Title of Invention

MEASUREMENT OR PROTECTIVE DEVICE FOR ELECTRICAL APPLIANCES

Abstract The invention relates to the measurement or protective device (230) having an interface (350) for establishing a connection to at least one measurement transducer (250) and having a further interface (420) for connection to a superordinate data bus (220), the measurement or protective device (230) containing a communication unit (3007 which is connected to the two interfaces (350, 420), characterized in that the communication unit (300) can be directly connected to the measurement transducer (250) by means of one interface (350) for receiving sample messages (Tp) containing phase-conductor-related samples (U, I) and can be connected to the superordinate data bus (220) by means of the further interface (420) for transmitting sampling-time-related messages (Ts) and uses phase-conductor-related samples (U, I) from the measurement transducer (250) to form sampling-time-related messages (Ts) and transmits the latter to the superordinate data bus (220).
Full Text

UNIVERSAL MEASUREMENT OR PROTECTIVE DEVICE
The invention relates to a measurement or protective device having an interface which is suitable for establishing a connection to at least one measurement transducer and a further interface which is suitable for connection to a superordinate data bus.
Such measurement or protective devices are known in the field of electrical protective technology. These previously known measurement or protective devices are not connected to measurement transducers directly but rather via so-called "merging units" and switches (for example Ethernet switches). The function of the "merging units" is to process phase-conductor-related samples from the measurement transducers and to use them to form data messages which can be processed further by the respective measurement or protective device. As the name already implies, the phase-conductor-related samples relate to current and/or voltage in the phase conductors of an electrical system which are assigned to the respective measurement transducer.
The invention is based on the object of specifying a measurement or protective device which can be used in a particularly universal manner and makes it possible to construct complex protective systems in a particularly cost-effective manner.
According to the invention, this object is achieved by means of a measurement or protective device having the features as claimed in claim 1. Advantageous refinements of the measurement or protective device according to the invention are specified in subclaims.

According to this, the invention provides for the measurement or protective device to contain a communication unit which is connected to the two interfaces, can be directly connected to the measurement transducer by means of one interface, can be directly connected to the superordinate.^

data bus by means of the further interface, uses phase-conductor-related samples from the measurement transducer to form sampling-time-related messages and transmits the latter to the superordinate data bus and thus provides them for further consumers.
A fundamental advantage of the measurement or protective device according to the invention can be seen in the fact that it enables direct connection both to a superordinate data bus and to one or more measurement transducers. The direct connection of the measurement or protective device is made possible by the communication unit according to the invention which is capable of directly processing the phase-conductor-related samples from the measurement transducer and using them to form sampling-time-related messages. In other words, in the measurement or protective device according to the invention, the function of the physically separate "merging units" and "switches" mentioned in connection with the previously known prior art has been moved to the communication unit, with the result that, in contrast to the prior art, the measurement or protective device according to the invention allows direct connection to measurement transducers.
One advantageous refinement of the measurement or protective device provides for the two interfaces to form data bus interfaces; for example, one interface is suitable for connection to a process bus and the further interface is suitable for connection to a station bus.
It is considered to be particularly advantageous if the measurement or protective device has two 3-port network connections each having two external ports and one internal port, the two external ports of one 3-port network connection forming one interface and the two external ports of the other 3-port network connection forming the other interface, and the two internal ports of the two 3-port network connections being

connected to the communication unit. On account of the

two external ports, 3-port network connections enable full-duplex operation of the data bus, thus achieving a particularly high level of fault tolerance. Suitable 3-port network connections are described, for example, in the German laid-open specification DE 102 60 806 Al. The two external ports of one network connection are preferably suitable for direct connection to a process bus and the two external ports of the other network connection are preferably suitable for direct connection to a station bus.
The measurement or protective device can be produced in a particularly cost-effective manner if the communication unit and the two network connections are integrated, for example monolithically, in a freely programmable gate array.
The communication unit is preferably configured in such a manner that it uses the phase-conductor-related samples applied to the internal port of one network connection to form sampling-time-related messages and outputs the latter to the internal port of the other network connection.
The communication unit preferably reduces the sampling rate of the phase-conductor-related samples applied to the internal port of one network connection. For example, it uses the phase-conductor-related samples with their reduced sampling rate to form the sampling-time-related messages; alternatively, data reduction is carried out after the messages have been formed or while the messages are being formed.
By way of example, the communication unit is configured in such a manner that it reduces the sampling rate of the phase-conductor-related samples applied to the internal port of one network connection by using only every n-th sample further and leaving all remaining samples out of consideration, n being greater than two.

Alternatively, the communication unit may also be configured in
such a manner that it uses the_ __

phase-conductor-related samples applied to the internal port of one network connection to form pointer values and uses the latter to form the sampling-time-related pointer messages.
For the rest, it is considered to be advantageous if the communication unit subjects the phase-conductor-related samples applied to the internal port of one network connection to a renewed sampling operation.
Such a "renewed" sampling operation can be carried out, for example, in such a manner that the communication unit uses the phase-conductor-related samples applied to the internal port of one network connection to reconstruct the temporal profile of the electrical signal (current or voltage of the respective phase conductor) sampled, resamples the reconstructed signal at a second sampling rate which differs from the original sampling rate, uses these new samples formed in this manner to form the messages and outputs the messages to the internal port of the other network connection.
The communication unit preferably has at least one digital signal processor for the purpose of forming the new samples.
In order to transmit the data, the two interfaces of the measurement or protective device preferably operate in accordance with the IEC 61850 standard; the sampling times are synchronized in accordance with the IEEE 1588 standard. With regard to the information relating to the samples, the communication unit preferably forms the messages in accordance with the rules of the IEC 61850 standard. With regard to all other information, that is to say all information apart from the information relating to the samples, the communication unit preferably forms the messages in accordance with the IEC 61850-8-1 standard.

The process bus and the station bus preferably operate in accordance with a real-time Ethernet standard (cf. property-rights and property right applications CN 1476702, DE 10058524, EP 1388238, JP 2004515122; US 2002064157; WO 200243336; DE 10147422; EP 1430628; US 2004249982; WO 2003028259); accordingly, the two network connections are each preferably suitable for connection to a real-time Ethernet ring.
The invention also relates to a protective system having a measurement or protective device, a measurement transducer and a superordinate control system.
As regards such a protective system, the invention is based on the object of achieving the possibility of particularly cost-effective implementation.
According to the invention, this object is achieved by means of
a protective system having a measurement or protective device,
a measurement transducer and a superordinate data bus, the two
external ports of one 3-port network connection of the
measurement or protective device being connected to the
measurement transducer by means of a process bus, and the two
external ports of another 3-port network connection of the
measurement or protective device being connected to the
superordinate control system by means of a station bus.
As regards the advantages of the protective system according to the invention, reference is made to the above statements in connection with the measurement or protective device according to the invention.
The invention is explained below using an exemplary embodiment; in the drawing

figure 1 shows a protective system having two measurement devices according to the prior art, and
figure 2 shows one exemplary embodiment of a protective system according to the invention with one exemplary embodiment of a measurement and/or

protective device according to the invention.
Figure 1 shows a protective system according to the prior art. A protective device 10 which is connected to a superordinate data bus 30 can be seen. The protective device 10 is connected, by means of a data line 20, to an Ethernet switch (Ethernet message distributor) 25 which is also connected to "merging units" 60 and 70 by means of further data lines 40 and 50. The term "merging unit" is understood below as meaning devices which combine data - in this case current and voltage samples U and I - applied to the input side and forward them as data messages on the output side.
Both "merging units" 60 and 70 are each connected to six measurement transducers, to be precise to three respective current transducers and to three respective voltage transducers. The measurement transducers are visualized overall in figure 1 by a block 100.
The protective system according to figure 1 operates as follows:
The "merging unit" 60 receives phase-conductor-related samples Ul and II from the measurement transducers 100 and processes them to form data messages Tl which it transmits to the Ethernet switch 25 by means of the data line 40; the Ethernet switch 25 then forwards the data messages Tl to the protective device 10. The task of the "merging unit" 60 is to carry out a type of "data combination" in order to form the data messages Tl. The data messages Tl formed in this manner are transmitted to the protective device 10 and are evaluated there. The protective device 10 then transmits the data messages Tl to the superordinate data bus 3 0 and thus to further consumers.
So that the two "merging units" 60 and 70 generate their data messages Tl and T2 in synchronism with one another, the two

"merging units" 60 and 70 are each_

synchronized using synchronization pulses fi, additional devices which are not shown in figure 1 being required for this purpose.
In summary, in the protective system according to figure 1, it is not possible to directly connect the protective device 10 to the measurement transducers 100 since at least one "merging unit" and one Ethernet switch always have to be interposed between the protective device and the measurement transducer.
Figure 2 illustrates one exemplary embodiment of a protective system 200 according to the invention. The protective system 200 has a superordinate control system 210 which is connected to a measurement and/or protective device 23 0 by means of a superordinate data bus 220 which is referred to below as a station bus. For reasons of clarity, the illustration according to figure 2 illustrates only a single measurement and/or protective device 23 0 of this type; it goes without saying that a plurality of measurement and/or protective devices 23 0 which receive and evaluate the messages on the station bus 220 can also be connected to the station bus 220.
The measurement and/or protective device 230 is also connected to a further data bus 240 which is referred to below as a process bus and makes it possible to connect the measurement and/or protective device 23 0 to one or more measurement transducers 250. The measurement transducers 250 are connected to phase conductors (not shown in figure 2) of an electrical system with a system frequency of 50 Hz or 60 Hz.
Figure 2 also shows the internal structure of the measurement and/or protective device 230. A communication unit 300 which is connected to two 3-port network connections 310 and 320 which are physically contained in the measurement and/or protective device and are capable of full duplex operation can be seen. The 3-port network connections 310 and 320 may be, for example,

those described in the German laid-open specification DE 102 60
8 0 6 Al „

One of the two 3-port network connections 310 has two external ports 330 and 340 which allow an interface 350 for connecting the measurement and/or protective device 230 to the process bus 240. The term "port" is thus to be understood as meaning an electrical bus connection or a bus interface. An internal port 360 of one 3-port network connection 310 is connected to a process-bus-side connection A300a of the communication unit 300.
The further 3-port network connection 320 likewise has two external ports 400 and 410; these external ports 400 and 410 form an interface 420 for connecting the measurement and/or protective device 230 to the station bus 220. An internal port 430 of the further 3-port network connection 320 is connected to a station-bus-side connection A300b of the communication unit 300.
The two 3-port network connections 310 and 320 and the communication unit 300 are shown in figure 2 as separate elements which are contained in the measurement and/or protective device 230. The two 3-port network connections 310 and 320 and the communication unit 300 are preferably formed by a single physical unit, preferably by a freely programmable gate array, for example a monolithically integrated array.
The protective system 200 according to figure 2 operates as follows:
The measurement transducers 250 generate phase-conductor-related samples U and I which are transmitted to the measurement and/or protective device 230 via the process bus 240. The phase-conductor-related samples U and I are transmitted on the process bus 240 in accordance with a real¬time Ethernet method (cf. property rights and property right applications CN 1476702, DE 10058524, EP 1388238, JP

2004515122; US 2002064157; WO 200243336; DE 10147422; EP 1430628; US 2004249982; WO 2003028259) and in accordance with the IEC 61850 standard. Specifically, the samples U and I are transmitted in the form of messages Tp

value". The correspondingly formed messages Ts are transmitted
in the direction of the station bus 22&___

which are formed in accordance with the rules of the IEC 61850 standard. For the rest, that is to say with regard to data other than the samples, the messages are formed in accordance with the IEC 61850-8-1 standard.
The station bus 220 operates just like the process bus 240, that is to say likewise in accordance with a real-time Ethernet method and in accordance with the IEC 61850 standard. The two data buses 220 and 240 are each operated in the full duplex mode; this is possible since each of the two 3-port network connections 310 and 320 respectively has two output-side ports for connection to the respective data bus.
The messages containing the samples Tp are formed on the basis of a time clock which has a temporal accuracy of one microsecond.
When transmitting the samples U and I via the process bus 240, a time stamp (for example "sample counter" value) is respectively added to each sample. The "sample counter value" indicates the time slot for the seconds jump of the synchronization clock in which the respective phase-conductor-related sample has been formed. Since the bus clock is set precisely to one microsecond, the respective sampling time can be determined for each transmitted sample with an accuracy of one microsecond.
A multiplicity of phase-conductor-related samples U and I which have been determined at different points in time and accordingly contain different "sample counter values" arrive at the measurement and/or protective device 23 0. The measurement and/or protective device 230 sorts the phase-conductor-related samples U and I in accordance with their respective time slot or their respective "sample counter value" and uses these samples to generate data messages Ts which respectively relate to the same sampling time or to the same "sample counter

using the further 3-port network connection 320.
When processing the phase-conductor-related samples U and I from the measurement transducers 250, the measurement and/or protective device 230 preferably carries out "downsampling" . This means that the number of samples provided by the measurement transducers 250 is reduced, before they are forwarded to the station bus 220, by discarding nine out of ten samples from the measurement transducers 250, for example, and keeping only one respective single sample. If the sampling rate in the measurement transducers 250 is 10 kHz or 20 kHz, for example, only a sampling rate of 1 or 2 kHz is forwarded on the station bus in the form of the messages Ts. Despite the reduction in the sampling rate, "transparency" of the measured values - when seen from the superordinate control system 210 -is nevertheless retained because, despite only every tenth sample being transmitted by the station bus 220, sufficient measured values which characterize the respective measured value situation in each of the measurement transducers 250 to a sufficient extent are still provided. The resultant transparency is diagrammatically indicated by the reference symbol V in figure 2.
Instead of the described reduction in the number of samples, in which only every n-th (for example n = 10) sample is used further, data reduction may also take place by converting the samples into complex measured value pointers. In this variant, the measurement and/or protective device 230 uses the phase-conductor-related samples U and I received from the measurement transducers 250 to determine complex measured value pointers which indicate the magnitude and the phase of the current or voltage on the associated phase conductors.
In the case of such data reduction by means of "pointer conversion", the data rate can be reduced to a very significant extent, with the result that a transmission rate of 50 Hz, for

example, suffices to characterize the measured values from the current transducers 250.
Frequency tracking can also be carried out in the measurement
and/or protective device 23 0 or in the communication

unit 300 of the measurement and/or protective device 230 by using the time-related and phase-conductor-related samples U and I from the measurement transducers 250 to first of all reconstruct the temporal profile of the respective electrical "system" signal sampled. The temporal profile reconstructed in this manner is then "resampled". Such "resampling" - that is to say repeated sampling - makes it possible to introduce another time standard, with the result that the samples relate to a new sampling clock, namely the sampling clock of the resampling operation.
Such a new time standard makes it possible to track frequencies and is expedient, for example, if transmission of the samples by the station bus 220 is intended to depend on the respective system frequency: if, for example, the system frequency of the system changes from 50 Hz to 51 Hz, the samples will be shifted relative to the temporal profile of the measurement signal in the case of a fixed sampling clock. If distribution of the samples which is matched to the respective system frequency of the measurement signal is then intended to be achieved, the communication unit 300 distributes the predefined number of samples per period over the respective period duration of the measurement signal measured and thus matches distribution of the samples to the respective system frequency. Frequency tracking may be necessary, for example, if the station bus 220 requires samples whose frequency has been tracked and if the process bus provides only samples with a fixed time.
As already mentioned, the two data buses 220 and 240 are preferably operated with a bus clock which is a great deal higher than the fundamental frequency of the measurement signals to be characterized and the system frequency of the electrical system. For example, samples can be formed in a very effective manner with a bus clock whose timing is set precisely to one microsecond.

In order to avoid the possibility of data being lost in the event of the ring structure of the two data buses 220 and 240 being interrupted, the two data buses 220 and 240 preferably operate in a full duplex mode, as already mentioned.
In summary, it can be stated that, on account of the described configuration of the measurement and/or protective device 230, the protective system 200 according to figure 2 makes it possible to pass through data between the process bus 240 and the station bus 220 in a virtually transparent manner, decoupling of the samples between the two data buses nevertheless being ensured by the communication unit 300; the communication unit 300 carries out - as explained - a "merging function" in this case by further processing the phase-conductor-related and time-related samples U and I provided by the measurement transducers 250 and using them to produce the sampling-time-related messages Ts for forwarding to the station bus 220. For the "merging process", the communication unit 300 is preferably equipped with one or more digital signal processors; such a signal processor is labeled, by way of example, with the reference symbol 500 in figure 2.
In summary, the protective system 200 according to figure 2
thus satisfies the following criteria:
The phase-conductor-related and time-related samples from
the measurement transducers 250 are synchronized in the
microsecond range an account of the use of the IEEE 1588
standard;
a deterministic response is achieved by using the
described real-time Ethernet transmission method with time
synchronization in accordance with IEEE 1588;
there is ring redundancy on account of the full duplex
operation of the two data buses 220 and 240, thus
increasing the fault tolerance;

there is decoupling between the two communication ring
structures 220 and 240, to be precise. ______^^

with regard to decoupled transmission of the digital transducer data from the measurement transducers 250 to the superordinate control system 210;
both data buses 220 and 240 have integrated switch functionality, for example Ethernet switch functionality.
On account of the features mentioned, the protective system 200
makes it possible to transmit the samples from the measurement
transducers 250, both at the process bus level and at the
station bus level, in a manner that is synchronized for each
sampling time. The samples are synchronized at the station bus
level across all fields and are synchronized at the process bus
level inside a field using all respective measurement points or
measurement transducers. In this case, synchronization between
the station bus 220 and the respective process bus 240 is
ensured by the communication unit 300 of the measurement and/or
protective device 230 which connects the two data buses 220 and
24 0,-

List of reference symbols
10 Measurement and/or protective device
20 Data line
25 Ethernet switch
3 0 Superordinate data bus
40 Data line
50 Data line
60 Merging unit
7 0 Merging unit
100 Measurement transducer
200 Protective system
210 Superordinate control system
220 Station bus
230 Measurement and/or protective device
240 Process bus
250 Measurement transducer
300 Communication unit
310 3-port network connection
320 Further 3-port network connection
330, 340 External ports of one 3-port network connection
350 An interface
360 Internal port of one 3-port network connection
400, 410 External ports of the further 3-port network
connection
420 Further interface
43 0 Internal port of the further 3-port network
connection
500 Signal processor
U, I Current and voltage samples
fi Synchronization pulse
Ts, Tp Messages

WE CLAIM
1. Measurement or protective device (230)
- having an interface (350) for establishing a connection to at least one measurement transducer (250) and having a further interface (420) for connection to a superordinate data bus (220),
- the measurement or protective device (230) containing a communication unit (300) which is connected to the two interfaces (350, 420), characterized in that the communication unit (300) can be directly connected to the measurement transducer (250) by means of one interface (350) for receiving sample messages (Tp) containing phase-conductor-related samples (U, I) and can be connected to the superordinate data bus (220) by means of the further interface (420) for transmitting sampling-time-related messages (Ts) and uses phase-conductor-related samples (U, I) from the measurement transducer (250) to form sampling-time-related messages (Ts) and transmits the latter to the superordinate data bus (220).

2. Measurement or protective device as claimed in Claim 1, wherein the two interfaces form data bus interfaces.
3. Measurement or protective device as claimed in Claim 2, wherein,
- the measurement or protective device has two 3-port network connections
(310, 320) each having two external ports and one internal port,

- the two external ports (330, 340) of one 3-port network connection (320) forming one interface (350) and the two external ports (400, 410) of the other 3-port network connection (320) forming the other interface (420), and - the two internal ports (360, 430) of the two 3-port network connections being connected to the communication unit (300).
4. Measurement or protective device as claimed in Claim 3, wherein the two external ports (330, 340) of one network connection (320) are suitable for connection to a process bus (240) and the two external ports (400, 410) of the other network connection (320) are suitable for connection to a station bus (220).
5. Measurement or protective device as claimed in one of the preceding claims, wherein the communication unit and the two network connections are integrated in a freely programmable gate array.
6. Measurement or protective device as claimed in one of Claims 3 to 5, wherein the communication unit uses the phase-conductor-related samples applied to the internal port of one network connection to form sampling-time-related messages and outputs the latter to the internal port of the other network connection.
7. Measurement or protective device as claimed in Claim 6, wherein the communication unit enabled to reduce the sampling rate of the phase-conductor-related samples applied to* the internal port of one network connection.

8. Measurement or protective device as claimed in Claim 7, wherein the communication unit reduces the sampling rate of the phase-conductor-related samples applied to the internal port of one network connection by using only every n-th sample further and leaving all remaining samples out of consideration, n being greater than two.
9. Measurement or protective device as claimed in Claim 6, wherein the communication unit uses the phase-conductor-related samples applied to the internal port of one network connection to form pointer values and uses the latter to form the sampling-time-related messages.
10. Measurement or protective device as claimed in Claims 3 to 9, wherein the communication unit subjects the phase-conductor-related samples applied to the internal port of one network connection to a renewed sampling operation.
11. Measurement or protective device as claimed in 10, wherein the communication unit uses the phase-conductor-related samples applied to the internal port of one network connection to reconstruct the temporal profile of the electrical signal sampled by the measurement transducer (250), resamples the reconstructed signal at a second sampling rate which differs from the original sampling rate, uses these new samples formed in this manner to form the messages and outputs these messages (Ts) at the internal port of the other network connection.
12. Measurement or protective device as claimed in one of the preceding

claims, wherein the communication unit has a digital signal processor (500) for forming the sampling-time-related messages (Ts).
13. Measurement or protective device as claimed in one of the preceding claims, wherein one interface and/or the further interface operate(s) such that it/they is/are compatible with the real-time Ethernet standard, the IEC 61850 standard and/or the IEEE 1588 standard.
14. Measurement or protective device as claimed in one of the preceding claims, wherein with regard to the information relating to the samples, the communication unit forms the messages in accordance with the rules of the IEC 61850 standard.
15. Measurement or protective device as claimed in one of the preceding claims, wherein with regard to all other information, apart from the information relating to the samples, the communication unit forms the messages in accordance with the IEC 61850-8-1 standard.
16. Measurement or protective device as claimed in one of the preceding claims, wherein the two network connections are suitable for connection to a real-time Ethernet ring.
17. Protective system (200) having a measurement or protective device (230) as claimed in one of the preceding claims, a measurement transducer (250) and a superordinate data bus (220), characterized in that

- the two external ports (330, 340) of one 3-port network connection (310) of the measurement or protective device (230) are connected to the measurement transducer (250) by means of a process bus (240), and the two external ports (400, 410) of another 3-port network connection (320) of the measurement or protective device (230) are connected to a station bus (220) as a superordinate data bus.



ABSTRACT


TITLE"MEASUREMENT OR PROTECTIVE DEVICE FOR ELECTRICAL APPLIANCES"
The invention relates to the measurement or protective device (230) having an interface (350) for establishing a connection to at least one measurement transducer (250) and having a further interface (420) for connection to a superordinate data bus (220), the measurement or protective device (230) containing a communication unit (3007 which is connected to the two interfaces (350, 420), characterized in that the communication unit (300) can be directly connected to the measurement transducer (250) by means of one interface (350) for receiving sample messages (Tp) containing phase-conductor-related samples (U, I) and can be connected to the superordinate data bus (220) by means of the further interface (420) for transmitting sampling-time-related messages (Ts) and uses phase-conductor-related samples (U, I) from the measurement transducer (250) to form sampling-time-related messages (Ts) and transmits the latter to the superordinate data bus (220).

Documents:

04461-kolnp-2007-abstract.pdf

04461-kolnp-2007-claims.pdf

04461-kolnp-2007-correspondence others.pdf

04461-kolnp-2007-description complete.pdf

04461-kolnp-2007-drawings.pdf

04461-kolnp-2007-form 1.pdf

04461-kolnp-2007-form 2.pdf

04461-kolnp-2007-form 3.pdf

04461-kolnp-2007-form 5.pdf

04461-kolnp-2007-gpa.pdf

04461-kolnp-2007-international publication.pdf

04461-kolnp-2007-international search report.pdf

04461-kolnp-2007-pct request form.pdf

4461-KOLNP-2007-(08-11-2012)-ABSTRACT.pdf

4461-KOLNP-2007-(08-11-2012)-ANNEXURE TO FORM 3.pdf

4461-KOLNP-2007-(08-11-2012)-CLAIMS.pdf

4461-KOLNP-2007-(08-11-2012)-CORRESPONDENCE.pdf

4461-KOLNP-2007-(08-11-2012)-DESCRIPTION (COMPLETE).pdf

4461-KOLNP-2007-(08-11-2012)-DRAWINGS.pdf

4461-KOLNP-2007-(08-11-2012)-FORM-1.pdf

4461-KOLNP-2007-(08-11-2012)-FORM-2.pdf

4461-KOLNP-2007-(08-11-2012)-OTHERS.pdf

4461-KOLNP-2007-(08-11-2012)-PETITION UNDER RULE 137.pdf

4461-KOLNP-2007-CANCELLED PAGES.pdf

4461-KOLNP-2007-CORRESPONDENCE 1.1.pdf

4461-KOLNP-2007-CORRESPONDENCE 1.2.pdf

4461-KOLNP-2007-CORRESPONDENCE OTHERS 1.2.pdf

4461-KOLNP-2007-EXAMINATION REPORT.pdf

4461-KOLNP-2007-FORM 18.pdf

4461-KOLNP-2007-GPA.pdf

4461-KOLNP-2007-GRANTED-ABSTRACT.pdf

4461-KOLNP-2007-GRANTED-CLAIMS.pdf

4461-KOLNP-2007-GRANTED-DESCRIPTION (COMPLETE).pdf

4461-KOLNP-2007-GRANTED-DRAWINGS.pdf

4461-KOLNP-2007-GRANTED-FORM 1.pdf

4461-KOLNP-2007-GRANTED-FORM 2.pdf

4461-KOLNP-2007-GRANTED-FORM 3.pdf

4461-KOLNP-2007-GRANTED-FORM 5.pdf

4461-KOLNP-2007-GRANTED-SPECIFICATION-COMPLETE.pdf

4461-KOLNP-2007-INTERNATIONAL PUBLICATION.pdf

4461-KOLNP-2007-INTERNATIONAL SEARCH REPORT & OTHERS.pdf

4461-KOLNP-2007-OTHERS.pdf

4461-KOLNP-2007-REPLY TO EXAMINATION REPORT.pdf

abstract-04461-kolnp-2007.jpg


Patent Number 257754
Indian Patent Application Number 4461/KOLNP/2007
PG Journal Number 44/2013
Publication Date 01-Nov-2013
Grant Date 31-Oct-2013
Date of Filing 20-Nov-2007
Name of Patentee SIEMENS AKTIENGESELLSCHAFT
Applicant Address WITTELSBACHERPLATZ 2, 80333 MUNCHEN
Inventors:
# Inventor's Name Inventor's Address
1 GERHARD LANG VOGELWEIDE 15, 14557 WILHELMSHORST
2 GOTZ NEUMANN GEITELSTEIG 7 13627 BERLIN
PCT International Classification Number H04L 12/40
PCT International Application Number PCT/DE2005/001004
PCT International Filing date 2005-06-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA