Title of Invention

A CASTING MOLD FOR AN ENGINE BLOCK

Abstract A casting mold for an engine block and method for manufacturing the casting mold. In one embodiment, the casting mold includes a mold seat with a double-curved surface, and a cast-in cylinder liner. The cylinder liner has an axis and an end surface. The end surface is in tangential contact with the double curved surface in a seated position prior to any thermal expansion of the cylinder liner. In various embodiments, the cylinder liner becomes slightly unseated upon thermal expansion.
Full Text Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
CASTING MOLD FOR ENGINE BLOCK
FIELD OF THE INVENTION
[0001] The present invention relates to molds used to produce castings that require cylindrical objects to be embedded in the casting, and in particular to casting molds for engine blocks wtth cast-in cylinder liners.
BACKGROUND OF THE INVENTION
[0002] The inner walls of the cylinder bores of internal combustion engines are required to withstand the abrasive action of the piston and its seal rings. In models with cast iron engine blocks, the cast iron provides the required resistance. In other models, including some V-engine blocks in which aluminum or other lightweight material is used, cylinder liners are inserted in the bores to provide adequate wear resistance.
[0003] In many engine block casting processes, cylinder liners are an integral part of the casting process and are assembled into the mold before molten metal is introduced into the mold cavity to form the engine block. After casting, when the mold is removed, these cast-in liners are permanently embedded within the cast metal walls of the cylinder bores. To improve the mechanical contact between the cylinder liners and the walls of the cylinder bores and avoid imperfections that are caused by thermal variations between the cylinder liners and the molten metal, the cylinder liners are sometimes preheated using, for example, induction heaters.
1
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
[0004] In a sand casting process, often referred to as the Precision Sand Process, an expendable mold package or package subassembly 40, shown in FIG. 1, is assembled from various mold segments and mold cores 44 that are combined to define, together with the cast-in cylinder liners 46, the internal and external surfaces of the engine block. The mold segments and mold cores are made of resin-bonded sand. Proper positioning of the liners in the mold and prevention of migration of the liners during pre-heating and casting presents an ongoing challenge.
[0005] Some attempts to address this problem provide that chamfered cylinder liners remain seated on corresponding chamfered seat surfaces of the mold cores during thermal expansion. The prior art provides for chamfered surfaces that are inclined with respect to a plane perpendicular to the bore axis at specific angles that are calculated to ensure that the liners remain seated and in contact with seat surfaces during pre-heating and casting. These angles are calculated using nominal (theoretical) dimensions for the length and radius of the cylinder liners and assume uniform in-situ thermal expansion of the liners. In practice, these ideal conditions are not met and the variation can cause the cylinder liners to exert force against the constraining mold seats. As a result, the mold seats will move relative to one another and/or the resin-bonded sand will fracture or crush, contaminating the mold. Either of these unintended consequences is undesirable and potentially more catastrophic than a small amount of cylinder liner migration.
2
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
[0006] Therefore, improved casting molds with cast-in cylinder liners are still needed.
SUMMARY OF THE INVENTION
[0007] One embodiment of the invention provides a casting mold for an engine block. The casting mold includes a first mold seat with a double-curved surface, and a cast-in cylinder liner. The cylinder liner has an axis and a conical chamfer. The conical chamfer is in tangential contact with the double-curved surface in a seated position prior to any thermal expansion of the cylinder liner. In one related embodiment, the cylinder liner becomes slightly unseated from the seated position upon thermal expansion.
[0008] In another embodiment of the invention, the casting mold includes a second mold seat that has a double-curved surface in contact with the cylinder liner prior to any thermal expansion.
[0009] In yet another embodiment, the first and second mold seats have conical surfaces in contact with corresponding end surfaces of the cylinder liner, such that upon thermal expansion, the cylinder liner becomes slightly unseated from the seated position. The end surfaces of the cylinder liner may be conical or double-curved surfaces.
[0010] Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included
3
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
within this description, be within the scope of the invention, and be protected by the accompanying claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] The present invention will become more fully understood from the detailed description and the accompanying drawings. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
[0012] FIG. 1 is a sectional view of a partial mold package shown assembled on a temporary base;
[0013] FIG. 2a is a partial sectional view of an embodiment of a casting mold according to the present invention;
[0014] FIG. 2b is a partial sectional view of another embodiment of-a casting mold according to the present invention;
[0015] FIG. 2c is a partial sectional view of another embodiment of a casting mold according to the present invention;
[0016] FIG. 3 is a partial sectional view of another embodiment of a casting mold according to the present invention;
[0017] FIG. 4 is an enlarged view of Detail D of FIG. 2a;
[0018] FIG. 5 is an enlarged view of Detail E of FIG. 2a;
4
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
[0019] FIG. 6 is a simplified diagram useful for illustrating an amount of axial unseating upon thermal expansion of a cylinder liner according to the present invention; and
[0020] FIG. 7 is cross-sectional views of the casting mold of the invention showing an amount of lateral unseating.
DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS OF THE INVENTION
[0021] The following description of the preferred embodiments is
merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. Referring to the drawings, it is to be understood that standard components or features that are within the purview of an artisan of ordinary skill and do not contribute to the understanding of the various embodiments of the invention are omitted from the drawings to enhance clarity. In addition, it will be appreciated that the characterizations of various components and orientations described herein as being "vertical" or "horizontal" are relative characterizations only based upon the particular position or orientation of a given component for a particular application.
[0022] Referring to FIG. 2a, an embodiment of a casting mold 100 for an engine block is shown in partial section about an axis of symmetry denoted by "A", which coincides with the longitudinal axis of one of the cylinder bores of the engine block. It will be understood that the engine block includes one or many cylinder bores, for example eight bores for a V-8 engine, although for simplicity, the various embodiments of the invention are described in connection with a
5
ttorney Docket No. GP-303415 HDP Reference No. 8540R-000037
single cylinder bore, without so limiting the invention. The casting mold 100 includes several mold parts, such as a slab core 102 and a barrel core 104. The mold parts are resin-bonded sand cores and can be made using conventional processes, such as a furan hot box or a phenolic urethane cold box core making process. Cores can be made using a variety of sands, such as silica, zircon, fused silica, etc. It will also be appreciated that the slab core 102 and the barrel core 104 may be each made as one integral piece or alternatively as a combination of smaller interconnected mold parts. A cast-in cylinder liner 106 is tightly confined between the slab core 102 and the barrel core 104. The cylinder liner 106 has a longitudinal axis "B" which coincides with the axis A when the cylinder liner 106 is aligned in the casting mold and there is no radial or axial displacement or tilting of axis B with respect to axis A, as shown in FIG. 2a. This position of the cylinder liner 106 is defined herein as the "seated position".
[0023] The cylinder liner 106 has a first end 108 adjacent to the slab core 102 and a second end 110 adjacent to the barrel core 104. In the embodiment shown in FIG. 2a, the first end 108 of the cylinder liner 106 is in contact with a first mold seat 112, which may be defined by a portion of the slab core 102. The first mold seat 112 has a convex double-curved surface 114, which is symmetric about the axis A and has two radii of curvature at each point. Such a surface is generated by revolving a curved line about the axis A, which is the axis of revolution or symmetry. Conical or cylindrical surfaces, which may be obtained when one radius goes to infinity, are single-curved surfaces. The
6
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
double-curved surface 114 of the first mold seat may be, for example, a portion of a sphere or torus.
[0024] The cylinder liner 106 contacts the surface 114 of first mold seat 112 along a contact circle 118. The contact circle 118 lies on a plane perpendicular to the axis A and has radius R-i. In one embodiment, the first end 108 of the cylinder liner includes a first end surface 116, which, in this embodiment, is a conical chamfer, as best seen in Detail D, FIG. 4. The chamfer 116 is tangent to the first mold seat surface 114 along the contact circle 118 and defines an angle a1 with the plane of the contact circle 118, which is perpendicular to the axis A.
[0025] The second end 110 of the cylinder liner 106 is in contact with a second mold seat 120. The second mold seat 120 may contact the second end 110 at a conical surface 122, as shown in FIG. 2a, or at a double-curved surface 124, which is similar to the double-curved surface 114 of the first mold seat 112, as shown in FIG. 3. In the embodiment of FIG. 2a, the conical surface 122 is inclined at an angle a2 with a plane perpendicular to the axis A, as best illustrated in Detail E, FIG. 5. The cylinder liner 106 may also include a second end surface 126, which, in this embodiment, is a conical chamfer having the same inclination a2. In the embodiment of FIG. 3, the second chamfer 126 contacts the double-curved surface 124 of the second mold seat 120 tangentially at an angle a2, which is defined by the second chamfer 126 and a plane perpendicular to the axis A. When the double-curved surfaces 114 and 124 of the first and second mold seats 112 and 120 are mirror images of each other, a2 = ai = a.
7
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
[0026] If all mold components are properly formed and assembled, in its initial state, before any heating resulting from the preheating process (if employed) or from the casting process, the cylinder liner 106 is seated on the first and second mold seats 112 and 120; that is the axis A of the bore coincides with the axis B of the cylinder liner 106, such that the cylinder liner 106 is not laterally displaced with respect to the axis of the bore A. The cylinder liner 106 is constrained by the first and second mold seats 112, 120. The angles a1 and a2 are selected such that the cylinder liner 106 will become "unseated", or no longer tightly confined by the first and second mold seats 112, 120, upon heating. Thus, the axis B of the cylinder liner 106 will become laterally displaced relative to the axis A by some amount, as shown in FIG. 7. An unseated cylinder liner 106 will be moved out of position by gravity, local adhesion of the cylinder liner to one or both of the seats 112, 120, or unbalanced metal pressure.
[0027] In other embodiments, shown in FIGS. 2b and 2c, the first mold seat 112 of FIG. 2a may be also configured to have a conical surface which is a mirror image of the conical surface 122 inclined at an angle ai = a2 with a plane perpendicular to the axis A such that upon thermal expansion the cylinder liner 106 becomes unseated from the seated position on the first and second mold seats 112 and 120. The cylinder liner 106 has first and second end surfaces 116, 126 mating with the conical surfaces 114, 122 of the mold seats 112, 120. In the embodiment of FIG. 2b, the end surfaces 116, 126 are conical chamfers. In the embodiment of FIG. 2c, the end surfaces 116, 126 of the cylinder liner 106 are double-curved surfaces.
8
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
[0028] A small migration or misalignment of the axis B relative to the axis A during the preheating and/or casting processes is insignificant compared to the damage that may be caused if the cylinder liner 106 is constrained to be seated during these processes on the first and second mold seats 112, 120. According to the present teachings, unanticipated and/or unaccounted for thermal expansion of the cylinder liner 106 that differs from theory will be accommodated without pushing apart the seats and/or crushing or fracturing the seat material and contaminating the mold. Unanticipated and or unaccounted thermal expansion generally results from normal process variations in the actual dimensions and angles of the mold seats 112, 120 and the cylinder liner 106, as well as non-uniform thermal expansions during preheating and/or mold filling.
[0029] The undesirable consequences of unpredictable thermal expansion of the cylinder liner 106 are avoided in the present invention by designing the mold seats 112, 120 and the cylinder liner such that the cylinder liner becomes slightly unseated during thermal expansion. This is accomplished by allowing an amount of unconstrained expansion at one or both ends 108, 110 of the cylinder liner 106. In this regard, the chamfer angles a1 and a2 are selected to exceed the nominal values that are theoretically required for constrained seating by an amount that will not cause excessive unseating or misalignment of the cylinder liner 106. The nominal angles required for constant seating for the embodiments of FIGS. 2a, 2b and 3 are determined by the following equation:
[0030] R1 x tan a1 +R2 x tan a2 = L,
9
Attorney Docket No. GP-303415 HDP Reference N5. 8540R-000037
[0031] Where L is the length of the cylinder liner 106 determined at its contact with the mold seats 112, 120, and R1 and R2 are the corresponding radii at the contact with the mold seats. If R1 = R2 = R and a1 = a2 = a, then:
[0032] tan a = L/2R
[0033] As an example, consider a cast iron liner with R= 47.5 mm and L = 140 mm. For this cylinder liner, the nominal angle a for constrained seating is equal to 55.84°, and the coefficient of thermal expansion (k) is equal to 5.9 x 10-6/°F. For a change in temperature of 1000°F, if a1 and a2 are chosen to be 10°
higher than the nominal angle value, or 65.84°, the amount of axial unseating Ga may be calculated as follows. The change in length is AL:
[0034] AL = 1000 x 5.9 x 10"6 x 140 = 0.826 mm
[0035] The change in radius R is AR:
[0036] AR = 1000 x 5.9 x 10-6 x 47.5 = 0.280 mm
[0037] Referring to FIG. 6, the axial unseating Ga is measured from the
tangents to the mold seats at the initial contact points:
[0038] Ga = 2 AR tan(65.84°) - AL = 0.424 mm.
[0039] Similarly, if only the first angle a1 is increased by 10° to 65.84°, while the second angle a2 is kept at the nominal value pf 55.84°, the axial unseating Ga is:
[0040] Ga = AR tan(65.84°) + AR tan(55.84°) - AL = 0.212 mm.
[0041] Therefore, for the cylinder liner of this example an increase of one of the chamfer angles by 10° causes the cylinder liner 106 to become axially
10
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
unseated only by 0.212 mm. An increase of both chamfer angles a1 and a2 by 10° causes the cylinder liner 106 to become axially unseated only by 0.424 mm.
[0042] The cylinder liner 106 is free to migrate laterally to the desired bore centerline as a result of Ga. Referring to FIG. 7, it can be shown that the lateral displacement GL is equal to (Ga/2)/ tan a. In the present example, if both angles are increased by 10°, this results in 0.095 mm of lateral migration.
[0043] It will be appreciated from these calculations that by increasing one or both chamfer angles a1 and a2 by as much as 10° from the nominal values that keep the cylinder liner 106 seated upon thermal expansion, only small radial or axial unseating of the cylinder liner 106 will occur, while many other advantages are realized in addition to preventing mold seat crushing or fracture. For example, the double-curved surface 114 reduces or eliminates scuffing of the mold seat 112 against the corner of the chamfer 116 of the cylinder liner 106. The increased chamfer angles a1 or a2 facilitate the insertion of mold seat 102 into the cylinder liner 106 during assembly of the mold 100, such that the cylinder liner 106 can be correctly assembled, especially in the case of V-type engines where the cylinder liners 106 are typically not vertical at the time the mold is assembled, as illustrated in FIG. 1, in which the mold package 40 is supported on a temporary base 50.
[0044] Greater chamfer angles a1 and a2 result in a smaller amount of lateral displacement GL for a given amount of axial unseating Ga. Smaller lateral displacement GL helps provide better control of any cylinder liners 106 which are unseated following mold assembly because of dimensional imperfections in the
11
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
slab core 102, barrel core 104 and cylinder liners 106 when the casting mold 100 is assembled.
[0045] While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that other embodiments and implementations are possible that are within the scope of this invention Accordingly, the invention is not restricted except in light of the attached claims and their equivalents.
12
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
What is claimed is:
1. A casting mold for an engine block, the casting mold comprising:
a mold seat comprising a double-curved surface; and
a cast-in cylinder liner comprising an axis and a conical chamfer, wherein the conical chamfer is in tangential contact with the double-curved surface in a seated position absent thermal expansion of the cylinder liner.
2. The casting mold of claim 1, wherein the conical chamfer forms an
angle a with a plane perpendicular to the axis, such that the cylinder liner is
unseated from the seated position upon thermal expansion.
3. The casting mold of claim 1, wherein the double-curved surface is a
spherical segment.
4. The casting mold of claim 1 /wherein the double-curved surface is a
toroidal segment.
13
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
5. A casting mold for an engine block, the casting mold comprising:
a first mold seat comprising a double-curved first surface;
a second mold seat comprising a conical second surface; and a cast-in cylinder liner comprising an axis and conical first and second chamfers, wherein the first and second chamfers are respectively in contact with the first and second surfaces at first and second contact circles in a seated position, such that upon thermal expansion the cylinder liner becomes unseated from the seated position.
6. The casting mold of claim 5, wherein the first and second chamfers
form angles a1 and a2 respectively relative to a plane perpendicular the axis, and
wherein a1 is greater than the angle defined by tan1(L/2R), and a2 is equal to tan"
1(L/2R), wherein L is the length of the cylinder liner between the contact circles
and R is the inner radius of the cylinder liner at the contact circles.
7. The casting mold of claim 5, wherein the first and second chamfers
form angles a1 and a2 respectively relative to a plane perpendicular to the axis,
and wherein a1 is greater than the angle defined by tan1(L/2R), and a2 is greater
than tan1(L/2R), wherein L is the length of the cylinder liner between the contact
circles and R is the inner radius of the cylinder liner at the contact circles.
14
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
8. A casting mold for an engine block, the casting mold comprising:
a mold seat comprising a conical surface;
a cast-in cylinder liner comprising an axis and contacting the conical surface in a seated position absent thermal expansion, wherein the conical surface is inclined at an angle a with a plane perpendicular to the axis, such that upon thermal expansion the cylinder liner becomes unseated from the seated position.
15
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
9. A casting mold for an engine block, the casting mold comprising:
a first mold seat comprising a conical first surface;
a second mold seat comprising a conical second surface;
a cast-in cylinder liner comprising an axis and first and second end surfaces contacting the first and second surfaces in a seated position absent thermal expansion, wherein the first and second surfaces are inclined at angle a1 and a2 respectively with a plane perpendicular to the axis, such that upon thermal expansion the cylinder liner becomes unseated from the seated position.
10. The casting mold of claim 9, wherein at least one of the first and
second end surfaces is a conical surface.
11. The casting mold of claim 9, wherein at least one of the first and
second end surfaces is a double-curved surface.
16
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
12. A casting mold for an engine block, the casting mold comprising:
a first mold seat comprising a double-curved first surface;
a second mold seat comprising a double-curved second surface; and
a cast-in cylinder liner comprising an axis and first and second chamfers, wherein the first and second chamfers are respectively in tangential contact with the first and second surfaces at first and second contact circles in a seated position, such that upon thermal expansion the cylinder liner becomes unseated from the seated position.
13. The casting mold of claim 12, wherein the first and second
chamfers are inclined at angles a1 and a2 respectively relative to a plane
perpendicular the axis, and wherein a1 is greater than the angle defined by
tan1(L/2R), and a2 is equal to tan1(L/2R), wherein L is the length of the cylinder
liner between the contact circles and R is the inner radius of the cylinder liner at
the contact circles.
14. The casting mold of claim 12, wherein the first and second
chamfers form angles a1 and a2 respectively relative to a plane perpendicular the
axis, and wherein a1 is greater than the angle defined by tan1(L/2R), and a2 is
greater than tan1(L/2R), wherein L is the length of the cylinder liner between the
contact circles and R is the inner radius of the cylinder liner at the contact circles.
17
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
15- The casting mold of claim 14, wherein a1 = a2.
16. The casting mold of claim 12, wherein each double-curved surface
comprises a spherical portion.
17. The casting mold of claim 12, wherein each double-curved surface
comprises a toroidal portion.
18
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
18. A casting mold for an engine block, the casting mold comprising:
a first mold seat comprising a first surface;
a second mold seat comprising a second surface; and
a cast-in cylinder liner comprising an axis and first and second end
surfaces, wherein the first and second end surfaces are respectively in tangential
contact with the first and second surfaces in a seated position, such that upon
thermal expansion the cylinder liner becomes unseated from the seated position.
19. The casting mold of claim 18, wherein the first surface is double-
curved.
20. The casting mold of claim 18, wherein the first surface is conical.
19
Attorney Docket No. GP-303415 HDP Reference No. 8540R-000037
21. A method of manufacturing a casting mold for an engine block, the
method comprising:
providing a first mold seat comprising a first surface; providing a second mold seat comprising a second surface; and placing a cast-in cylinder liner in a seated position in contact with the first and second surfaces respectively at first and second end surfaces of the cylinder liner absent thermal expansion, wherein the first surface is shaped such that upon thermal expansion the cylinder liner becomes unseated.
22. The method of claim 21, wherein the first surface comprises a
double-curved portion in contact with the first end surface of the cylinder.
23. The method of claim 21, wherein the first surface comprises a
conical portion in contact with the first end surface of the cylinder liner.
24. The method of claim 21, wherein the second surface is shaped
such that upon thermal expansion the cylinder liner is unseated from the seated
position.
25. The method of claim 24, wherein the second surface comprises a
double-curved portion in contact with the second end surface of the cylinder liner.
20
Attorney Docket No GP-303415 HDP Reference No. 8540R-000037
21
26. The method of claim 24, wherein the second surface comprises a conical portion in contact with the second end surface of the cylinder liner.

Documents:

02425-kolnp-2006-abstract.pdf

02425-kolnp-2006-claims.pdf

02425-kolnp-2006-correspondence others-1.1.pdf

02425-kolnp-2006-correspondence others.pdf

02425-kolnp-2006-description(complete).pdf

02425-kolnp-2006-drawings.pdf

02425-kolnp-2006-form-1.pdf

02425-kolnp-2006-form-2.pdf

02425-kolnp-2006-form-3.pdf

02425-kolnp-2006-form-5.pdf

02425-kolnp-2006-international publication.pdf

02425-kolnp-2006-international search authority report.pdf

02425-kolnp-2006-pct form.pdf

02425-kolnp-2006-pct others.pdf

02425-kolnp-2006-priority document.pdf

2425-KOLNP-2006-(16-01-2012)-CLAIMS.pdf

2425-KOLNP-2006-(16-01-2012)-CORRESPONDENCE.pdf

2425-KOLNP-2006-(16-01-2012)-FORM 13.pdf

2425-KOLNP-2006-(18-10-2011)-AMANDED CLAIMS.pdf

2425-KOLNP-2006-(18-10-2011)-CORRESPONDENCE.pdf

2425-KOLNP-2006-(27-06-2012)-CORRESPONDENCE.pdf

2425-KOLNP-2006-ABSTRACT.pdf

2425-KOLNP-2006-AMANDED CLAIMS.pdf

2425-KOLNP-2006-ASSIGNMENT.pdf

2425-KOLNP-2006-CORRESPONDENCE 1.1.pdf

2425-KOLNP-2006-CORRESPONDENCE.pdf

2425-KOLNP-2006-DESCRIPTION (COMPLETE).pdf

2425-KOLNP-2006-DRAWINGS.pdf

2425-KOLNP-2006-FORM 1 1.1.pdf

2425-KOLNP-2006-FORM 1-1.2.pdf

2425-KOLNP-2006-FORM 13.pdf

2425-KOLNP-2006-FORM 2 1.1.pdf

2425-KOLNP-2006-FORM 2-1.2.pdf

2425-KOLNP-2006-FORM 3.pdf

2425-KOLNP-2006-FORM 5.pdf

2425-KOLNP-2006-FORM 6.pdf

2425-KOLNP-2006-OTHERS PCT FORM.pdf

2425-KOLNP-2006-OTHERS.pdf

2425-KOLNP-2006-PA.pdf

2425-KOLNP-2006-PETITION UNDER RULE 137.pdf

2425-KOLNP-2006-REPLY TO EXAMINATION REPORT.pdf

abstract-02425-kolnp-2006.jpg


Patent Number 257842
Indian Patent Application Number 2425/KOLNP/2006
PG Journal Number 46/2013
Publication Date 15-Nov-2013
Grant Date 11-Nov-2013
Date of Filing 25-Aug-2006
Name of Patentee GM GLOBAL TECHNOLOGY OPERATIONS, INC
Applicant Address 300 GM RENAISSANCE CENTER, DETROIT, MICHIGAN 48265-3000
Inventors:
# Inventor's Name Inventor's Address
1 NEWCOMB , THOMAS,P. 348 KOERBER DRIVE DEFIANCE,OH 43512 U.S.A.
2 MEYER , MAURICE G. 12728 DICE ROAD, FREELAND,MI 48623 U.S.A.
PCT International Classification Number B22C9/02 ,B22C9/22
PCT International Application Number PCT/US05/002014
PCT International Filing date 2005-01-21
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/783,405 2004-02-20 U.S.A.