Title of Invention

NON-AQUEOUS MICROELECTRONIC CLEANING COMPOSITIONS CONTAINING FRUCTOSE

Abstract Back end photoresist strippers and residue compositions that are essentially non-corrosive toward copper as well as aluminum and that comprise a polar organic solvent, a hydroxylated amine, and as a corrosion inhibitor fructose.
Full Text

NON-AQUEOUS MICROELECTRONIC CLEANING
COMPOSITIONS CONTAINING
FRUCTOSE
FIELD OF THE INVENTION
[0001] This invention relates to methods and non-aqueous cleaning compositions for cleaning microelectronic substrates, and particularly to such cleaning compositions useful with and having improved compatibility with microelectronic substrates characterized by copper metallization. The invention also relates to the use of such cleaning compositions for stripping photoresists, and cleaning residues from plasma process generated organic, organometailic and inorganic compounds.
BACKGROUND TO THE INVENTION
[0002] Many photoresist strippers and residue removers have been proposed for use in the microelectronics field as downstream or back end of the manufacturing-line cleaners. In the manufacturing process a thin film of photoresist is deposited on a wafer substrate, and then circuit design is imaged on the thin film. Following baking, the unpolymerized resist is removed with a photoresist developer. The resulting image is then transferred to the underlying material, which is generally a dielectric or metal, by way of reactive plasma etch gases or chemical etchant solutions. The etch gases or chemical etchant solutions selectively attack the photoresist-unprotected area of the substrate.
[0003] Additionally, following the termination of the etching step, the resist mask must be removed from the protected area of the wafer so that the final finishing operation can take place. This can be accomplished in a plasma ashing step by the use of suitable plasma ashing gases or wet chemical strippers.

Finding a suitable cleaning composition for removal of this resist mask material without adversely affecting, e.g., corroding, dissolving or dulling, the metal circuitry has also proven problematic.
[0004] As microelectronic fabrication integration levels have increased and patterned microelectonic device dimensions have decreased towards the size of atoms, and the heat formed as current passes through the circuits have become a serious problem, it has become increasingly common in the art to employ copper metallizations as the conductor material, instead of aluminum, since copper is more beneficial in reducing the heat formation. These copper containing microelectronic materials have presented additional challenges to find acceptable cleaner compositions. Many process technology compositions that have been previously developed for "traditional" or "conventional" semiconductor devices containing Al/Si02 or AI (Cu)/Si02 structures cannot be employed with copper metallized structures. For example, hydroxylamine based stripper or residue remover compositions are successfully used for cleaning devices with Ai metallizations, but are practically unsuitable for those with copper metallizations. Similarly, many copper metallized are not suitable for Ai metallized devices unless significant adjustments in the compositions are made.
[0005] Removal of these etch and/or ash residues following the plasma etch and/or ashing process for such copper and aluminum metalilized microelectronic structures has proved problematic, particularly for substrates metallized with copper. Failure to completely remove or neutralize these residues can result in the absorption of moisture and the formation of undesirable materials that can cause corrosion to the metal structures. The circuitry materials are corroded by the undesirable materials and produce discontinuances in the circuitry wiring and undesirable increases in electrical resistance.
[0006] Heretofore, photoresist strippers have often contained amines since they

generally show superior cleaning performance in attacking hardened photoresist and in the ability to strip such hardened photoresist from the surface of the microelectronic substrates. However, copper is generally also severely attacked by amines and significant metal corrosion can occur if such a conventional photoresist stripper is utilized without modification. Therefore, it is highly desirable to provide a copper compatible photoresist stripper or cleaner for use in the microelectronics industry, particularly for copper metallized materials. It is also highly desirable to provide a copper compatible photoresist stripper or cleaner for use in the microelectronics industry, particularly for copper metallized materials, that is also compatible for use with aluminum metallized materials. Since the same shift in technology from aluminum to copper metallization is being seen in the development of flat panel displays, it is also desirable to provide a stripper/cleaner that can be use in producing such fiat panel displays.
BRIEF SUMMARY OF THE INVENTION
[0007] Back end photoresist strippers and cleaning compositions of this invention are provided by non-aqueous compositions that are essentially non-corrosive toward copper as well as aluminum and that comprise a polar organic solvent, a hydroxylated amine, and as a corrosion inhibitor fructose. The compositions of this invention may also contain a number of other optional components. The cleaning compositions of this invention can be used over a wide range of process/operating conditions of pH and temperature, and can be used to effectively remove photoresists, post plasma etch/ash residues, sacrificial light absorbing materials and anti-reflective coatings (ARC). Additionally, it has been discovered that very difficult to clean samples, such as highly crosslinked or hardened photoresists and structures which contain titanium (such as titanium, titanium oxide and titanium nitride) or tantalums (such as tantalum, tantalum oxide and tantalum nitride) can be readily cleaned with the cleaning compositions of this invention.
[0008] The non-aqueous, essentially no-corrosive microelectronic

stripper/cleaner compositions of this invention will generally comprise from about 70 % to about 95 % of the organic polar solvent, from about 1 % to about 15 % of the organic hydroxylated amine, and a corrosion-inhibiting amount of the fructose corrosion inhibitor, generally from about 0.1 % to about 15 % of the fructose. The wt percentages provided in this specification are based on the total weight of the cleaning composition.
[0009] The non-aqueous, essentially non-corrosive stripping/cleaning compositions of this invention can also optionally contain other compatible components, including but not limited to components such as chelating agents, organic hydroxyl-containing co-solvents, stabilizing and metal chelating or complexing agents, other metal corrosion inhibitors, and surfactants.
DETAILED DESCRIPTION OF INVENTION AND PREFERRED EMBODIMENTS
[0010] Back end photoresist strippers and cleaning compositions of this invention are provided by non-aqueous compositions that are essentially non-corrosive toward copper as well as aluminum and that comprise a polar organic solvent, an organic hydroxylated amine, and as a corrosion inhibitor fructose. The compositions of this invention may also contain a number of other optional components.
[0011] The cleaning compositions of this invention can be used over a wide range of process/operating conditions of pH and temperature, and can be used to effectively remove photoresists, post plasma etch/ash residues, sacrificial light absorbing materials and anti-reflective coatings (ARC). Additionally, it has been discovered that very difficult to clean samples, such as highly crosslinked or hardened photoresists and structures which contain titanium (such as titanium, titanium oxide and titanium nitride) or tantalums (such as tantalum, tantalum oxide and tantalum nitride) can be readily cleaned with the cleaning compositions of this

invention.
[0012] The non-aqueous, essentially no-corrosive microelectronic stripper/cleaner compositions of this invention will generally comprise from about 70 % to about 95 %, preferably from about 75 % to about 90 %, and more preferably from about 80 % to about 85 %, of the organic polar solvent; from about 1 % to about 15 %, preferably from about 3 % to about 12 %, and more preferably from about 5 % to about 10 %, of the organic hydroxylated amine, and a corrosion-inhibiting amount of the fructose corrosion inhibitor, generally from about 0.1 % to about 15 %, preferably from about 1 % to about 12 %, and more preferably from about 3 % to about 10 %, of the fructose. The wt percentages provided in this specification are based on the total weight of the cleaning composition.
[0013] The compositions of this invention can contain one or more of any suitable organic polar solvent, preferably organic polar solvents that includes amides, sulfones, sulfoxides, saturated alcohols and the like. Such organic polar solvents include, but are not limited to, organic polar solvents such as sulfoiane (tetrahydrothiopene-1,1-dioxide), 3-methylsulfolane, n-propyl sulfone, dimethyl sulfoxide (DMSO), methyl sulfone, n-butyi sulfone, 3-methy!sulfoIane, amides such as 1-(2-hydroxyethyl) -2-pyrrolidone (HEP), dimethylpiperidone (DMPD), N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), and dimethylformamide (DMF) and mixtures thereof. Especially preferred as the organic polar solvent are N-methylpyrroiidone and sulfoiane and mixtures of both of these two solvents.
[0014] The organic hydroxylated amine component may be one or more of any suitable hydroxylated, preferably hydroxylamine or an alkanolamine, preferably an alkanolamine. Suitable organic hydroxylated amine useful in the compositions of this invention include, but are not limited to hydroxylamine, monoethanolamine, diethanolamone, triethanolamine, and particularly 2-aminoethanol, 1-amino-2-propanol, 1-amino-3-propanoi, 2~(2-aminoethoxy)ethanoi, diethanolamine, 2~(2-

aminoethyiamino)ethanol, 2-(2-aminoethylamino)ethylamine and the like, and mixtures thereof. Most preferably the organic hydroxylated amine component is monoethanolamine, diethanolamine, triethanolamine and 1 -amino-2-propanoI and mixtures thereof.
[0015] The compositions of this invention may also optionally contain one or more of any suitable organic hydroxyl-containing co-solvent Any suitable organic hydroxyl-containing co-solvent may be employed in the compositions of this invention. Examples of such suitable organic hydroxyl-containing co-solvents include, but are not limited to, ethylene glycol, propylene glycol, glycerol, and mono- and dialkyl ethers of diethylene glycol, known as Carbitol (2-(2-ethoxyethoxy)ethanol) and Carbitol derivatives, and saturated alcohols such as ethanol, propanol, butanol, hexanol, and hexafluoroisopropanol, and mixtures thereof. Especially preferred as a co-solvent is 2-(2-ethoxyethoxy)ethanol (Carbitol). A co-solvent may be present in the compositions of this invention in an amount, based on the total weight of the composition, of from 0 to about 30 wt%, preferably from about 0.1 to about 25 wt%, most preferably from about 0.5 to about 20 wt%.
[0016] The compositions of this invention may also contain one or more of any suitable other corrosion-inhibiting agents, preferably aryl compounds containing two or more OH, OR6) and/or SO2R6R7 groups bonded directly to the aromatic ring, where R6, R7 and R8 are each independently alkyl, preferably alkyl of from 1 to 6 carbon atoms, or aryl, preferably aryl of from 6 to 14 carbon atoms. As examples of such preferred corrosion-inhibiting agents there may be mentioned catechol, pyrogallol, gallic acid, resorcinol and the like. Such other corrosion-inhibiting agents may be present in an amount of from 0 to about 15 wt%, preferably from about 0.1 to about 10 wt%, most preferably from about 0.5 to about 5 wt%.
[0017] Organic or inorganic chelating or metal complexing agents are not

required, but offer substantial benefits, such as for example, improved product
stability. One or more of such inorganic chelating or metal complexing agents may
be employed in the compositions of this invention. Examples of suitable chelating
*
or complexing agents include but are not limited to trans-1,2-cyclohexanediamine tetraacetic acid (CyDTA), ethylenediamine tetraacetic acid (EDTA), stannates, pyrophosphates, alkylidene-diphosphonic acid derivatives (e.g. ethane-1-hydroxy-1,1-diphosphonate), phosphonates containing ethylenediamine, diethylenetriamine or triethylenetetramine functional moieties [e,g. ethylenediamine tetra(methylene phosphonic acid) (EDTMP), diethylenetriamine penta(methylene phosphonic acid), and triethylenetetramine hexa(methylene phosphonic acid), and mixtures thereof. The chelating agent will be present in the composition in an amount of from 0 to about 5 wt%, preferably from about 0.1 to about 2 wt%. Metal chelating or complexing agents of various phosphonates, such as ethylenediamine tetra(methylene phosphonic acid) (EDTMP) offer much improved stabilization of the cleaning compositions of the cleaning compositions of this invention containing oxidizing agents at acidic and alkaline conditions and thus are generally preferred.
[0018] Optional: other metal corrosion inhibitors, such as benzotriazole, may be employed in an amount of from 0 to about 5 wt%, preferably from about 0.1 to 2 wt%.
[0019] The cleaning compositions optionally may also contain one or more suitable surfactants, such as for example dimethyl hexynol (Surfynol-61), ethoxylated tetramethyl decynediol (Surfynol-465), polytetrafluoroethylene cetoxypropylbetaine (Zony! FSK), Zonyl FSH and, the like. The surfactant will generally be present in an amount of from 0 to about 5 wt%, preferably 0.1 to about 3 wt%.
[0020] Example of cleaning compositions of this invention include, but are not limited to, the compositions set forth in the following Tables 1, 2 and 3. In Tables 1, 2 and 3 and the following Tables the abbreviations employed are as follows:

NMP= N-methy[ pyrolidinone
SFL= sulfolane
DMSO=dimethyl sulfoxide
DMAC=dimethyacetamide
DMF=dimethformarnide
EG=ethylene glycol
CAR=carbitol
TEA=triethanolamine
MEA=monoethanolamine
AMP=1-amino-2-propano!
FRT=fructose
Table 1
Compositions/Parts by Weight
Com ponents 12 3 5 5
NMP 46.67 46.67 46.67 46.67 6^33
SFL 23.33 23.33 23.33 23.33 3^67
EG '
CAR 20.00 20.00 20.00 20.00




[0021 ] The anti-corrosion results obtained with the fructose containing cleaning compositions of this invention is by the following test results for a fructose containing compositions of this invention and the comparative test results for other saccharides.
[0022] A piece of copper-coated silicon wafer (approximately 20 x 20mm) was prepared for the experiment. The piece was cleaned in a buffered oxide etch (which contains 35w/w% NH4F and 6w/w% HF for 1 minute, followed by rinsing in deionized water for 1 minute, and dried in nitrogen spray. Then the wafer piece was immersed in a 150mL beaker that has 100g of test solution in it, and the solution was heated at 60°C, stirred with a magnetic stirrer at 200 rpm and, 60 minutes later, the piece was removed from the test solution, rinsed with deionized water for 1 minute, and dried with nitrogen spray. The thickness of copper layer (before and after the experiment) was determined by the ResMap (manufactured by Creative Design Engineering, Sunnyvale, CA) 4-point probe system.
[0023] For the photoresist stripping experiment, the same test solutions were used at the same temperature (60 ° C) with the same stirring rate (200 rpm). A piece of glass having positive photoresist layer (ca. 1000 angstroms) was immersed in the test solution and the time required for all of the resist stripped away was measured.
[0024] The test solutions (cleaning compositions) were the linvention Composition 6 of Table 2 and comparative compositions where the 5.00 parts of fructose of Composition 6 was replaced with 5.00 parts of sucrose (Comparative

Composition A), 5.00 parts glucose (Comparative Composition B), and 5.00 parts galactose (Comparative Composition C). The results of these etch rate and photoresist stripping tests for the compositions were as set forth in Table 4.

[0026] While the invention has been described herein with reference to the
specific embodiments thereof, it will be appreciated that changes, modification and variations can be made without departing from the spirit and scope of the inventive concept disclosed herein. Accordingly, it is intended to embrace all such changes, modification and variations that fall with the spirit and scope of the appended claims.







1. A non-aqueous cleaning composition for cleaning photoresist, post etch and ash,
sacrificial light absorbing materials or anti-reflective coatings from microelectronic
substrates, said cleaning composition comprising:
from about 70 wt % to about 95 wt % of an organic polar solvent, from about 1 wt % to about 15 wt % of an organic hydroxylated amine, a corrosion-inhibiting amount of fructose corrosion inhibitor, and optionally one or more of the following components:
an organic-hydroxyl-containing co-solvent;
a chelating or metal complexing agent;
an other metal corrosion-inhibiting agent; and
a surfactant; wherein the wt percentages are based on the total weight of the cleaning composition.
2. The cleaning composition of claim 1 wherein the fructose is present in the composition in an amount of from about 0.1 wt % to about 15 wt % of the fructose, based on the total weight of the composition.
3. The cleaning composition of claim 1 wherein the polar organic solvent is selected from the group consisting of; sulfolane, 3-methylsulfolane, n-propyl sulfone, dimethyl sulfoxide, methyl sulfone, n-butyl sulfone, sulfolene, 3-methylsulfolane, 1-(2-hydroxyethyl)-2-pyrrolidone (HEP), dimethylpiperidone, N-methyl-2-pyrrolidone, dimethylacetamide and dimethylformamide, and the organic hydroxylated amine is selected from the group consisting of hydroxylamine, monoethanolamine, diethanolamone, triethanolamine, 2-aminoethanol, 1-amino-2-propanoL 1-amino-3-propanol, 2-(2-aminoethoxy)ethanol, 2-(2-aminoethylamino)ethanol, and 2-(2-aminoethylamino)ethylamine and mixtures thereof.
4. A cleaning composition according to claim 3 wherein an organic hydroxyl-containing co-solvent is present and is selected from the group consisting of ethylene glycol,

propylene glycol, glycerol, mono- and dialkyl ethers of diethylene glycol, ethanol, propanol, butanol, hexanol, and hexafluoroisopropanol.
5. A cleaning composition according to claim 1 wherein the chelating or metal complexing agent is present in the composition and is selected from the group consisting of trans-1,2-cyclohexanediamine tetraacetic acid, ethylenediamine tetraacetic acid, stannates, pyrophosphates, alkylidene-diphosphonic acid derivatives, ethylenediamine tetra(methylene phosphonic acid), diethylenetriamine penta(methylene phosphonic acid), and triethylenetetramine hexa(methylene phosphonic acid).
6. A cleaning composition according to claim 1 wherein the other metal corrosion inhibiting gerrt agsni is present and is an aryl compound containing two or more moieties selected from the group consisting of OH, OR6, and/or SO2R6R7 moieties bonded directly to the aromatic ring, where R6, R7 and R$ are each independently alkyl of from 1 to 6 carbon atoms or aryl of from 6 to 14 carbon atoms.
7. A cleaning composition according to claim 1 wherein the organic polar solvent is selected from the group consisting of N-methyl pyrrolidone, sulfolane and mixtures thereof, the hydroxylated amine is selected from the group consisting of monoethanolamine, triethanolamine and aminopropanol and mixtures thereof.
8. A cleaning composition of claim 7 additionally comprising 2-(2-ethoxyethoxy)ethanol as an organic hydroxyl-containing co-solvent.
9. A cleaning composition according to claim 1 comprising N-methyl pyrrolidone, sulfolane, aminopropanol and fructose.
10. A cleaning composition according to claim 1, wherein the composition comprises an organic polar solvent that is N-methyl pyrolidinone and dimethyl sulfoxide, a hydroxylated amine that is diethanolamine, and fructose.

11. A process for cleaning photoresist, post etch and ash, sacrificial light absorbing
materials or anti-reflective coatings from a microelectronic substrate, the process
comprising contacting the substrate with a cleaning composition for a time sufficient
to clean the photoresist or residue from the substrate, wherein the cleaning
composition comprises a composition of any one of claims 1 to 10.
12. A process according to claim 10 wherein the microelectronic substrate to be
cleaned is characterized by the presence of copper metallization.


Documents:

0144-chenp-2007-abstract.pdf

0144-chenp-2007-claims.pdf

0144-chenp-2007-correspondnece-others.pdf

0144-chenp-2007-description(complete).pdf

0144-chenp-2007-form 1.pdf

0144-chenp-2007-form 26.pdf

0144-chenp-2007-form 3.pdf

0144-chenp-2007-form 5.pdf

0144-chenp-2007-pct.pdf

144-CHENP-2007 CORRESPONDENCE OTHERS 29-11-2013.pdf

144-CHENP-2007 AMENDED PAGES OF SPECIFICATION 14-11-2013.pdf

144-CHENP-2007 AMENDED PAGES OF SPECIFICATION 19-07-2013.pdf

144-CHENP-2007 AMENDED CLAIMS 14-11-2013.pdf

144-CHENP-2007 AMENDED CLAIMS 19-07-2013.pdf

144-CHENP-2007 AMENDED PAGES OF SPECIFCATION 24-12-2012.pdf

144-chenp-2007 correspondence others 23-02-2011.pdf

144-CHENP-2007 CORRESPONDENCE OTHERS 19-07-2013.pdf

144-CHENP-2007 CORRESPONDENCE OTHERS 24-12-2012.pdf

144-CHENP-2007 CORRESPONDENCE OTHERS 13-05-2013.pdf

144-CHENP-2007 EXAMINATION REPORT REPLY RECEIVED 14-11-2013.pdf

144-chenp-2007 form-1 23-02-2011.pdf

144-CHENP-2007 FORM-1 24-12-2012.pdf

144-chenp-2007 form-13 23-02-2011.pdf

144-CHENP-2007 FORM-13 01-01-2008.pdf

144-CHENP-2007 FORM-13 24-12-2012.pdf

144-CHENP-2007 FORM-13-1 24-12-2012.pdf

144-CHENP-2007 FORM-2 23-02-2011.pdf

144-CHENP-2007 FORM-3 24-12-2012.pdf

144-CHENP-2007 FORM-5 14-11-2013.pdf

144-CHENP-2007 OTHERS 14-11-2013.pdf

144-CHENP-2007 POWER OF ATTORNEY 23-02-2011.pdf

144-CHENP-2007 POWER OF ATTORNEY 24-12-2012.pdf

144-CHENP-2007 PRIORITY DOCUMENT 24-12-2012.pdf

144-CHENP-2007 CORRESPONDENCE OTHERS 07-11-2013.pdf

144-CHENP-2007 CORRESPONDENCE OTHERS 08-11-2013.pdf

144-chenp-2007 description (complete).pdf

144-chenp-2007 form-1.pdf

144-CHENP-2007 OTHER PATENT DOCUMENT 24-12-2012.pdf

144-chenp-2007 other document 23-02-2011.pdf

144-chenp-2007 correspondence others.pdf

144-chenp-2007 correspondence- others.pdf

144-chenp-2007 form-1.pdf

144-chenp-2007 form-13.pdf

144-chenp-2007 form-3.pdf

144-chenp-2007 form-5.pdf


Patent Number 258079
Indian Patent Application Number 144/CHENP/2007
PG Journal Number 49/2013
Publication Date 06-Dec-2013
Grant Date 29-Nov-2013
Date of Filing 12-Jan-2007
Name of Patentee AVANTOR PERFORMANCE MATERIALS,INC
Applicant Address 3477 CORPORATE PARKWAY SUITE 200 CENTER VALLEY PA 18034
Inventors:
# Inventor's Name Inventor's Address
1 INAOKA, SEIJI 4536 MEADOW DRIVE, NAZARETH, PENNSYLVANIA 18064, USA;
PCT International Classification Number G03F 7/42
PCT International Application Number PCT/US05/03422
PCT International Filing date 2005-02-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/588,248 2004-07-15 U.S.A.