowering the cost of the system, and simplify the

Attorney Docket No.
design of the system so that the system will be controlled and managed more easily, and the efficiency of the system will be increased.
[0003] However, only one set (or group) of radio transmitter/receiver is commonly used in one base station, under which condition all the carrier frequencies should be transmitted or received simultaneously when the base station operates with multiple carriers, otherwise, severe interference occurs inside the base station, which may cause transmitting or receiving failures in the system.
[0004] And when the celluar mobile communication system is constituted with conventional TDD system, when the same carrier frequency is used in adjacent cells, such adjacent cells must operate in sync, i.e., transmit the downlink signal simultaneously and receive the uplink signal simultaneously, according to the basic requirements of the CDMA mobile communication system, when the system is being scheduled by the operator, otherwise, interference occur between the base stations within the communication system.
[0005] The possibility for TDD system to support asymmetric services where different uplink and downlink ratios are used in adjacent cells is greatly constrained by the existence of above problems, or in other words, some system capacity must be sacrificed if asymmetric services where different uplink and downlink ratios are used in adjacent cells are supported.
[0006] Fig.1 is a schematic view showing the operation state of multi-carrier base stations in a typical TDD cell mobile communication system wherein the 3GPP standard is performed. Three cells 101, 102, and 103 are shown in
—S -

Attorney Docket No.
Fig.1, wherein a single carrier frequency or multiple carrier frequencies, such as three carrier frequencies fO, f1 and f2, which are the same among the cells are used by the base station 111, 112, and 113 of respective cells, and a plurality of terminals in operation exist in respective cells. In the present normal operation state, the switching between transmission and receiving must be performed at the same time for all three carrier frequencies of respective cells, i.e., the downlink transmission or the uplink receiving must be performed at the same time for all the carrier frequencies of the base stations in respective cells, whereby the interference between respective frequencies during the overlapping time slot between the uplink and downlink can be avoided. The adjacent cells should also be coordinated to adapt the same switching time (at the same switching point) between uplink and downlink, and if different switching times are used in respective cells, for example, different switching times between uplink and downlink t1, t2, and t3 are adapted for three carriers fO, f1 and f2 in the base station 111, 112, and 113 of respective cells, interference will be caused during the overlapping time slot between the uplink and downlink.
[0007] Fig.2 schematically shows the conventional structure design of a base station in the TDD system which includes a radio transmitter/receiver and an antenna system. Normally, the antenna system comprises n antennae 201,
202 20n, and n feeding cables 211, 212, ..., 21n corresponding to the n
antennae 201, 202, ..., 20n, respectively. The n antennae are connected to n radio receivers 231, 232, ..., 23n and n radio transmitters 241, 242, ..., 24n on desks in the room via the n feeding cables respectively, which are connected to
-U-

Attorney Docket No.
the baseband signal processing unit 251. In TDD systems, the switching between
transmitting and receiving is performed through elements 221, 222 22n, such
as radio switches or circulators, i.e., a set of antenna and feed line may corresponds to a set of radio receiver/transmitter.
[0008] The normal operation state in which the same switching time between uplink and downlink are used for respective carrier waves in respective cells and the abnormal operation state in which different switching times between uplink and downlink are used for respective carrier waves in respective cells will be explained with reference to Fig.3. The downlink fO, f 1, and f2 are represented by rectangles with horizontal line patterns, right slanting line patterns, left slanting line patterns respectively, and the uplink fO, f1, and f2 are represented by rectangles with small square patterns, blank patterns and grey patterns respectively. As for the example shown in Fig.1, the same switching time t1 is used for respective carrier frequencies fO, f1 and f2 in the base stations 111,112 and 113 in normal operation state, all the carrier frequencies fO, f1 and f2 are used for downlink before time t1, and switched to be used for uplink at the same time t1. However, if different switching times between uplink and downlink are used in respective base stations of each cell, interference will occur irrespective of whether smart antenna or group division transmission or group division receiving are adapted in respective base station of each cell, for example, if switching time t1 between uplink and downlink is used for the carrier frequencies fO, f1 and f2 in the base stations 111, while switching time t2 between uplink and downlink is used for the carrier frequencies fO, f1 and f2 in the base stations 112,
5-

Attorney Docket No,
and switching time t3 between uplink and downlink is used for the carrier frequencies fO, f1 and f2 in the base stations 113, the uplink of base station 111 will be strongly interfered by the downlink of the base station 112 during the time period from t1 to t2 where the downlink and the uplink overlaps, and the uplink of base station 113 will be strongly interfered by the downlink of the base station 112 during the time period from t2 to t3 where the downlink and the uplink overlaps, and the uplink of base station 113 will be strongly interfered by the downlink of the base station 111 during the time period from t3 to t1 where the downlink and the uplink overlaps. Since the antennae of the base station are normally quite high and the transmission power thereof are much higher than user terminals, the base station is not able to receive the signal from the terminal correctly during the time period where the above interference occurs such that normal communication cannot be performed during these time period.
[0009] In a TDD base station using multiple carriers, if different switching times between uplink and downlink are adapted for each carrier, and if the above mentioned problem of interference caused by different switching times between uplink and downlink used for multiple carriers in multiple base stations of multiple cells are resolved by radio resource control technology, the flexibility of the system can be increased by means of smart antenna technology.
[0010] However, it is not possible for the conventional TDD base station to operate like this, since each set of radio receiver/transmitter supports multiple carriers and the same switches or circulators 221, 222, ..., 22n are used
-€-

for each set of radio receiver/transmitter to switch between uplink and downlink and to use the same antenna and feeding cable system.
[0011] An obvious technical advantage of TD-SCDMA system which is one of the standards of the third generation mobile communication system is the ability of supporting asymmetric services. However, in conventional base stations using multiple carriers, since the same receiver/transmitter is used for multiple carriers, the switching between uplink and downlink thereof must be performed at the same time, and if the same carrier frequency is used in adjacent cells in the scheduled region, which is a basic requirement of the CDMA system, frame synchronization are usually required and the configuration of the same uplink and downlink ratio is adapted to avoid interference between adjacent cells to the most extent, the flexibility for the system to support asymmetric uplink and downlink service is constrained.
SUMMARY [0012] The object of the present invention is to provide a method for supporting asymmetric service flexibly in multi-carrier time division duplex mobile communication system, which makes it possible for different switching points between uplink and downlink to be used for different operating carriers in respective cells or base stations and for different switching points between uplink and downlink to be used in adjacent cells, in other words, to provide a method for supporting asymmetric services with different switching point between uplink and downlink being used for different carriers in the same base station or with

Attorney Docket No,
different switching point between uplink and downlink being used for the same carriers or different carriers in different base stations.
[0013] A technical solution by which the object of the present invention is achieved is as follows: a method for supporting asymmetric service flexibly in a multi-carrier time division duplex mobile communication system, configured to support asymmetric services with different switching points between downlink and uplink slots on a plurality of carrier frequencies in adjacent cells and a plurality of carrier frequencies in a same cell, said method comprising:
[0014] A. When a ratio between uplink and downlink service slots required by an asymmetric service requested by a request is unable to be supported by a ratio between uplink and downlink service slots initially set for one carrier frequency, determining whether the request is able to be accepted by changing the ratio between uplink and downlink service slots for the carrier frequency, this step A further including: A1. selecting one carrier frequency having sufficient remaining resources in the cell where said request is being made; A2. determining services carried on other carrier frequencies in the cell and services carried on all the carrier frequencies in adjacent cells that will be interfered when the uplink and downlink slots arrangement for the carrier frequency is changed by analysis; A3, avoiding interference by adjusting the services that are determined to be interfered into other slots on its operating carrier frequency or the other carrier frequencies that will not be interfered by rapid DCA technology; A4. determing whether steps A1 to A3 can be executed
£>-

Aftofnoy Docket No.
successfully, and if yes, deciding said request is able to be accepted by changing the ratio between uplink and downlink service slots for the carrier frequency.
[0015] B. If the request is able to be accepted by changing the ratio between uplink and downlink service slots for the carrier frequency, accepting said request by changing the ratio between uplink and downlink service slots for the carrier frequency, and otherwise, rejecting said request;
[0016] C. Receiving uplink radio frequency signals in a uplink constituted by separate receiving antennae, feeding cables and receivers, and transmitting downlink radio frequency signals in a downlink constituted by separate transmitting antennae, feeding cables and transmitters;
[0017] D. Changing the ratio between uplink and downlink service slots for the carrier frequency back to the ratio initially set when completing the requested asymmetric service.
[0018] In said step A, the condition that the ratio between uplink and downlink service slots required by an asymmetric service requested by a request is unable to be supported by the ratio between uplink and downlink service slots initially set for one carrier frequency includes: one of conditions that a data transmission rate required by the requested service exceeds a maximum data transmission rate available in uplink or downlink of the initial setting, and remaining resources after carrying the services under initial setting is insufficient to carry the requested service.
[0019] Said determining by analysis in step A2 is to examine whether in a direction of shaped wave packet of a user making the request, there are said
— G|-

Attornoy Docket No.-*
other carrier frequencies or said adjacent cells receiving signals from terminals in the direction of the shaped wave packet during slots more than the originally allotted slots; or examine whether there are said other carrier frequencies or said adjacent cells transmitting signals to terminals in the direction of the shaped wave packet during slots fewer than the originally allotted slots.
[0020] Said examining further comprises: the RNC performing management on wireless resources by referring to the database of the operating state of the system according to direction of the incoming wave packet of the user making the calling request and width of the shaped wave packet, wherein the database records and updates the state of each operating terminal within the management range of the RNC in real time, which includes the wireless resources allotted with carrier frequency, slots and code channel, the carried services, measured data obtained by routine measurement in accordance with communication standard, and position information of the terminals including distance and direction of the terminals with respect to base stations, and data regarding relative positions of cell antennae within management range and regarding width of the shaped wave packets of each cell antenna.
[0021] Also, said step A3 is to determine whether the interference is able to be avoided by referring to the database of the system operating state and performing management on wireless resources by the RNC according to the direction of the incoming wave packet of the user making the calling request and the width of the shaped wave packet.
— (O -

Attorney DockotNo.
[0022] It is proposed in the present invention a design method by which different switching point between uplink and downlink can be used on different carriers and different base stations to support asymmetric services with different ratios of resources used by uplink and downlink.
[0023] It is disclosed in the present invention taking TD-SCDMA system as an example that in an TDD system with smart antennae, it is possible to avoid the interference introduced by the using of different switching points between uplink and downlink by setting up a system operating state database in the RNC in which the data regarding all the operating terminals is recorded, and by analyzing the direction of the shaped wave packet of the smart antenna and determine the cells, carrier frequencies that will be interfered when the switching point between uplink and downlink is changed when the present slot ratio between uplink and downlink needs to be adjusted to support the asymmetric service requested by the user, and avoiding the interference by rapid DCA.
[0024] It is proposed in the present invention that in a TDD mobile communication system, in which the base stations use multi-carrier, different switching points between uplink and downlink can be used on different carrier frequencies in the same cell or the adjacent cells to flexibly supporting the asymmetric service. Wave packet shaping antennae are adapted in base stations by which the position of the terminals can be traced, whereby it is possible for the RNC to perform analysis on the interference that will be introduced when different switching points between uplink and downlink are used in accordance with the information regarding positions of user terminals and the width of the
— II-

shaped wave packet. It is possible to avoid the interference by means of DCA technology in accordance with the result of the above analysis when supporting various asymmetric services flexibly, i.e., adjust the services that will be interfered to other slots on the operating carrier frequencies or the other carrier frequencies that will not be interfered, to improve the efficiency and capacity of the system.
[0025] The base station used in the present invention must use antennae and feeding cables with enough isolation for receiving and transmission respectively, and the receiver and the transmitter must be able to be controlled separately and have enough isolation in order to support above flexible configuration.
[0026] It has been disclosed in the present invention a design method for supporting asymmetric services with different ratios between uplink and downlink in a TDD multi-carrier mobile communication system. The essential part of the present invention is to avoid interference on the basis of sufficient analysis in accordance with the related measured information, utilizing advanced management and control on radio resources and wave packet shaping method with smart antenna, such that the switching points between uplink and downlink can be configured flexibly for multiple carriers of the base station and multiple carriers of the adjacent cells, whereby asymmetric services with different ratios between uplink and downlink can be supported flexibly and the efficiency in the allotment of the resources of the system can be improved, which represents the feature of the TDD system of supporting asymmetric services.
-|2_—

[0027] As compared to the standard TD-SCDMA system, the multi-carrier TD-SCDMA system in which the method in accordance with the present invention is implemented is able to reduce the interference within the system to a large extent, and solves the technical problem that asymmetric services are supported flexibly by adapting different switching point between uplink and downlink in the same cell or the adjacent cells, whereby the efficiency and the capacity of the system is improved while no extra cost and complexness is added.
DRAWINGS
[0028] Fig. 1 is a schematic view showing the operation state of the base stations in a TDD system using multi-carrier according to the present 3GPP standard;
[0029] Fig. 2 is a schematic diagram showing the typical structure of a base station in present TDD systems;
[0030] Fig. 3 is a schematic view showing the normal operation state of a base station in a TDD system using multi-carrier according to the 3GPP standard with the switching between uplink and downlink at the same time and the abnormal operation state thereof with the switching between uplink and downlink not at the same time;
[0031] Fig. 4 is a schematic diagram showing the structure of a base station in TD-SCDMA systems using multi-carrier in which the method according to the present invention is supported;

Attorney Doikbl Nu.'
[0032] Fig. 5 is a schematic view of the interference direction of a TDD system with smart antenna;
[0033] Fig. 6A and Fig. 6B are a schematic views showing the original configuration and modified configuration of the uplink and downlink slots in accordance with TD-SCDMA standard;
[0034] Fig. 7 is a flow chart showing the process of the radio resource control performed when different carriers of different base stations use different switching point between uplink and downlink to avoid interference.
DETAILED DESCRIPTION
[0035] The method of the present invention is described in detail below taking TD-SCDMA system as an example, which is a radio resource allotting method having the benefit of avoiding interference and improve the efficiency of the system as much as possible when different carriers and different switching points are used in the operation of multi-carrier base stations in TDD system to support asymmetric services.
[0036] The essential part of the present invention is to make it possible for the switching time between uplink and downlink of one of the multiple carriers different from the switching time between uplink and downlink of the others of the multiple carriers in a multi-carrier TDD mobile communication system.
[0037] Sectors with multiple carriers and the same or almost the same covering areas are treated as one cell in the multi-carrier TDD mobile communication system. In such a cell, one carrier is chosen as the primary
— m-

Attorney Docket-No.
carrier, and all the common channels, such as the DwPTS, BHS, PCH, FACH, RACH, are arranged on the primary carrier. The remaining resources (slots and code channels) on the primary carrier and all the resources (slots and code channels) on the other carriers are used for transferring services.
[0038] The switching times between uplink and downlink for different carriers are determined based on the requirement of the asymmetric services.
[0039] Modifications to the present base stations are needed to support asymmetric services with different uplink/downlink ratio, where different switching times between uplink and downlink are used for different carriers. The basic structure of a base station in accordance with the present invention is shown in Fig.4.
[0040] The antennae array for receiving comprises antenna unit 501, 502, ..., 50n, which are connected to receiver 531, 532, ..., 53n, respectively, via receiving feeding cables 511, 512, ..., 51 n; the antennae array for transmission comprises antenna unit 551, 552, ..., 55n, which are connected to transmitter 541, 542, ..., 54n, respectively, via receiving feeding cables 561, 562, ..., 56n. A baseband signal processing unit 571 is also in the Fig. This structure is different from the basic structure of conventional TDD base stations (see Fig.2) in that no radio switches or circulators are needed and respective antennae are used for receiving and transmitting, which are connected to the receivers and transmitters respectively.
[0041] Exactly the same frequencies are used on each carrier to perform receiving and transmission. In practice engineering, multiple carriers
— IS"-

Attorney Docket-No.
operate on adjacent frequencies, and the interference between adjacent carriers in the base station must be avoided when the switching times between uplink and downlink are different for each carrier, that is to say, the leakage from the transmitter to the receiver must be kept to an extremely low level inside the base station, or, the isolation between them must be higher than 60dB (such as between 60dB and 80dB). In addition, the isolation between the receiving antenna and the transmission antenna should also be enough high (such as higher than 60dB). The later will be achieved by antenna (array) design and engineering installation.
[0042] Refer to Fig.5 now, where the interference condition of the TDD system with smart antenna is schematically shown.
[0043] Smart antennae are used in the base station of the TD-SCDMA system, which use shaped wave packet to perform receiving and transmission, where the energy density of the signal outside the shaped wave packet is 10 times lower or tens of times lower than that inside the shaped wave packet.
[0044] A TDD cell mobile communication network with smart antennae as shown in Fig.5 comprises n base stations, each of which use 3 sectors to cover the antenna, i.e., each of the base stations can be regarded as covering 3 cells. The base station 304 as shown in the Fig covers 3 cells I, II, and III, while the base station 305 covers 3 cells I', II', and III'. The shaped wave packet of base station 304 for receiving and transmitting may be 321 when the base station 304 communicates with terminal 311 in the second sector II thereof, which has its main () wave packet of about 150 wide. Since the antenna of the base station is
— /6-

Attorney Docket No.
normally set quite high, and the gain of the antenna is also quite high, the carrier frequencies which direct to the same direction as the wave packet 321 may be interfered, while the other carrier frequencies or cells have very little possibility to be interfered. Only when the shaped wave packet of the cells or carrier frequencies directs to the shaped wave packet, such as wave packet 322, and there exist overlapping time slots (see Fig.3), the interference will occur. On the other side, when the shaped wave packet of the cells or carrier frequencies directs to other directions, such as wave packet 323, the interference will be little and has almost no influence on communication.
[0045] Since the shaped wave packet will change its direction to follow the user terminal as the user terminal moves, the base stations (or cells) which will be interfered will also change. Accordingly, a system operation state database is required to be set at the radio network controller (RNC) side, to record the state of each operating terminal within the range of management in real time, which include the radio resources allotted (such as the carrier frequency, slots and code channel), the services carried, data required to be routinely measured in accordance with the communication standard and the position of the terminal (distance and direction with respect to the base station, or the direction of its wave packet reaching the base station) or the like.
[0046] In order to avoid the interference between the base stations, the RNC is required to record and update the data regarding the relative positions of all the cell antennae within the range of management and the width of the
— 17-

Attorney Docket No.
shaped wave packet of each cell antenna, based on which the radio resource management (RRM) is performed.
[0047] The flexible supporting for asymmetric services is explained below taking the TD-SCDMA multi-carrier system as an example.
[0048] First, the allotment schedule for uplink and downlink slot is set according to the estimate of the service amount for uplink and downlink at the phase of building the network. Carrier frequencies fO, f1, and f2 are used in the sector II of the base station 304, while the same carrier frequencies fO, f1, and f2 are also used in the sector I' of the adjacent base station 305. The original time slot arrangement of the carrier frequencies fO, f1, and f2 of the sector II and the sector I' are shown in Fig.6A, where 3 uplink slots and 3 downlink slots are arranged before and after the switching point 2. When the terminal user 311 make a call in the sector II of the base station 304 to apply for the high speed download services with the supports of 4 download time slots, none of the carriers is able to support this user request according to the current slot arrangement schedule, and the access request will be rejected without the support of the method in accordance with the present invention. However, if the method in accordance with the present invention is adapted, the user request can be supported by changing the arrangement of the slots.
[0049] The process for supporting the request of the user is as follows: carrier frequencies with lower load are chosen, for example, suppose that there is no load on carrier frequency f1 ( or few loads), f1 is chosen;
— \Z-

Attorney Docket No.
[0050] Since the downlink resources are limited, while there are remaining resources for uplink, the arrangement for uplink and downlink ma be changed to support the request of the user, for example, the slot arrangement for f1 may be changed to the arrangement as shown in Fig. 6B;
[0051] Then, the influence on carrier frequencies fO, f2 of the same cell and all the carrier frequencies of the adjacent cells within the direction the shaped wave packet directs, such as influence on the frequencies fO, f1, and f2 of the sector C of the base station 305, is further determined. Since smart antennae are adapted to shape the wave packet, the direction of the shaped wave packet directs to user 311 can be determined to be 321, and only the other users in the direction 321 of the shaped wave packet will be interfered. According to the explanation regarding the interference, it should be understood that as for the carrier frequencies fO, f2 of the same cell and the frequencies fO, f1, and f2 of the sector I' of the base station 305 in the direction of the shaped wave packet directs to user 311, only the users operating at the uplink slot before the switching point 2 in Fig.6A will be interfered. The RNC, operating as a center for the control of the radio resources management, records the state of the usage of the current radio resources, and the operating state of the users in the direction of the shaped wave packet and the time slots where the interference may occur can be obtained by reference to the database. For example, if there is one user 322 transmitting uplink signal on carrier f1 in the sector I' of the base station 305 in this time slot, the uplink signal will be influenced by the strong downlink signal of the user 321.
— M-

Attorney Docket No
[0052] When it is determined that the interference will occur, the users in the direction 322 may be adjusted to the other slot on the carrier frequency f1 or the uplink slots on the other carrier frequencies fO, f2 that will not be interfered (i.e., the other uplink slots on the carrier frequencies fO, f1 and f2) by rapid DCA technology, to avoid the interference.
[0053] If the interference can be avoided successfully, the slot arrangement of the carrier frequency f1 of the sector II of the base station 304 can be changed as shown in Fig6B, to support the request of the user 311 for high speed download services.
[0054] When the service for the user 311 is completed, the original slot arrangement as shown in Fig.6A can be restored.
[0055] Since the interference only occurs in specific direction and limited range of time, the possibility for failure in avoiding the interference by DCA is quite low. However, if the interference cannot be successfully avoided, the request of the user 311 for high speed download services will be rejected. As described above, the efficiency of the usage of the resources can be improved efficiently in accordance with the method of the present invention, and flexible support for asymmetric services can be realized.
[0056] Now, refer to Fig. 7, the radio resource management process of changing the arrangement for uplink and downlink slots to avoid the interference will be explained.
[0057] At step 700, the slot allotment for uplink and downlink services is initialized with a ratio between the uplink and downlink services. When the
— 2JO-

Attornoy Dockot Ne.
radio resources are allotted by the system, a ratio between the uplink and downlink services is initially set in accordance with the statistic result of the service amount for uplink and downlink, and the slots for uplink and downlink services are allotted in accordance with this ratio.
[0058] At step 710, there is a service request which requires the switching point between the uplink and downlink to be changed. When the service requirement of a call request can be supported by the original slot allotment for uplink and downlink services, the radio resources are allotted with normal method, i.e., the same the switching point between the uplink and downlink is adapted. However, when the service requirement of a call request cannot be supported by the original slot allotment for uplink and downlink services, it is further judged whether the service requirement can be supported by changing the ratio between the uplink and downlink services. There are two conditions in which the service requirement of a call request cannot be supported by the original slot allotment for uplink and downlink services, wherein the first one is that the data transmission rate required by the new service request exceeds the maximum data transmission rate achievable on that direction (uplink or downlink); and the second one is that the remaining resources are not enough to carry this new service according to the service carried by the original slot allotment for uplink and downlink services.
[0059] At step 720, it is judged if there are any resources remaining. If it is judged that the service requirement can be supported by changing the slot allotment for uplink and downlink, i.e., by changing the ratio between uplink slots
— 2-1-

Attorney Docket Mo.
and downlink slots, in other words, there is enough resources in the other transmission direction (uplink or downlink) that can support the service on this direction (uplink or downlink), the process for changing the ratio between uplink slots and downlink slots is started (step 730), otherwise, in case that the resource required by the service cannot be supported by changing the slot allotment for uplink and downlink, the service will be rejected (Step 790).
[0060] For example, when the high speed download service is requested by the user which cannot be supported by the current slot allotment for uplink and downlink, i.e., when the transmission rate of the downlink requested by the user exceeds the maximum transmission rate that can be supported by the downlink slot, or when the remaining downlink resources are not enough for supporting that required by the service requested by the user, it can be judged whether there are any resources remaining in the uplink slots to determine whether the switching point between the uplink and the downlink can be adjusted to support this service, and if there are enough resources remaining in the uplink slots which can be used to support the requested service, the interference analysis can be further performed, otherwise, the request of the user will be rejected.
[0061] At step 730, the interference which may be introduced by the adjustment of the switching point between the uplink and the downlink is analyzed. In other words, the interference of a carrier frequency with enough resources selected in the cell where the calling request has been made to the other carrier frequencies in the cell and all the carrier frequencies in the adjacent
— 2.2.—

cells in the direction pointing to the user (or the interference of the other carrier frequencies in the cell and all the carrier frequencies in the adjacent cells in the direction pointing to the user to this selected carrier frequency of the cell), when the switching point thereof between the uplink and the downlink is changed is analyzed.
[0062] The rule for above analysis is to judge whether there are carrier frequencies in the adjacent cells receiving signals from terminals in the direction of this selected shaped wave packet during the uplink or downlink slots which does not belong to the originally allotted uplink or downlink slots, if yes then it is determined that the interference exists; or to judge whether there are carrier frequencies in the adjacent cells transmitting signals to terminals in the direction of this selected shaped wave packet during the uplink or downlink slots which does not belong to the originally allotted uplink or downlink slots, if yes then it is determined that the interference exists.
[0063] The above analysis is practically achieved by the management of the radio resources by the RNC. As an entity for managing and controlling the radio resources, the RNC has a system operation state database built in, wherein the state of each operating terminal within the range of management are recorded in real time, which include the radio resources allotted (such as the carrier frequency, slots and code channel), the services carried, data required to be routinely measured in accordance with the communication standard and the position of the terminal (distance and direction with respect to the base station, or the direction of its wave packet reaching the base station) or the like. Besides,
— 2.*>-

Attorney Docket Me.
the RNC also record and update the data regarding the relative positions of all the cell antennae within the range of management and the width of the shaped wave packet of each cell antenna to avoid the interference between the base stations. The RNC may refer to the related database according to the direction of the incoming wave packet of the user making the calling request, to judge if there is any interference from the other carrier frequencies in the present cell and all the carrier frequencies in the adjacent cells exists in the shaped wave packet of the user making the calling request, and may further judge if these interference can be avoided by rapid dynamic channel allotting (DCA) technology if there is any.
[0064] At step 740, it is judged whether the interference can be avoided. Here, the interference means the interference to the other carrier frequencies in the present cell and all the carrier frequencies in the adjacent cells in the direction of the user that will be introduced if the newly requested service is carried on one possible carrier frequency. If it is judged that interference exists on all possible carrier frequencies and cannot be avoided by rapid DCA, then the service request will be rejected and the step 790 will be executed; if there is no interference exists on all possible carrier frequencies, or if the interference on any of the possible carrier frequencies may be avoided by the DCA technology, step 750 is executed.
[0065] At step 750, the arrangement of the ratio between the uplink and downlink services of the selected carrier frequency is changed to support the
—2-^ —

request for high speed download service, and the database of the RNC is updated.
[0066] At step 760, the resource allotting of the interfered cells are analyzed and adjusted accordingly until the communication process is completed. Since the terminal may continuously move in the communication system, the interference will also be changed between the cells with different ratios between uplink and downlink slots. Accordingly, the change of the interference should be continuously analyzed during the entire communication process, and rapid DCA should be adapted to avoid the interference until the communication process is completed.
[0067] At step 770, when the communication is completed, the original ratio between uplink and downlink slots which has been initially set is resumed immediately.
[0068] In accordance with the present invention, different switching point for uplink and downlink can be used for different carriers and in different cells in a TDD mobile communication system operating with smart antennae, by setting up a database in the RNC, recording and updating the information regarding all the operating terminals, and by analyzing the direction of the shaped wave packet of the smart antenna, determining cells, carriers and slots that may be interfered with the information in the database and avoiding interference by means of rapid DCA technology when asymmetric services with different ratios between uplink and downlink are supported and maintained.
— 2_^~

Attorney Duikel Nu.
[0069] Determining the direction of the shaped wave packet with smart antenna technology, recording the state of the resources used by the users in the database in the RNC and DCA are commonly used technologies in the present TDD mobile communication system operating with smart antennae, and the technical solution of the present invention performs interference analysis with the information obtained with smart antenna and avoids the interference accordingly.
[0070] The base station used in the present invention must use antennae and feeding cables with enough isolation for receiving and transmission respectively, and the receiver and the transmitter must be able to be controlled separately and have enough isolation.
[0071] Since different switching point for uplink and downlink can be used for different carriers and in different cells in accordance with the present invention, the asymmetric services are supported with flexibility and the system capacity is increased.
— 2-6-

Attorney Docket No.
What is claimed is:
1. A method for supporting asymmetric services flexibly in a multi-carrier time division duplex mobile communication system, configured to support asymmetric services with different switching points between downlink and uplink slots on a plurality of carrier frequencies in adjacent cells and a plurality of carrier frequencies in a same cell, said method comprising:
A. when a ratio between uplink and downlink service slots required by an asymmetric service requested by a request is unable to be supported by a ratio between uplink and downlink service slots initially set for one carrier frequency, determining whether the request is able to be accepted by changing the ratio between uplink and downlink service slots for the carrier frequency;
B. if the request is able to be accepted by changing the ratio between
uplink and downlink service slots for the carrier frequency, accepting said request
by changing the ratio between uplink and downlink service slots for the carrier
frequency and executing step C, and otherwise, rejecting said request;
C. receiving uplink radio frequency signals in a uplink constituted by
separate receiving antennae, feeding cables and receivers, and transmitting
downlink radio frequency signals in a downlink constituted by separate
transmitting antennae, feeding cables and transmitters;
D. changing the ratio between uplink and downlink service slots for the
carrier frequency back to the ratio initially set when completing the requested
- XI-

Attorney Docket No.
asymmetric service.
2. The method according to claim 1, wherein in step A, the condition that
the ratio between uplink and downlink service slots required by an asymmetric
service requested by a request is unable to be supported by the ratio between
uplink and downlink service slots initially set for one carrier frequency includes:
one of conditions that a data transmission rate required by the requested service exceeds a maximum data transmission rate available in uplink or downlink of the initial setting, and remaining resources after carrying the services under initial setting is insufficient to carry the requested service.
3. The method according to claim 1, wherein in step A, determining
whether the request is able to be accepted by changing the ratio between uplink
and downlink service slots for the carrier frequency includes:
A1. selecting one carrier frequency having sufficient remaining resources in the cell where said request is being made;
A2. determining services carried on other carrier frequencies in the cell and services carried on all the carrier frequencies in adjacent cells that will be interfered when the uplink and downlink slots arrangement for the carrier frequency is changed by analysis;
A3, avoiding interference by adjusting the services that are determined to be interfered into other slots on its operating carrier frequency or the other carrier frequencies that will not be interfered by rapid DCA technology;
— 2S -

Attorney Docket No.
A4. determing whether steps A1 to A3 can be executed successfully, and if yes, deciding said request is able to be accepted by changing the ratio between uplink and downlink service slots for the carrier frequency.
4. The method according to claim 3, wherein said determining by analysis
in step A2 is to examine whether in a direction of shaped wave packet of a user
making the request, there are said other carrier frequencies or said adjacent cells
receiving signals from terminals in the direction of the shaped wave packet
during slots more than the originally allotted slots; or examine whether there are
said other carrier frequencies or said adjacent cells transmitting signals to
terminals in the direction of the shaped wave packet during slots fewer than the
originally allotted slots.
5. The method according to claim 4, wherein said examining further
comprises:
the RNC performing management on wireless resources by referring to the database of the operating state of the system according to direction of the incoming wave packet of the user making the calling request and width of the shaped wave packet, wherein
the database records and updates the state of each operating terminal within the management range of the RNC in real time, which includes the wireless resources allotted with carrier frequency, slots and code channel, the carried services, measured data obtained by routine measurement in accordance
-2-R-

Attorney Docket No.
with communication standard, and position information of the terminals including distance and direction of the terminals with respect to base stations, and data regarding relative positions of cell antennae within management range and regarding width of the shaped wave packets of each cell antenna.
6. The method according to claim 3, wherein said step A3 determines
whether the interference is able to be avoided by referring to the database of the
system operating state and performing management on wireless resources by
the RNC according to the direction of the incoming wave packet of the user
making the calling request and the width of the shaped wave packet, wherein
the database records and updates the state of each operating terminal within the management range of the RNC in real time, which includes the wireless resources allotted with carrier frequency, slots and code channel, the carried services, measured data obtained by routine measurement in accordance with communication standard, and position information of the terminals including distance and direction of the terminals with respect to base stations, and data regarding relative positions of cell antennae within management range and regarding width of the shaped wave packets of each cell antenna.
7. The method according to claim 1, wherein in said steps B and D, while
changing the uplink and downlink slot ratio, related information data in database
of the system operating state of the RNC is updated.
— 3° ~

Attorney Docket No.
8. The method according to claim 1, wherein in said step C, isolation control is performed between the uplink and the downlink, to make the leakage from the transmitting to the receiving as low as possible; and the transmitter and the receiver are controlled separately.
Dated this 11th Day of April, 2007
G DEEPAK SRINIWAS
Of K & S PARTNERS
AGENT FOR THE APPLICANT(S)
- 31-

ABSTRACT
Method for Supporting Asymmetric Service Flexibly in Multi-Carrier
Time Division Duplex Mobile Communication System
The present invention relates to a method for supporting asymmetric service flexibly in multi-carrier time division duplex mobile communication system, supporting asymmetric services with different switching point between downlink and uplink on a plurality of carrier frequencies in the adjacent cells and a plurality of carrier frequencies in the same cell. When the requirement of the requested service cannot be supported by the ratio between service slots for uplink and downlink initially set, the requested service is supported by changing the ratio between service slots for uplink and downlink. Before accepting the requested services, the interference to the other frequencies in the same cell and the services in the adjacent cells when the slot arrangement of the uplink and downlink for a carrier frequency is changed is analyzed, and rapid DCA technology is used to adjust the above mentioned services determined to be interfered. When the requested service is completed, the slot ratio between uplink and downlink is restored to the ratio originally set. Separate and isolated uplink and downlink needs to be set up in w&. base station to support different switching point between uplink and downlink.
- 32.-

Documents:

535-mumnp-2007-abstract.doc

535-mumnp-2007-abstract.pdf

535-MUMNP-2007-ASSIGNMENT(24-6-2011).pdf

535-mumnp-2007-claims.doc

535-mumnp-2007-claims.pdf

535-MUMNP-2007-CN DOCUMENT(15-5-2013).pdf

535-MUMNP-2007-CORRESPONDENCE(1-8-2012).pdf

535-MUMNP-2007-CORRESPONDENCE(15-5-2013).pdf

535-MUMNP-2007-CORRESPONDENCE(20-12-2007).pdf

535-MUMNP-2007-CORRESPONDENCE(24-6-2011).pdf

535-MUMNP-2007-CORRESPONDENCE(5-9-2008).pdf

535-mumnp-2007-correspondence-received.pdf

535-mumnp-2007-description (complete).pdf

535-MUMNP-2007-DRAWING(3-12-2013).pdf

535-mumnp-2007-drawings.pdf

535-MUMNP-2007-ENGLISH TRANSLATION(3-12-2013).pdf

535-MUMNP-2007-EP DOCUMENT(15-5-2013).pdf

535-MUMNP-2007-FORM 1(1-8-2012).pdf

535-MUMNP-2007-FORM 1(1-9-2007).pdf

535-MUMNP-2007-FORM 1(24-6-2011).pdf

535-MUMNP-2007-FORM 1(3-12-2013).pdf

535-MUMNP-2007-FORM 13(1-8-2012).pdf

535-MUMNP-2007-FORM 18(5-9-2008).pdf

535-MUMNP-2007-FORM 26(2-9-2007).pdf

535-MUMNP-2007-FORM 26(24-6-2011).pdf

535-MUMNP-2007-FORM 3(15-5-2013).pdf

535-MUMNP-2007-FORM 3(20-12-2007).pdf

535-mumnp-2007-form 6(24-6-2011).pdf

535-mumnp-2007-form-1.pdf

535-mumnp-2007-form-2.doc

535-mumnp-2007-form-2.pdf

535-mumnp-2007-form-3.pdf

535-mumnp-2007-form-5.pdf

535-MUMNP-2007-KR DOCUMENT(15-5-2013).pdf

535-MUMNP-2007-PETITION UNDER RULE--137-(3-12-2013).pdf

535-MUMNP-2007-PETITION UNDER RULE-137(3-12-2013).pdf

535-MUMNP-2007-PETITION UNDER RULE-137-(3-12-2013).pdf

535-MUMNP-2007-REPLY TO EXAMINATION REPORT(3-12-2013).pdf

535-MUMNP-2007-US DOCUMENT(15-5-2013).pdf

535-MUMNP-2007-WO INTERNATIONAL PUBLICATION REPORT A1(5-9-2008).pdf

abstract1.jpg


Patent Number 258373
Indian Patent Application Number 535/MUMNP/2007
PG Journal Number 01/2014
Publication Date 03-Jan-2014
Grant Date 03-Jan-2014
Date of Filing 12-Apr-2007
Name of Patentee DA TANG MOBILE COMMUNICATIONS EQUIPMENT CO,LTD
Applicant Address NO. 40 XUEYUAN RD., HAIDIAN DISTRICT BEIJING 100083,
Inventors:
# Inventor's Name Inventor's Address
1 LI SHIHE NO. 40, XUEYUAN ROAD., HAIDIAN DISTRICT, BEIJING-100083
2 YANG GUILIANG NO. 40, XUEYUAN ROAD., HAIDIAN DISTRICT, BEIJING 100083
3 HU JINLING NO. 40, XUEYUAN ROAD., HAIDIAN DISTRICT, BEIJING 100083
PCT International Classification Number H04Q7/38
PCT International Application Number PCT/CN2005/001465
PCT International Filing date 2005-09-12
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 200410074682.7 2004-09-13 China