Title of Invention

A METHOD OF MAKING COMPOSITION OF SPRAY-DRIED PARTICLES

Abstract 1. A composition of spray-dried particles, comprising: a) a mixture or reaction product of i) a magnesium halide; ii) a solvent; and iii) a transition metal compound wherein the transition metal is selected from Groups 3-10 and Lanthanides; and a substantially spherical inert filler particle having an average size of 1 to 12 ^m.
Full Text SPRAY-DRIED POLYMERIZATION CATALYST AND POLYMERIZATION PROCESSES EMPLOYING SAME
[1] This invention relates to catalyst compositions, methods of making such compositions, and methods for making polymers therefrom.
[2] The properties of polymers depend upon the properties of the catalyst used in their preparation. In catalysts for gaseous polymerization control of the shapes, sizes, and the size distribution of the catalyst is important to ensure a good commercial workability. This is particularly important in gas phase and slurry polymerization. For example, in order to produce copolymers of 1000 |im in size, a catalyst particle size of 30 fim to 50 fim is generally preferred for use in the polymerization. In the copolymerization of olefins, a catalyst with a well-developed system of pores in its structure is often also advantageous. Additionally, a catalyst should have good mechanical properties to resist wear during the polymerization process and to ensure a good bulk density of the product polymer. One important aspect relating to the development of a polymerization catalyst is, therefore, the provision of a process for production of a catalyst that allows control and adjustment of the structures and sizes of the catalyst particles and particle size distribution while remaining a fairly simple process.
[3] Spray-drying is one technique for the simple assembly and shaping of polymerization catalysts. In spray-drying, liquid droplets containing dissolved and/or suspended materials are ejected from a flywheel or a nozzle. The solvent evaporates leaving behind a solid residue. The resulting particle size and shape is related to the characteristics of the droplets formed in the spraying process. Structural reorganization of the particle can be influenced by changes in volume and size of the droplets. Depending on conditions of the spray drying process, either large, small, or aggregated particles may be obtained. The conditions may also produce particles that are compositionally uniform or mixtures of solution components. The use of inert fillers in spray-drying can help control shape and composition of the particles.
[4] Numerous spray-dried olefin polymerization catalysts containing magnesium and titanium and production processes utilizing them have been reported. Inert fillers are sometimes used to control the shape of the resulting catalyst precursor or catalyst support by providing bulk to the solid composition. However, fillers that are small compared to the dimension of the sprayed droplet or dried particle are used because relatively large fillers lead to the formation undesirable amounts of very small catalyst particles. Such small catalyst particles contaminate the resin with particulate residues that lead to gel formation. While the small fillers reduce problems with gel formation, when they are formed into larger catalyst particles, diffusion related problems arise during subsequent activation processes and during the polymerization process. For instance, during the activation process, the cocatalyst tends to activate only a shallow region of the particle near the particle surface because the cocatalyst is unable to penetrate the interior regions of the particles. These relatively large and dense particles also inhibit the diffusion of monomers into the interior region catalyst particles during the polymerization process.
(05) The aforementioned need is fulfilled by one or more aspects of the invention disclosed herein. In one aspect, the invention relates to a composition of spray-dried particles. The particles comprise a substantially spherical inert filler particle having an average size of 1 to 12 pim.
[06} In another aspect the invention relates to a method of making composition of spray-dried particles. The method includes providing a solution or mixture comprising a reaction product of a magnesium halide, a solvent, and a transition metal compound wherein the transition metal is selected from Groups 3-10 and Lanthanides; contacting the solution with an inert filler comprising substantially spherical particles having an average size of 1 to 12 Jim to form a slurry, and spray-drying the slurry to form a spray-dried particle.
In still another aspect the invention relates to a method of making a polymer. The method of making the polymer includes reacting at least one olefin monomer in the presence of a spray-dried catalyst particle comprising a mixture or reaction product of a magnesium halide, a solvent, and a transition metal compound wherein the transition metal is selected from Groups 3-10 and Lanthanides; a substantially spherical inert filler having an average size of 1 to 12 |im, and a cocatalyst.
BRIEF DESCRIPTION OF THE DRAWINGS
[7] FIGURE 1 is a graphical illustration of the pore diameter and volume of the filler in embodiments of the catalyst composition.
[8] FIGURE 2 illustrates the effect of different filler compositions on the droplet drying rate of a spray-drying process.
[9] FIGURE 3 illustrates a fluidized bed reaction system useful with embodiments of the inventive catalysts.
[10] FIGURE 4 illustrates the scanning electron microscopy (SEM) of an
embodiment of the catalyst and a fluid bed resin made therefrom.
DESCRIPTION OF EMBODIMENTS OF THE INVENTION
[11] A composition of spray-dried particles comprising 1) a mixture or reaction product of a magnesium halide, a solvent, and a transition metal compound wherein the transition metal is selected from Groups 3-10 and Lanthanides; and 2) a substantially spherical inert filler having an average size ranging from 1 fun to 12 }im is disclosed In some embodiments the mixture or reaction product includes an electron donor compound. In some other embodiments, the composition includes one electron donor compound and is substantially free of other electron donor compounds. Catalysts made from such compositions by combination of the precursor with a cocatalyst and an optional Lewis Acid or alkylating agent are disclosed. Methods of making these compositions and polymerization processes are also disclosed.
[12] Some catalysts described herein provide additional versatility to the design of polyolefin catalyst properties using an inert filler having certain properties. Some filler?' are useful due to there ability to effect the rate of droplet drying during spray drying. Others introduce porosity into the spray-dried particle. In some embodiments, spray dried particles include at least 2 filler particles therein. In some instances the fillers improve the cohesiveness of the resultant polymer particle. Still other fillers are relatively large, yet can self-destruct during the subsequent olefin polymerization. In some embodiments, the
[13] In the following description, all numbers disclosed herein are approximate values, regardless whether the word "about" or "approximately" is used in connection therewith. They may vary by up to 1 percent, 2 percent, 5 percent, or sometimes 10 to 20 percent. Whenever a numerical range with a lower limit, RL, and an upper limit RU, is disclosed, any number R falling within the range is specifically disclosed. In particular, the following numbers R within the range are specifically disclosed: R=RL+k*(RU-RL), where k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, that is k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, ..., 50 percent, 51 percent, 52 percent,..., 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two numbers, R, as defined above is also specifically disclosed.
[14] Any reference herein to "electron donor compounds" refers to compounds that modify the solubility of a magnesium halide in the electron donor solvent so that the solubility does not decrease over any temperature interval up to the boiling point of the electron donor solvent. As used herein, "electron donor compounds" do not include "solvents" as they are defined below, even when such solvents have electron donor character. Exemplary electron donor compounds include alcohols, thiols, weakly donating amines and phosphines. As used herein, the term "substantially free of other electron donor compounds" means that other "electron donor compounds," as defined herein, are not present at concentrations higher than levels normally found as impurities in solvent-grade supplies of such compounds. Thus, compositions having a solvent with electron donating characteristics and an "electron donor compound" are considered to be "substantially free of other electron donor compounds." In some embodiments, "substantially free of' means less than 1 percent, 0.1 percent, 0.01 percent, or 0.001 percent.
[15J Useful solvents include any ether, ketone, or ester compound. Whik such solvents possess electron donor characteristics, any reference herein to a "solves" or "solvents" does not include those compounds defined above as "electron donor compounds." Thus, compositions that are "substantially free of other electron donor compounds * may include one or more "solvents."
[16] As used herein the term "ether" is defined as any compound of the formula R- 0-R\ where R and R' are substituted or unsubstituted hydrocarbyl groups. In some cases, R and R' are the same. Exemplary, but not limiting, symmetric ethers are diethyl ether, diisopropyl ether, and di-n-butyl ether. Exemplary nonsymmetric ethers include ethylisopropyl ether and methylbutyl ether. Examples of suitable substituted etheis include, for example, methylallyl ether and ethylvinyl ether. In still other embodiments, R and R' may form a fused ring that may be saturated or unsaturated. One example of such a compound is tetrahydrofuran. Another suitable such cyclic, ether is 2-methyl tetrahydrofuran. Again, specifically enumerated compounds are intended only as examples of types of compounds that are suitable, however, any compound having ether R-O-R' functionality is envisioned.
[17] As used herein, the term "ketone" is intended to indicate any compound having the formula R(C=0)R'. R and R' may be individually substituted or unsubstituted hydrocarbyl groups and as otherwise described above with reference to ethers. Exemplary ketones are acetone, methylethyl ketone, cyclohexanone, cyclopentylmethyl ketone. Halogenated ketones, such as 3-bromo-4-heptanone or 2-chlorocyclopentanone may also be suitable. Other suitable ketones may include other functional groups such as unsaturations, as in allylmethyl ketone. Each of these compounds fits the formula R(C=0)R' wherein the carbon atom of the carbonyl group of the molecule forms bonds to two other carbon atoms.
[18] Useful esters include any compound of the general formula R(C=O)0R'. In such compounds the carbon atom of the carbonyl group forms one bond to a carbon atom and another bond to an oxygen atom. R and R' are individually selected from substituted or unsubstituted hydrocarbyl groups and may be the same or different. In some embodiments, the ester include alkyl esters of aliphatic and aromatic carboxylic acids. Cyclic esters, saturated esters and halogenated esters are also included in this group. Exemplary, but non- limiting, esters include methyl acetate, ethyl acetate, ethyl propionate, methyl propionate, and ethyl benzoate. Again, specifically enumerated compounds are intended only as examples of types of compounds that are suitable, Any compound meeting the general lormula R(C=0)0R' functionality is envisioned.
[19] Any suitable solvent may be contacted with the magnesium source by Itrectly mixing as magnesium halide with the solvent. In some embodiments, the magnesiur halide is magnesium chloride; however, magnesium bromine and magnesium iodine may ilso be used. Useful sources of the halides are magnesium halides, such as MgCl2, MgBr2, '»igl2, or mixed magnesium halides such as MgClI, MgClBr, and MgBrl. In some embodim. ;ts, the magnesium halide is added to the solvent in anhydrous form. In other embodiments, the magnesium halide is added in a hydrated form.
[20] Generally, the solvent is provided in large excess with respect to Us first coordination environment of magnesium. In some embodiments, the ratio of scl ent to magnesium is 100 to 1, in other embodiments the ratio may be even larger. In ycf other embodiments, the solvent is present at a ratio of from at least 1.0, at least 2.0, at leac: 5.0 at least 10 or at least 20 moles of solvent per mole of magnesium. In some embodiments, two or more solvents may be employed.
[21] In some embodiments, an electron donor compound is added to the mixture of the magnesium halide and the solvent. As used herein to "electron donor compounds" refers to compounds that modify the solubility of a magnesium halide in the electron donor solvent so that the solubility does not decrease over any temperature interval up to the boiling point of the electron donor solvent. As used herein "electron donor compounds" do not include "solvents" as they are defined below, even when such solvents have electron donor character. Some mixtures of the magnesium halide and the solvent that include an electron donor compound are substantially free of other electron donor compounds. As used herein the term "substantially free of other electron donor compounds" means that other "electron donor compounds," as defined herein, are not present at concentrations higher than levels normally found as impurities in solvent-grade supplies of such compounds. Thus, compositions having a solvent with electron donating characteristics and an "electron donor compound" are considered to be "substantially free of other electron donor compounds." In some embodiments, "substantially free of' means less than 1 percent, 0.1 percent, 0.01 percent or 0.001 percent.
[22] The electron donor compound may be added to the mixture of the solvent and the magnesium halide by any suitable means. Preferably, the electron donor compound is directly added to the mixture. In some embodiments, the electron donor compound is an alcohol, thiol, weakly donating amine, or weakly donating phosphine. The alcohol can be any one chemical compound having a general formula ROH. R may be any substituted or unsubstituted hydrocarbyl group. In some embodiments, the alcohol is an aliphatic alcohol with from 1 to 25 carbon atoms. In some embodiments, the alcohol is a monodentate alcohol. As used herein the term "monodentate alcohol" refers to those in which R may be provided that the substitution does not result in a molecule with more than one hydroxy! (OH) functionality that coordinates to the magnesium atom in solution. Exemplary such alcohols may include methanol, ethanol, propanol, isopropanol, and butanol. Alcohols containing a longer chain aliphatic group such as 2-ethyl hexanol or 1 -dodecanol also form solutions in which the solubility of the magnesium halide increases with temperature. Alcohols with more carbon atoms are also useful. The alcohol may also be a cyclic alcohol such as cyclohexanol or an aromatic alcohol such as phenol or t-butyl phenol.
[23] The addition of small amounts of one electron donor compound (other than the solvent) to mixtures containing the solvent and a magnesium halide produces a magnesium- containing composition whose solubility increases with temperature, and whose solubility at the boiling point of solvents is relatively higher than that of magnesium halide/solvent adducts where no electron donor compound is present. The solubility is also higher than that of comparable magnesium halide/solvent adducts having additional kinds of electron donor compounds. It is believed that the addition of small amounts of one electron donor to the solvent in the presence of a magnesium halide suppresses the conversion of soluble species to polymeric adducts. In some embodiments, the soluble species follow the formula
MgXx(ED)ySz
wherein x is generally 2, satisfying the oxidation state of magnesium and y is less than 4 and x+y+z is less than or equal to 6. Low concentrations of alcohol allow the formation of solutions with previously unavailable concentrations of magnesium halides present in solution. The increased concentration of dissolved magnesium halide allows the preparation of more desirable polymerization catalysts because more magnesium halide may be incorporated into the catalyst. In some embodiments, y is about 0.5, 0.75, 1, 1.5, 1.75, or 1.9 or less. In some other embodiments y is about 0.1, 0.25. 0.3 or 0.4. Such species generally have solubilities in the solvent that do not decrease from about 30°C up to the boiling point of the solvent. Where the solvent is THF, the concentration of magnesium halide in the solution may be up to five times higher than in comparable solutions lacking an electron donor compound, especially where the electron donor compound is an alcohol. However, other embodiments wherein the molar ratio of alcohol to magnesium is higher than 1.9, such as about 2.0, about 2.1, about 2.2, about 2.5, and about 3.0 may also be useful. Such compositions are disclosed in copending applications to Burkhard E. Wagner, et a';., entitled "Enhanced Solubility of Magnesium Halides and Catalysts and Polymerization Processes Employing Same", filed on July 15, 2002; "Supported Polymerization Catalyst", filed on July 15, 2002; and "Spray-Dried Polymerization Catalyst and Polymerization Processes Employing Same", filed on July 15, 2002.
[24] Useful catalyst precursors are formed by mixing the magnesium-containing solution with a transition metal compound. Suitable transition metal compounds include compounds of Group III-VI transition metals. In some embodiments the transition metal is titanium, zirconium or hafnium. In other embodiments, the metal is vanadium, niobium, or tantalum. In certain embodiments, other transition metals, such as later transition metals and Lanthanides, may be suitable.
[25] The transition metal compound may be supplied in a variety of compositions. Some embodiments employ titanium compounds having the general formula wherein titanium is in the +4 formal oxidation state. Titanium (IV) compounds useful in preparation of the catalyst components are titanium halides and haloalcoholtes following the formula Ti(OR)AX4-A wherein R is individually a substituted or unsubstituted hydrocarbyl group having 1 to 25 carbon atoms group, such as methoxy, ethoxy, butoxy, hexoxy, phenoxy, decoxy, napthoxy, or dodecoxy, X is any halide, and a may range from 0 to 4. Mixtures of titanium compounds can be employed if desired.
[26] In certain embodiments, the transition metal compound is selected from titanium compounds halides and haloalcoholates having 1 to 8 carbon atoms per alcohol ate group. Examples of such compounds include TiCU, TiBr4, Til4, Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC4H9)Cl3, Ti(OC6H5)Cl3, Ti(OC6H13)Br3, Ti-(OQHI7)Cl3, Ti(OCH3)2Br2, Ti(OC2H5)2Cl2, Ti(OC6H13)2Cl2, Ti(OCgHI7)2Br2, Ti(OCH3)3Br, Ti(OC2H5)3Cl, Ti(OC4H9)3Cl, Ti(OC6Hi3)3Br, and Ti(OC8H,7)3Cl.
[27] In other embodiments, the titanium compound is a reduced titanium halide. Useful reduced titanium halides follow the formula TiClx wherein x ranges from greater than
0 to less than 4. In some embodiments the reduced titanium compound is TiClj, TiB^ or Til3.
[28] The quantity of a transition metal compound or mixture of transition metal compounds, used in preparing catalysts precursors may vary widely depending on the type of catalyst desired. In some embodiments, the molar ratio of magnesium to transition metal compound may be as high as about 56, preferably 20 to 30-. In other embodiments, the molar ratio of magnesium to transition metal compound is as low as about 0.5. 'Generally, molar ratios of magnesium to transition metal compound of 3 to 6 where the transition metal is titanium are preferred.
[29] Forming a polymerization catalyst precursor once the components are combined may be performed in any manner. Mixing of the magnesium halide component with the transition metal compound may be performed at any suitable temperature. In some embodiments, the components are combined at a temperature ranging from -10°C to 200°C. In other embodiments, they may be contacted at 0°C to 160°C. In other embodiments, the temperature may be -50°C to 50°C. Preferably, the temperature should be below the boiling point of the solvent. In some embodiments, the magnesium halide solution and the titanium compound may be mixed for from 5 minutes to 24 hours. In other embodiments, 30 minutes to 5 hours are sufficient to achieve the desired concentration of magnesium in solution. In some embodiments, the combination of the magnesium halide solution and the transition metal component forms a reaction product that may contain a variety of species including the magnesium halide component and the transition metal compound.
[30] In certain embodiments, the catalyst precursors comprise a composition of the formula
[Mg(ROH)r]mTi (OR)nXp[ S]q wherein ROH comprises a monofunctional, linear or branched alcohol having between one and 25 carbon atoms; R is R' or COR' wherein each R' is individually an aliphatic hydrocarbon radical having between one and fourteen carbon atoms or an aromatic hydrocarbon radical having between one and 14 carbon atoms; X is individually CI, Br, or I; S is selected from the group consisting of alkyl esters of aliphatic and aromatic carboxylic acids, aliphatic ethers, cyclic ether, and aliphatic ketones; m ranges from 0.5 to 56; n is 0, 1, or 2; p ranges from 4 to 116; q ranges from 2 to 85; and r ranges from 0.1 to 1.9.
[31] Catalyst precursor compositions are contacted with a substantially spherical filler to form a catalyst precursor composition. Typically a solution containing the mixture or reaction product of the magnesium-halide composition and the titanium source is contacted
with the filler. The term "substantially spherical" means, as used herein, that particles have an average aspect ratio of 1.0 to 2.0. Aspect ratio is defined herein as the ratio of the largest linear dimension of a particle to the smallest linear dimension of the particle. Aspect ratios may be determined from Scanning Electron Micrograph (SEM) images. Of course, this definition is intended to include spherical particles which by definition have an aspect ratio of 1.0. In some embodiments, the filler particles have a average aspect ratio of about 1.8, 1.6, 1.4, or 1.2.
[32] In addition to being substantially spherical, suitable fillers have an average size ranging from 1 jim to 12 (im. Any size of filler within this range may be suitable depending on the desired application. In some embodiments the average filler size is 1 to 20 percent of the size of the final spray dried particle. In certain embodiments, the filler has a diameter about 2 percent, about 3 percent, about 4 percent, about 5 percent, about 10 percent, or about 15 percent of the average diameter of the spray-dried particle. Such relatively large filler particles do not pack as densely as smaller particles. Thus, individual filler particles are separated by inter-particle voids in the spray-dried particles. These voids can be left partially unfilled by using low concentrations of the catalyst composition in the spray drying process. However, a sufficient amount of catalyst composition should be used to avoid ths formation of either very small particles that average less than 1 nm in size or agglomerates that are aggregation of particles that are less than 1 jim in size. In other embodiments, such voids may be filled by the catalyst composition. Particles with large and round fillers or irregularly shaped fillers generally have relatively higher void spaces due to less efficient packing.
[33] Fillers will also have a particle size distribution. As used herein, the terms "Dio", "D50" and "D%" indicate the respective percentiles of log normal particle size distribution determined by means of a Malvern® particle size analyzer using a hexane solvent. Thus, particles having a D50 of 12 jim have a median particle size of 12 |im. A D90 of 18 jam indicates that 90 percent of the particles have a particle size of less than 18 |im, and a D|0 of 8 jim indicates that 10 percent of the particles have a particle size of less than 8 fim. The width or narrowness of a particle size distribution can be given by its span. The span is defined as (D9O-D,O)/(D5O).
[34] Suitable fillers typically have a Dio ranging from 1.5 to 3.0. In some embodiments, the filler may have a Dio that is outside this range. In some embodiments D|0 is 1.8 pm, 1.9 ^m, 2.0 j^m, or 2.20 nm. In other embodiments, Dio may be about 2.4 jam, 2.6 pm, or about 2.8 pm. Typically the filler will also have a D50 value ranging from 1 nm to 12 jam although in some embodiments the D5q value may fall outside this range. In other embodiments, D50 is about 3.3 ^m, about 3.6 jam, about 3.9 ^m, or about 4.2 jam. In yet other embodiments, the D5o value is about 4.4 (jm, about 4.7^m, about 5.0 |im, or about 6.0 m. The filler will also have a D90 value that is typically in the range of 6 ^m to 12 pm. In some embodiments, D% is about 6.5 nm, 7.0, 7.5 ^m, or 8.0. In other embodiments, D90 is about 8.2, 8.4, 8.6, 8.8 or about 9.0. In still other embodiments, the filler has a D90 value of about 9.5, 10.0, or 11.0 pm. Suitable fillers will typically also have a span of 1.0 to 3.0. In some embodiments, the span is about 1.2, about 1.3, about 1.4, or about 1.5. In other embodiments, the span of the filler particles is about 1.6, or about 1.8, about 2.0, about 2.2, or about 2.5.
[35] The size of the filler particles in the resulting spray-dried catalyst particles generally follows the size distribution inherent to the filler material. However, the size distribution of the filler incorporated into the spray-dried particle may also be determined experimentally. To experimentally determine the size distribution of the fillers incorporated, the spray-dried particle may be exposed to a solvent in which the catalyst components is soluble. Useful solvents include electron donating solvents such as THF and methyl-THF. Once the catalyst components have dissolved the remaining material can be isolated and microscopically examined.
[36] Suitable fillers are inert to the other components of the catalyst <..-.. mposition and to the other active components of reaction system. any solid particulate composition that is inert catalyst system does not deletencusly affect polymerization can be employed as a filler in embodiments invention. such compounds organic or inorganic include but are limited silicas titanium dioxide zinc oxide magnesium carbonate carbon calcium carbonate. some fumed hydrophobic silica imparts relatively high viscosity slurry good strength spray-dried particles. two more fillers may used.> [37] Some filler particles have porosity in their own right. Porosity of the filler may allow better diffusion and facilitate the destruction of the catalyst particle during polymerization. As used herein, "porosity" means that the filler particles have a cumulative pore volume of all pores discemable by either nitrogen desorption that is 1.5 to 2.0 ml/g. In some embodiments, the filler has a total pore volume of about 1.6 ml/g. The cumulative pore volume is calculated with reference to the nitrogen desorption isotherm (assuming cylindrical pores by the B.E.T. technique as described by S. Brunauer, P. Emmet, and E. Teller in the Journal of the American Chemical Society, 60, pp 209-319 (1939) or according to ASTM
Standard D3663-99. Degassing was performed at room temperature. Generally, heating is not needed or should be avoided. The filler may also have a surface area ranging from 25 m2/g to 200m2/g. In some embodiments, the filler has a surface area of about 50 m2/g, about 75 m2/g or about 100m2/g. Surface area may also be measured using the B.E.T. technique.
[38] In some embodiments the filler has a pore mode ranging from 50* to 600 •. The term "pore mode" as used herein means the mean pore diameter corresponding to the maximum in the log differential pore volume as a function'of the differential of the pore diameter. In some embodiments, the filler has a pore mode of about 225 A, about 250 A, about 275, A about 300 A, about 350 A, about 400 A or about 500 A. In some embodiments, the filler may have an intrinsic chemical structure with such porosity or pore mode. In other embodiments, a filler having an inherently dense structure may be processed to produce filler particles the desired porosity or pore mode. In some embodiments, the filler particles have a structure in which the log differential pore volume has a value of about 7, about 10, about 12, or about 15 at the value of the pore mode. In other embodiments this value is about 20, about 30, or about 50.
[39] Figure 1 shows the pore mode of an porous filler of an exemplary embodiment. The pore mode was determined using the B.E.T. technique on a Quantachrome Nova 2000 instrument according to ASTM D 4641-94 assuming a cylindrical pcre model and measured from the data obtained from the desorption branch. As Figure 1 indicates, this filler has a pore mode of about 280 A. In some fillers described herein, at least about lOpercent to at least about 20percent of the porosity results from pores having a diameter of about 200 A. In other embodiments, at least 25 percent to at least 70 percent of the porosity results from pores with a diameter of about 200 A. Such porosity and pore modes allow the catalyst composition to penetrate into the interior of the filler particle. During subsequent polymerization, the filler particle may shatter; thereby, inhibiting the formation of gels and weak areas of the resulting polymer.
[40] Some suitable fillers include be a silica, such as Gasil™, or an aluminum oxide, such as fly ash or Zeeospheres™, available from 3M Specialty Materials, 3M Center, Building 223-6S-04, St. Paul, MN 55144-1000. However, any porous material that is otherwise inert to the polymerization and the catalyst may be used. In some embodiments, two or more fillers may be used. The particulate compound or composition employed as filler should have an average particle size ranging from 10 ^m to 60 |im. In some embodiments the average particle size of the filler is 15 pm or 25 urn. In other embodiments, the average size of the filler is about 35 pm or about 45 jam.
[41] Whatever the choice of filler, it should be dry, that is free of absorbed water. Drying of the filler is carried out by heating it at a temperature below the sintering or melting point of the filler material. Typically, temperatures of at least 100°C are used. Lower temperatures may be used where prolonged drying times are acceptable or where the support has a low melting or sintering temperature. Inorganic filler materials are typically dried at a temperature of about 200°C-800°C. In addition, the filler material may be optionally treated with about 1 to 8 weight percent of one or more of the Lewis acids, such as aluminum alkyl compounds, to facilitate removal of the absorbed water. This modification of the filler by the aluminum alkyl compounds also provides the catalyst composition with increased activity and improves polymer particle morphology of the resulting ethylene polymers.
[42] Once the dried filler is prepared, it is combined with the catalyst precursor composition solution or a slurry of the catalyst precursor composition to produce a slurry suitable for spray drying. Suitable slurries include, but are not limited to, those slurries including a filler that comprises from 1 percent to 95 percent by weight of the catalyst composition. In some embodiments, the filler comprises about 30 percent, about 40 percent, about 50 percent or about 60 percent by weight of the catalyst composition When spray dried, such slurries produce discrete catalyst particles in which filler is present in an amount of from 10 percent percent by weight to about 95 percent by weight of the catalyst particle. In some embodiments, the filler is about 10 percent or 20 percent by weight of the spray dried catalyst particle. In other embodiments, the filler may be about 30 percent, about 40 percent, about 50 percent, or about 60 percent by weight of the spray dried catalyst particle.
[43] Spray drying may be accomplished by any suitable technique. However, the catalysts described herein are not limited to those obtained by spray-drying. Exemplary techniques for spray drying are disclosed in U.S. Patent No.'s 4,293,673 and 4,728,705. In embodiments of the invention, spray-drying is typically accomplished by admixing a solution or slurry of the magnesium complex and titanium compound with a suitable filler. When mixing the solution or slurry with the filler, the resulting mixture may be heated and then atomized by means of a suitable atomizing device to form discrete approximately spherically shaped particles. Atomization is usually effected by passing the slurry through the atomizer together with an inert drying gas. An atomizing nozzle or a centrifugal high speed disc can be employed to effect atomization. The volumetric flow of drying gas is considerably higher than volumetric flow of the slurry to effect atomization of the slurry and removal of excess electron donor compound and other solvent. The drying gas should be nonreactive under the conditions employed during atomization. Suitable gases include nitrogen and argon.
However, any other gas may be used so long as it is nonreactive and performs the desired drying of the catalyst. Generally, the drying gas is heated to a temperature less than the boiling point of the electron donor or the solvent. In some embodiments, the drying gas is heated to a temperature greater than the boiling point of the electron donor compound or solvent. In some embodiments, the drying gas is heated to about 200°C to facilitate removal of excess electron donor. If the volumetric flow of drying gas is maintained at a very high level, it is possible to employ temperatures below the boiling point of the electron donor compound. In some embodiments, the atomization nozzle pressure is about 1 psig, about 2 psig, about 5 psig, about 10 psig, about 25 psig, or about 50 psig. In other embodiments the atomization pressure is about 100 psig, 150 psig, or about 200 psig. In centrifugal atomization, the atomizer wheel diameter is typically 90 mm to 180 mm. Wheel speed is adjusted to control particle size. Typical wheel speeds are from 8,000 to 24,000 rpm, although higher or lower speed scan be used if needed to obtain the desired particle size.
[44] Of course, one skilled in the art will appreciate that the concentration of magnesium in the droplet formed in the spray-drying procedure will be directly related to the amount of magnesium in the spray-dried particle. Increased amounts of magnesium in the droplets of the spray-drying procedure can act promote adhesion between large filler particles. Of course, other adhesion promotes may be used. Exemplary such compounds include, but are not limited to, aluminas and polymer resins.
[45] A sufficient amount of filler should be admixed with the catalyst composition solution or a slurry the catalyst composition to- produce a slurry suitable for spray drying. Suitable slurries include, but are not limited to, those slurries including a filler that comprises from 1 percent to 95 percent by weight of the catalyst composition.
[46] When spray dried, such slurries produce discrete catalyst particles having at least two filler particles included therein. In some embodiments the spray dried particles have three, four or five filler particles therein. Of course, in other embodiments, higher numbers of filler particles may be present as well. One method for determining the number of filler particles in a spray-dried particle is to embed the particles in a polyethylene resin that is inert to the spray-dried particle. The polyethylene resin can be polished to expose a cross-section of the spray-dried particle. Any suitable form of microscopy may then be employed to visually determine the number of filler particles in the spray-dried particle.
[47] Generally, the filler is present in an amount of from 10 percent percent by weight to about 95 percent percent by weight of the catalyst particle. In some embodiments, the filler is about 10 percent or 20 percent by weight of the spray dried catalyst particle. In
other embodiments, the filler may be about 30 percent, about 40 percent, about 50 percent, or about 60 percent by weight of the spray dried catalyst particle. The spray-dried catalyst particles have an average particle size of 5 fun to 100 pm. In some embodiments, the average particle size is about 10 pm, 20 pm, or 30|im. In other embodiments, the spray-dried particles average about 40 pm, 50 pm, 60 pm, 75 pm, or 90 pm in diameter.
[48] The spray-dried particles are also characterized by their size distribution. In some embodiments, the spray-dried catalyst particles have a span less than about 2.0, less than about 1.8, or less than about 1.6. In other embodiments, the particles have a span that is less than about 1.5, about 1.3, or about 1.1. A narrower span has a smaller percentage of particles that may be too small or too large for a given application. The desirable span varies with the application.
[49] Figure 2 illustrates the effect of different filler compositions on the droplet drying rate of the spray-drying process. As Figure 2 shows, droplets spray-dried having no filler present show a reduction to about 70 percent of the original droplet size in less than about 25 seconds. Droplets having a relatively large filler, such as the synthetic amorphous silicon dioxide Gasil™ 23D available from Crosfield, are about 84 percent of their original size at nearly 50 seconds. However, silica having a smaller particle size, such as Cabosil™, available from Cabot Corporation, is used as the filler, the rate of decrease in droplet size is reduced. At about 125 seconds the droplet is still 75 percent of its original sbe. Figure 2 also illustrates the effect of a combination of Cabosil™ and Gasil™ fillers. Filler compositions comprising 80 percent Gasil™ and 20 percent Cabosil™ display a slower rate of decrease in the droplet size, indicating that combinations of large and small filler particles can have a dramatic effect on the final spray dried particle.
[50] Catalyst compositions that have been formed into a spray-dried particle have lower B.E.T. porosity than samples of the filler particles. In some embodiments , the porosity is about 0.010 ml/g, 0.015 ml/g, 0.025 ml/g. In other embodiments the porosity may be less than or greater than these values. In some embodiments, at least portion of the pores of the filler are occupied by the catalyst component. In other embodiments, greater than 50 percent of the pore volume is occupied by the catalyst component. In some cases, the catalyst component occupies a fraction of the pore volume resulting in a surface area of the particle of about 4.5 m2/g. The presence of the catalyst in the pores of the filler may allow for more uniform distribution of the catalyst in the particle.
[51] In some embodiments, the spray-dried catalyst precursor composition is modified with a Lewis acid. Treatment can be effected by dissolving the Lewis acid
compound(s) in an inert liquid solvent and applying the resulting solution to the spray-dried catalyst precursor composition in any convenient manner, for example, by simply immersing the supported precursor composition in the Lewis acid solution. The solvent for the Lewis acid should be non-polar and capable of dissolving the Lewis acid compound(s) but not the precursor composition. Among the solvents which can be employed to dissolve the Lewis acid compound(s) are hydrocarbon solvents, including substituted hydrocarbon solvents, such as isopentane, hexane, heptane, toluene, xylene, naphtha and aliphatic mineral oils, such as but not limited to Kaydol™, Hydrobrite™: 1000, Hydrobrite™ 550, . Preferably, such solvents are employed together with the Lewis acid compound(s) in such amounts that the resulting solution contains from 1 percent by weight to 25 percent by weight of the Lewis acid compound(s). If desired, the precursor composition may be added to the inert liquid solvent to form a slurry before the Lewis acid compound(s) is dissolved ip. the solvent. Alternatively, the Lewis acid compound(s) can be dissolved in an inert liquid solvent before it is added to the slurry. This technique is particularly suitable when a gaseous compound such as BCI3 is employed. Alternatively, if desired, the Lewis acid can be directly added to the dry precursor composition.
[52] Suitable Lewis acids are reagents which are capable of at least partially removing the electron donor without destroying the inorganic components of the precursor composition. Generally, suitable Lewis acid compounds have the structures RgAlX3_g and RgBX3-g wherein R is R' or OR' or NR'2 wherein R' is a substituted or unsubstituted aliphatic hydrocarbyl group containing 1 to 14 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbyl radical containing from 6 to 14 carbon atoms; X is selected from the group consisting of CI, Br, I, and mixtures thereof; and g in each case is 0-3.
[53] Suitable Lewis acid compounds include tri-n-hexyl aluminum, triethyl aluminum, diethyl aluminum chloride, trimethyl aluminum, dimethyl aluminum chloride, methyl aluminum dichloride, triisobutyl aluminum, tri-n-butyl aluminum, diiosbutyl aluminum chloride, isobutyl aluminum dichloride, (C2Hs)AlCl2, (C2H50)A1C12, (C6HS)A1C12, (C6H50)A1C12, (C6H|30)A1C12, and the corresponding bromine and iodine compounds.
[54] Suitable boron halide compounds include BC13, BBrj, B(C2H5)Cl2, B(OC2H5)Cl2, B(0C2H5)2C1, B(C6H5)C12, B(0C6H5)C12, B(C6H,3)C12, B(0C6H13)C12 and B(OC6H5)2Cl. Bromine and iodine-containing congeners of the above-listed compounds may also be used. The Lewis acids can be used individually or in combinations thereof.
[55] Further details concerning Lewis acids which are suitable for the present purpose can be found in U.S. Patents No.'s 4,354,009 and 4,379,758.
[56] The catalyst precursor is treated with an activating cocatalyst. The precursor may be treated with the cocatalyst at any point after the spray drying operation. In some embodiments, the precursor is activated before any optional treatment with a Lewis acid or alkylating agent. In other embodiments, the precursor is treated with the cocatalyst after the optional Lewis acid or alkylating agent treatment. Typically, cocataiysts follow the formula AlX'd(R")cHe where X' is CI or OR"'. R" and R'" are individually C, to C,4 saturated hydrocarbon radicals; d is 0 to 1.5; e is 0 or 1; and c+d+e - 3. Exemplary cocataiysts include Al(CH3)3, A1(C2H5)3, A1(C2H5)2C1, Al(i-C4H9)3, A1(C2H5)i.5C1,.5) Al(i-C4H9)2H, A1(C6HI3)3, Al(CgH17)3, A1(C2H5)2H, Al(C2H5)2(OC2H5), or mixtures thereof.
[57] In some embodiments, the catalyst precursor is partially activated outside the polymerization reactor with cocatalyst in a hydrocarbon slurry. This partial activation is optional. After contacting the catalyst precursor composition with [58] In some embodiments, especially those in which the catalyst precursor has not been fully activated, additional cocatalyst can be added to the polymerization reactor to further activate the catalyst precursor. In some embodiments, the partially activated catalyst or the catalyst precursor composition and additional cocatalyst are fed into the reactor by separate feed lines. In other embodiments, a mineral oil suspension of the partially activated catalyst and the cocatalyst are supplied in one feed line to the reactor. Alternatively, a mineral oil slurry of the precursor composition can be treated with the cocatalyst, and the resultant slurry can be fed into the reactor. The additional cocatalyst may be sprayed into the reactor in the form of a solution thereof in a hydrocarbon solvent such as isopentane, hexane, or mineral oil. This solution usually contains about 2 to 30 weight percent of the cocatalyst composition. The cocatalyst may also be added to the reactor in solid form, by being absorbed on a support. In some embodiments, the support contains 10 to 50 weight percent of the activator for this purpose. The additional cocatalyst is added to the reactor in such amounts to produce, in the reactor, a total Al/Ti molar ratio of about 10, about 15, about 25, about 45, about 60, about 100, or about 200 to 1. In other embodiments, the ratio may be about 250 or about 400 to 1. The additional amounts of activator compound added to the reactor further activate the supported catalyst. In other embodiments, the catalyst may be activated as described in International Patent Application WO 01/05845.
[59] In some embodiments, catalysts prepared accordingly have improved productivity. Productivity is measured by ashing a sample of a product resin, and determining the weight percent of ash. The ash is essentially composed of the catalyst. The productivity is calculated as pounds of polymer produced per pound of total catalyst consumed. The amount of Ti, Mg and CI in the ash are determined by elemental analyses. In some embodiments, the productivity of the catalyst ranges from 9000 to 18000 for slurry polymerizations. In other embodiments, catalysts have productivity values higher or lower than this range. For gas-phase polymerizations, some inventive catalysts have a productivity ranging from 300 to 600. Again, other catalysts may have a productivity outside this range.
[60] Embodiments of the catalysts described above may be used in solution, slurry or gas-phase polymerizations. Catalysts described above may be prepared for use in slurry polymerization according to any suitable techniques. In some embodiments, such catalysts are prepared in the same manner as those used in gas phase polymerizations. Slurry polymerization conditions include polymerization of C2-C20 olefin, diclefin, cycloolefin, or mixture thereof in an aliphatic solvent at a temperature below that at v/hich the polymer is readily soluble in the presence of the supported catalyst. Slurry phase processes suited for ethylene homopolymerization and copolymerizations of ethylene with C3 to Cg •-olefins, such as for example, 1-butene, 1-hexene, 4-methyl-l-pentene, and 1-octene, may also be performed with embodiments of the inventive catalysts. High density polyethylene (HDPE), medium density polyethylene (MDPE), and linear low density polyethylene (LLDPE).
[61] In a continuous gas phase process, such as the partially or completely activated precursor composition are continuously fed to the reactor, with discrete portions of any additional activator compound needed to complete the activation of the partially activated precursor composition, during the continuing polymerization process in order to replace active catalyst sites that are expended during the course of the reaction.
[62] Polymerization reactions are typically conducted by contacting a stream of ethylene, in a gas phase process, such as in the fluid bed process described below, and substantially in the absence of catalyst poisons such as moisture, oxygen, CO, C02, and acetylene with a catalytically effective amount of the completely activated precursor
composition (the catalyst) at a temperature and at a pressure sufficient to initiate the polymerization reaction. Embodiments of the catalyst are suitable for the polymerization of C2-C6 olefins including homopolymers and copolymers of ethylene with '-olefins such as, 1- butene, 1-hexene, and 4-methyl-l-pentene. In general, the reaction may be performed at any conditions suitable for Ziegler-Natta type polymerizations conducted under slurry or gas phase conditions. Such processes are used commercially for the production of high density polyethylene (HDPE), medium density polyethylene (MDPE), and linear low density polyethylene (LLDPE).
[63J A fluidized bed reaction system can be used in gas phase polymerization. Fluid bed reaction systems are discussed in detail in U.S. Patents No.'s 4,302,565 and 4,379,759. However for convenience, Figure 5 illustrates an exemplary fluid bed reactor system. The reactor 10 consists of a reaction zone 12 and a velocity reduction zone 14. The reaction zone 12 comprises a bed of growing polymer particles, formed polymer particles and a minor amount of catalyst particles fluidized by the continuous flow of polymerizable and modifying gaseous components in the form of make-up feed and recycle gas through the reaction zone. The mass gas flow rate through the bed is sufficient for fluidization. Gmf is used in the accepted form as the abbreviation for the minimum mass .gas flow required to achieve fluidization, C. Y. Wen and Y. H. Yu, "Mechanics of Fluidization", Chemical Engineering Progress Symposium Series, Vol. 62, p. 100-111 (1966). In some embodiments the mass gas flow rate is 1.5, 3, 5, 7 or 10 times Gmf. The bed is prepared to avoid the formation of localized "hot spots" and to entrap and distribute the particulate catalyst throughout the reaction zone. On start up, the reaction zone is usually charged with a base of particulate polymer particles before gas flow is initiated. Such particles may be identical in nature to the polymer to be formed or different therefrom. When different, they are withdrawn with the desired formed polymer particles as the first product. Eventually, a fluidized bed of the desired polymer particles supplants the start-up bed.
[64] The partially or completely activated catalyst used in the fluidized bed is preferably stored for service in a reservoir 32 under a blanket of a gas which is inert to the stored material, such as nitrogen or argon.
I [65] Fluidization is achieved by a high rate of gas recycle to and through the bed,
typically in the order of about 50 times the rate of feed of make-up gas. The fluidized bed has the general appearance of a dense mass of viable particles in possible free-vortex flow as created by the percolation of gas through the bed. The pressure drop through the bed is equal to or slightly greater than the mass of the bed divided by the cross-sectional area. It is thus
dependent on the geometry of the reactor.
[66] Make-up gas is fed to the bed at a rate equal to the rate at which particulate polymer product is withdrawn. The composition of the make-up gas is determined by a gas analyzer 16 positioned above the bed. The gas analyzer determines the composition of the gas being recycled and the composition of the make-up gas is adjusted accordingly to maintain an essentially steady state gaseous composition within the reaction zone.
[67] To insure proper fluidization, the recycle gas and where desired, part of >.he make-up gas are returned to the reactor at point 18 below the bed. There exists a gas distribution plate 20 above the point of return to aid fluidizing the bed.
[68] The portion of the gas stream which does not react in the bed constitutes die recycle gas which is removed from the polymerization zone, preferably by passing it into a velocity reduction zone 14 above the bed where entrained particles are given an opportunity to drop back into the bed. Particle return, may be aided by a cyclone 22 which may be par i of the recycle line. Where desired, the recycle gas may then be passed through a preliminary heat exchanger 24 designed to cool small entrained particles to prevent sticking in the compressor or downstream heat exchanger 26.
[69] The recycle gas is compressed in a compressor 25 and ihen passed through the heat exchanger 26 where it is stripped of heat of reaction before it is returned to the bed. By constantly removing heat of reaction, no noticeable temperature gradient appears to exist within the upper portion of the bed. A temperature gradient exists in the bottom of the bed in a layer of about 6 to 12 inches, between the temperature of the inlet gas and the temperature of the remainder of the bed. Thus, it has been observed that the bed acts to adjust the temperature of the recycle gas above this;bottom layer of the bed zone to make it conform to the temperature of the remainder of the bed thereby maintaining itself at an essentially constant temperature under steady state conditions. The recycle is then returned to the reactor at its base 18 and to the fluidized bed through distribution plate 20. The compressor 25 can also be placed upstream of the heat exchanger 26.
[70] The fluidized bed contains growing and formed particulate polymer particles as well as catalyst particles. Because the polymer particles are hot and active, they must be prevented from settling, to avoid fusion of the two particles. Diffusing recycle gas through the bed at a rate sufficient to maintain fluidization at the base of the bed is, therefore, important. The distribution plate 20 serves this purpose and may b>e a screen, slotted place, perforated plate, a plate of the bubble cap type . The elements of the plate may all be stationary, or the plate may be of the mobile type disclosed in U.S. Pat. No. 2,298,792.
Whatever its design, it must diffuse the recycle gas through the particles at the base of the bed to keep them in a fluidized condition, and also serve to filler a quiescent bed of resin particles when the reactor is not in operation. The mobile elements of the plate may be used to dislodge any polymer particles entrapped in or on the plate, i [71] Hydrogen may be used as a chain transfer agent in the polymerization
reaction. The ratio of hydrogen/ethylene employed may vary between 0 to 2.0 moles of hydrogen per mole ofthe ethylene in the gas stream.
[72] Compounds of the structure ZnRaRb, where Ra and Rb are the same or different Ci to C14 aliphatic or aromatic hydrocarbon radicals, may be used in conjunction with hydrogen, as molecular weight control or chain transfer agents to increase the melt index values of the polymers that are produced. 0 to 50, and preferably 20 to 30, mols ofthe Zn compound (as Zn) would be used in the gas stream in the reactor per mo! of titanium compound (as Ti) in the reactor. The zinc compound would be introduced into the reactor preferably in the form of a dilute solution (2 to 30 weight percent) in hydrocarbon solvent or absorbed on a solid diluent, such as silicon dioxide, of the types described above, in amounts of 10 to 50 weight percent. These compositions tend to be pyrophcric. The zinc compound may be added alone or with any additional portions of the activator compound that are to be added to the reactor from a feeder, not shown, which would feed the compound to the hottest portion of the gas recycle system, such as-adjacent to feeder 27 disclosed herein, i [73] Any gas inert to the catalyst and reactants can also be present in the gas
stream. The activator compound is preferably added to the reaction system at the hottest portion of the recycle gas stream. Addition into the recycle line downstream from the heat exchanger is thus preferred, as from dispenser 27 through line 27A.
To insure that sintering does not occur, operating temperatures below the i sintering temperature are desired. For the production of ethylene homopolymers, an
operating temperature of 30°C to 115°C. is preferred, and a temperature of 90°C to 105°C is preferably used to prepare products having a density of 0.961 to 0.968.
The fluid bed reactor is operated at pressures of up to about 1000 psi, and is preferably operated at a pressure of from 150 to 350 psi, with operation at the higher
) pressures in such ranges favoring heat transfer since an increase in pressure increases the unit volume heat capacity of the gas.
The partially or completely activated catalyst composition is injected into the bed at a rate equal to its consumption at a point 30 which is above the distribution plate 20. Injection can be continuous or intermittent. Preferably, the catalyst is injected at a point
above the distribution plate. For highly active catalysts, injection of the fully activated catalyst into the area below the distribution plate may cause polymerization to begin there and eventually cause plugging of the distribution plate. Injection into the viable bed, instead, aids in distributing the catalyst throughout the bed and tends to preclude the formation of localized spots of high catalyst concentration which may result in the formation of "hot spots."
A gas which is inert to the catalyst such as nitrogen or argon is used to carry the partially or completely reduced precursor composition, and any additional activator compound that is needed, into the bed. Alternatively, a mixture of solvents, such as isopentane, pentane, hexane, or the like, may be used as carrier for catalysts present in slurry form. Nitrogen may also be used in conjunction with the carrier.
The production rate of the bed is controlled by the rate of catalyst injection. The production rate may be increased by simply increasing the rate of catalyst injection and decreased by reducing the rate of catalyst injection.
Since changes in the rate of catalyst injection changes the rate of generation of the heat of reaction, the temperature of the recycle gas is adjusted upwards or downwards to accommodate the change in rate of heat generation. This insures the maintenance of an essentially constant temperature in the bed. Complete instrumentation of both the fluidized bed and the recycle gas cooling system, is, of course, necessary to detect any temperature change in the bed to enable the operator to make a suitable adjustment in the temperature of the recycle gas.
Under a given set of operating conditions, the fluidized bed is maintained at essentially a constant height by withdrawing a portion of the bed as product at a rate equal to the rate of formation of the particulate polymer product. Since the rate of heat generation is directly related to product formation, a measurement of the temperature rise of the gas across the reactor (the difference between inlet gas temperature and exit gas temperature) is determinative of the rate of particulate polymer formation at a constant gas velocity.
The particulate polymer product is preferably continuously withdrawn at a point 34 at or close to the distribution plate 20 and in suspension with a portion of the gas stream which is vented before the particles settle to preclude further polymerization and sintering when the particles reach their ultimate collection zone. The suspending gas may also be used, as mentioned above, to drive the product of one reactor to another reactor.
The particulate polymer product is preferably, although not necessarily, withdrawn through the sequential operation of a pair of timed valves 36 and 38 defining a
segregation zone 40. While valve 38 is closed, valve 36 is opened to emit a plug of gas and product to the zone 40 between it and valve 36 which is then closed. Valve 38 is then opened to deliver the product to an external recovery zone. Valve 38 is then closed to await the next product recovery operation.. A fluidized bed discharge process according to U.S. Patent No. 4.621,952, may also be used.
[83} Finally, the fluidized bed reactor is equipped with an adequate venting system to allow venting the bed during start up and shut down. The reactor does not require the use of stirring means and/or wall scraping means.
[84J The catalyst system described herein appears to yield a fluid bed product with an average particle size between 0.005 to 0.06 inches, sometimes 0.02 to 0.04 inches and having a catalyst residue that is unusually low.
[85] The feed stream of gaseous monomer, with or without inert gaseous diluents, is fed into the reactor at a space time yield of 2 to 10 poundr./hour/cubic foot of bed volume.
[86] The molecular weight of polymers made by any suitable process is conveniently indicated using melt flow measurements. One such measurement is the melt index (MI), obtained according to ASTM D-1238, Condition E, measured at 190°C and an applied load of 2.16 kilogram (kg), reported as grams per 10 minutes. Some polymers prepared using some catalysts described herein have MI values ranging from 0.1 to 1000 grams/10 minutes. Other polymers may have MI values outside this range. Melt flow rate is another method for characterizing polymers and is measured according to ASTM D-1238, Condition F, using 10 times the weight used in the melt index test above. The melt flow rate is inversely proportional to the molecular weight of the polymer. Thus, the higher the molecular weight, the lower the melt flow rate, although the relationship is not linear. The melt flow ratio (MFR) is the ratio of melt flow rate to the melt index. This correlates with the molecular weight distribution of the product polymer. Lower MFRs indicates narrower molecular weight distributions. Polymers prepared using some catalysts described herein have MFR values ranging from 20 to 40.
[87] Average particle sizes are calculated from sieve analysis data according to ASTM D-1921, Method A, using a 500 g sample. Calculations are based on weight fractions retained on the screens. Bulk Density is determined according to ASTM D-1895, Method B by pouring the resin into a 100 ml graduated cylinder to the 100 ml line without shaking the cylinder, and weighed by difference.
[88] Polymers may also be characterized by their density. Polymers herein may have a density of from 0.85 to 0.98 g/cm3 as measured in a density gradient column in
accordance with ASTM D-792 in which a plaque is made and conditioned for one hour at 100°C to approach equilibrium crystallinity.
EXAMPLES
[89J The following examples are given to illustrate various embodiment1: of the invention described herein. They should not be construed to limit the invention otherwise as described and claimed herein. All numerical values are approximate.
1. Preparation of the Spray-Dried Precursors
[90] (A) Precursor Slurry / Solution. Preparative amounts are listed in able I. All operations were conducted under nitrogen with water-free reagents. To a 40 1 -unless steel mix vessel were added the required charge of tetrahydrofuran (THF), then the indicated charge of filler. The slurry was stirred at room temperature for 30 minutes. Then was added the listed small amount of triethylaluminum (10 percent in THF) to remove residual moisture from the filler and the solvent. The slurry was stirred for 15 minutes, and the required amounts of solid MgCh and aluminum-reduced TiCb were added. The required amount of absolute ethanol was then added either before or after the addition of the metal sal ,. The internal temperature was raised to 60°C, and the slurry was stirred for 5 hours mainli ned at an internal temperature of 60-70°C.
[91] The Spray-Drying Operation. The resulting slurry containing dissolved MgC12 and TiC13 was then spray-dried under differing process conditions using an 8-foot diameter closed cycle spray dryer equipped with a rotary atomizer. The rotary atomizer speed was adjusted over the 50 percent - 95 percent set speed to produce particles with a wide range of particle sizes. Maximum wheel speed corresponds to about 24,000 rpm. The scrubber section of the spray dryer was maintained at approximately -4°C.
[92] Nitrogen gas was introduced into the spray dryer at inlet temperatures in the 130-160°C range and was circulated at a rate of approximately 200-300 kg/hour. The Cabosil™/THF slurry containing dissolved MgC^ and TiClj was fed to the spray dryer at a temperature of about 65°C and a rate sufficient to yield an outlet gas temperature of approximately 90-115°C. The spray drying chamber pressure was slightly above atmospheric. Analytical and morphological results are given in Table II. All of the spray- dried slurries used 1:1 Ethanol/MgCh additive to increase the amount of MgCl2 that can be dissolved in a spray-dried droplet. The catalysts differ from the controls in the use of large filler Gasil™ instead of Cabosil™. Preparations A, A' and Comparative Example 1 feature a high Mg/Ti ratio of greater than about 8 at a Ti loading of 0.4 to 0.5 mmol Ti/g precursor. Preparation C and Comparative Example 2 have a Mg/Ti ratio of 5 to 6, but at a high Ti loading of about 0.6 mmol Ti/g, so that there is proportionally more; of both metal salts in
each particle at the expense of filler content. In catalyst A', an additional charge of Et3Al was added after the ethanol modifier to demonstrate that the added Et3Al had no effect on catalyst preparation and performance except for its role as scavenger of moisture.
[93] In catalysts A, A', and B, the filler was exclusively Gasil™ in the indicated amounts; comparative catalyst precursors Comparative Example 1 and Comparative Example 2 had Cabosil™ as the filler. In contrast, catalyst precursor C had a 4:1 wt/wt. Gasil™ / Cabosil™ mixed filler content. In all cases, total filler loadings were 15 to 25 percent of total weight.
[94] The particle size distributions of all spray-dried catalyst precursors were similar; differences in average particle sizes can be accounted for by the level of metal salts in the particles. None of the inventive catalyst precursors had fines at the low end of the particle size distribution that would predict extensive fines generation by replication into polymer particle fines. Resin fines were measured by determining the weight percent of polymer particles that passed through a 120 mesh US standard screen. Spray-drying of particles containing large fillers thus is entirely feasible at the employed loadings of metal salts, and does not appear to lead to particles that are prone to disintegrate during the drying process.
to 9Table II
Example Atomizer Ti Mg Mg/Ti percent percent Filler Pore Vol., D90 D50 D,o Span
Set, mmol/g mmol/g THF EtOH Wt. cc/g
percent percent
A 95 0.381 3.60 8.8 29.2 3.01 25.7 0.53 36.4 19.5 7.86 1.5
A' 95 0.389 3.40 8.3 29.4 3.78 23.6 33.9 17.4 6.9 1.5
Comp. 1* 85 0.41 3.63 8.9 32 5.1 23.6 0.49 58.7 29.98 12.82 1.5
B 95 0.63 3.58 5.6 32.68 4.18 17.5 0.44 65.34 33.94 12.38 1.6
C 95 0.57 3.34 5.6 32.05 3.89 18.2 0.39 51.1 26.43 10.1 1.6
Comp. 2* 95 0.6 3.62 6 36 6.2 14.4 0.35 50.48 25.75 9.19 1.6

Ethylene Polymerization Process in a Slurry Reactor
[95] The catalyst precursors of Table II were used in ethylene polymerization trials, the results of which are shown in Table III. Each laboratory scale polymerization trial was conducted as follows, except as otherwise noted. To 500 ml of hexane were added 40-60 pmol of triethylaluminum (C2Hs)3A1 per pmol of titanium in the catalyst, then 5-7 pmols Ti as slurry of catalyst precursor in mineral oil was added to the reactor. The 1 liter sl\i / reactor was pressurized to fifty (40) psig with hydrogen gas, then further pressurized to a tc : of two hundred (200) psig with ethylene. The polymerization was conducted at a tempera* s of 85°C for thirty minutes.
[96] Table III demonstrates that the productivity of the inventive catalysts is ab . r 50 percent higher on a Ti basis than the productivity of the catalysts based on the smal : Cabosil™ filler. The molecular weight distribution of resins made from the catab containing exclusively the large Gasil™ filler (A, A', B) is narrower than that of the re: - from the controls. Catalyst C, which contained both Gasil™ and Cabosil™, gave a broa• molecular weight distribution than either the corresponding catalyst B having only r ■ Gasil™ filler or Comparative Example 2 which had only Cabosil™. Some catalv described herein gave resins with about 0.2 cc/g higher internal pore volume as measured „ pore filling experiments when butanol was used as a slurrying agent, than resins ft . , precursors filled with Cabosil™. Resin bulk densities thus tended to be slightly lower duo ■ increased internal porosity.
Experiment Mg/Ti ROH/ Mg Ti Loading, mmol/g Activity3 Productivity" MI, dg/min MFR Bulk Density, g/cc
A 8.8 1 0.381 32840 12600 0.8 29 0.284
A' 8.3 1 0.389 34800 13500 0.9 28 0.346
Comp. 1* 9 1 0.41 23000 9500 0.9 35 0.33
B 5.6 1 0.63 28300 17600 1.5 29 0.236
C 5.9 1 0.57 29000 17500 1.6 32 0.246
Comp. 2* 6 1 0.6 19200 11600 1.4 30 0.26
*: Comparative example; a: in g PE/(mmol titanium-hr-
OOpsi C2); b: in g PE/(g catalyst-hr-lOOpsi C2)

Ethylene Polymerization Process in a Fluid Bed Reactor
[97] The catalyst precursors of Table II were used in ethylene polymerization trials, the results of which are shown in Table IV.
[98] Table IV shows the fluid bed HDPE polymerization properties of catalyst B compared with properties obtained with either a commercial spray-dried 6:1 Mg/Ti catalyst containing Cabosil™ as filler, or with the Cabosil™-containing Comparative Example 2 catalyst described above. Catalysts B and Comparative Example 2 were both prepared in a medium scale pilot plant as described above, while catalyst Comparative Example 3 (Cabosil™ filler) was prepared in a commercial large-scale facility. Table IV demonstrates that the inventive catalyst B matches the productivity of the commercial catalyst Comparative Example 3, but has only about half the resin fines despite the higher porosity and slightly lower resin bulk density. The resin average particle size is of 0.042 inches is more advantageous than the 0.032 obtained with the commercial control. The comparison of inventive catalyst B with the control Comparative Example 2 shows thai the inventive catalyst has significantly higher productivity and slightly lower bulk density than ihe control Comparative Example 2; resin fines of the experimental catalyst are about the same or lower than that of the Comparative Example 2 control, again attesting to the structural stability of the catalyst B.
[99] Examination under the microscope of pressed films of resin from catalyst B did not show 1-10 micrometer particulate residues which would have been expected if the filler had remained intact during the polymerization.
[100] Figure 6 illustrates the scanning electron microscopy (SEM) of catalyst B and fluid bed resin made therefrom. As Figure 6 illustrates the knobby morphology of the Gasil™ filler seen in the catalyst has replicated into the larger resin particle. The Gasil™ has expanded and stretched by a factor of 10-30 during the polymerization, indicating that the underlying Gasil™ particle has shattered.
Experiment Mg/Ti ROH/ Mg Ti
Loading, mmol/g Productivity, pm Ti; (kg PE/g catalyst) Resin Density, MI, dg/min MFR Bulk Density, lb/cft
(g/cm3) Average Particle Size, inches (cm) Resin Fines, percent
B 5.6 1 0.63 2.3 (583) 0.963 7.4 25.7 24.5 (0.39) 0.042 (0.107) 1.2
Comp. 2* 6 1 0.6 3.7 (362) 0.964 7.8 26 27.2 (0.43) 0.034 (0.086) 1.33
Comp. 3 6 0
i rt^on 0.47 2.3 (435) 09.64 8.2 25.4 25.0 (0.39) 0.032 (0.081) 2.08

Triethyl aluminum cocatalyst at ca. 50 - 60 Al/Ti ratio. Precursors modified with 0.17 tri-n-hexyl aluminum/Ti *: Comparative example.
[101] Fluid bed copolymerization reactions of ethylene and 1-hexene were preformed to investigate the effect of particle porosity on the resulting polymers. The data of Table V demonstrate the importance of improved macro- and mesoporosity in obtaining uniform polymerization properties with relatively large polyolefins catalysts. In going from precursor Comp 2 (100 percent Cabosil filler) to precursor C (mixed Cabosil /Gasil) to precursor A' (100 percent Gasil), porosity of the precursor particle increases. Use of 80 percent Gasil and%20 percent small Cabosil filler gives only a marginal improvement, in that the small Gasil filler still plugs the holes between the large Gasil particles As a result of increased porosity, a progressively more uniform active catalyst is obtained. Catalyst activity increases, resin molecular weight distribution becomes more narrow as shown by the lower MFR, and catalyst comonomer incorporation becomes better and more uniform as shown by the lowered density and decreased hexane extractables.
[102] As demonstrated above, embodiments of the invention provide a catalyst, a method of making a catalyst, and a method of making a polymer. The catalyst made in accordance with embodiments of the invention may have one or more of the following advantages. First, some catalysts disclosed herein disintegrate during polymerization allowing a more full polymer particle to form. Thus, the catalysts provide polymer produces that have a smaller fraction of undesirably small particles. Some polymers also have surprisingly lower hexane extractables which advantageously results in reduced gel formation. The catalyst also has improved activity compared to catalysts using conventional spray-dried particles. Improved activity means that the catalysts provide a more cost- effective alternative to existing spray-dried magnesium-titanium catalysts. These advantages are provided, in part, by the a wider range of available compositions and a more uniform distribution of magnesium in the particle. Other advantages and properties are apparent to those skilled in the art.
[103] While the invention has been described with a limited number of embodiments, these specific embodiments are not intended to limit the scope of the invention as otherwise described and claimed herein. Moreover, variations and modifications therefrom exist. For example, various other additives, not enumerated herein, may also be used to farther enhance one or more properties of the catalyst and catalyst precursor compositions and polymers made
Catalyst Precursor Filler Productivity, ppm Ti; (kg PE/g Precursor) MI, dg/min MFR Resin Density, g/cc Hexane
Extractables *
percent Bulk Density,
lb/cft (g/cm3) Average Particle Size, inches (cm)
Comp2 100
percent Cabosil 1.6 (625) 2.7 32 0.9176 4.9 15.8(0.25) 0.04 (0.10)
C 20
percent Cabosil 80
percent GaSil 1.6
(625) 2.5 30.8 0.9175 4.65 14.7(0.23) 0.04 (0.10)
A' 100
percent GaSil 1.1 (910) 2.2 29.2 0.9158 3.27 15.9(0.25) 0.04 (0.10)
Polymerization Conditons: 84 C polymerization temperature, 300 psi pressure, H2/C2=0.24-0.28, CyC2=0. TEAL cocatalyst at ca. 50 - 60 Al/Ti ratio. Precursor APS 25 micrometers; Precursors modified with 0.45 DEAC/THF.
35-0.152. TN1IAL/THF; 0

therefrom. In other embodiments, the compositions do not include, or are substantially free of, any compounds not enumerated herein. It is understood that parameters of polymerization processes may vary, for example, in temperature, pressure, monomer concentration, polymer concentration, hydrogen partial pressure and so on. Therefore, catalysts which do not fulfill the selection criteria under one set of reaction conditions may nevertheless be used in embodiments of the invention under another set of reaction conditions. While some embodiments are described with reference to a single catalyst, it by no means precludes, the use of two, three, four, five, or more catalysts simultaneously in a single reactor with similar or different capability for molecular weight and/or comonomer incorporation. In some embodiments, the catalysts may also include additives or other modifiers. It should be recognized that the process described herein may be used to make polymers which siso incorporate one or more additional comonomers. The incorporation of additional comonomers may result in beneficial properties which are not available to homopolyme.s or copolymers. While the processes are described as comprising one or more steps, it should be understood that these steps may be practiced in any order or sequence unless otherwise indicated. These steps may be combined or separated. Finally, any number disclosed herein should be construed to mean approximate, regardless of whether the word "about" or "approximate" is used in describing the number. Last but not the least, the claimed catalysts are not limited to the processes described herein. They can be prepared by any suitable process. The appended claims intend to cover all such variations and modifications as falling within the scope of the invention.
[104] What is claimed is:









1. A composition of spray-dried particles, comprising: a) a mixture or reaction product of
i) a magnesium halide;
ii) a solvent; and
iii) a transition metal compound wherein the transition metal is selected from Groups 3-10 and Lanthanides; and
a substantially spherical inert filler particle having an average size of 1 to 12 ^m.
2. A method of making composition of spray-dried particles, comprising:
a) providing a solution or mixture comprising a reaction product of
iv) a magnesium halide;
v) a solvent; and
vi) a transition metal compound wherein the transition meta! is selected from Groups 3-10 and Lanthanides; and
b) contacting the solution with an inert filler comprising substantially spherical particles having an average size of 1 to 12 nm to form a slurry,
c) spray-drying the slurry to form spray-dried particles.
3. A method of making a polymer, comprising reacting at least one olefin monomer in the presence of a spray-dried catalyst particle comprising
a) a mixture or reaction product of:
i) a magnesium halide;
ii) a solvent; and
iii) a transition metal compound wherein the transition metal is selected from Groups 3-10 and Lanthanides;
b) a substantially spherical inert filler having particles with an average size of 1 to 12 jim, and
c) a cocatalyst.
4. The spray-dried composition of Claim 1, wherein the composition comprises the product of:
a) the mixture or reaction product of
i) the magnesium halide;
ii) the solvent;
iii) the electron donor compound; and
iv) the transition metal compound;
b) the inert filler, and
c) a cocatalyst composition
5. The spray-dried composition of Claim 1 wherein the mixture or reaction product further comprises an electron donor compound.
6. The spray-dried composition of claim 5, wherein the molar ratio of the electron donor compound to magnesium is less than or equal to 1.9.
7. The spray-dried composition of claim 5, wherein the electron donor compound is an alcohol and the molar ratio of the alcohol to magnesium ranges from 0.1 to 0.5.
8. The spray-dried composition of claim 5, wherein the mixture or reaction product is substantially free of other electron donor compounds.
9. The spray-dried composition of claim 1, having a magnesium to transition metal ratio of greater than 5:1.
10. The spray-dried composition of claim 1, wherein the transition metal compound follows the formula:
Ti(R)aXb
wherein R is R' or COR' where R' is a Ci to Cm aliphatic or aromatic hydrocarbon radical, X is selected from CI, Br, I, or mixtures thereof, a is 0 or 1, b is 2 to 4 inclusive, and a+b=3 or 4.
11. The spray-dried composition of claim 1, wherein the transition metal compound is TiCl3, TiCL», Ti(OC6H5)C13, Ti(OCOCH3)Cl3, Ti(OCOC6H5)Cl3, or mixtures thereof.
12. The spray-dried composition of claim 5, wherein the electron donor compound comprises a linear or branched aliphatic or aromatic alcohol having between one and 25
carbon atoms.
13. The spray-dried composition of claim 12 wherein the alcohol is selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, 2-ethyl hexanol, ]- dodecanol, cyclohexanol, and t-butylphenol.
14. The spray-dried composition of claim 1, wherein the solvent is selected from the group consisting of alkyl esters of aliphatic and aromatic carboxylic acids, ethers, and aliphatic ketones.
15. The spray-dried composition of claim 14 wherein the alkyl esters are selected from the group consisting of methyl acetate, ethyl acetate, ethyl propionate, methyl propionate, ethyl benzoate, and combinations thereof.
16. The spray-dried composition of claim 14 wherein the ethers are selected from the group consisting of diethyl ether, diisopropyl ether, and di-n-butyl ether, ethylisopropyl ether, methylbutyl ether, methylallyl ether, ethyl vinyl ether, tetrahydrofiiran, 2-methyl tetrahydrofuran, and combinations thereof.
17. The spray-dried composition of claim 14 wherein the ketones are selected from the group consisting of acetone, methylethyl ketone, cyclohexanone, cyclopentylmethyl ketone, 3-bromo-4-heptanone, 2-chlorocyclo-pentanone, allylmethyl ketone, A -hydroxy-5-methyl-2 hexanone, and combinations thereof.
18. The spray-dried composition of claim 1, further including a second solvent selected from the group consisting of alkyl esters, aliphatic ethers, cyclic ethers, and aliphatic ketones.
19. The spray-dried composition of claim 1, wherein the magnesium halide comprises MgCl2, MgBr2, Mgl2, MgClBr, MgBrI or mixtures thereof.
20. The spray-dried composition of claim 1, having a magnesium concentration greater than 0.75 mmol of magnesium per gram of the composition.
21. The spray-dried composition of claim 1, wherein the composition comprises a composition of the formula
[Mg(ROH)r]niTi(OR)nXp[S]q wherein ROH comprises a linear or branched alcohol having between one and 25 carbon
atoms, R is R' or COR' wherein each R' is individually an aliphatic hydrocarbon radical having between one and 14 carbon atoms or an aromatic hydrocarbon radical having between one and 14 carbon atoms; X is individually CI, Br, or I; S is selected from the group consisting of alkyl esters of aliphatic and aromatic carboxylic acids, aliphatic ethers, cyclic ether, and aliphatic ketones; m ranges from 0.5 to 56; n is 0, 1, or 2; p ranges from 4 to 116; q ranges from 2 to 85; and r ranges from 0.1 to 1.9.
22. The spray-dried composition of claim 21 wherein r ranges from 0.1 to less than 0.5.
23. The spray-dried composition of claim 1, further comprising a reaction product of a Lewis acid with the composition.
24. The spray-dried composition of claim 23 wherein the Lewis acid has the formula RgMX3.g wherein R is R' or OR' or NR'2 wherein R' is a substituted or unsubstituted aliphatic or aromatic hydrocarbyl group containing 1 to 14 carbon atoms, X is selected from the group consisting of CI, Br, I, and mixtures thereof; and g ranges 0-3, and M is aluminum or boron.
25. The spray-dried composition of claim 23 wherein the Lewis acid is selected from the group consisting of tri-n-hexyl aluminum, triethyl aluminum, diethyl aluminum chloride, trimethyl aluminum, dimethyl aluminum chloride, methyl aluminum dichloride, triisobutyl aluminum, tri-n-butyl aluminum, diiosbutyl aluminum chloride, isobutyl aluminum dichloride, (C2H5)ALCL2, (C2H50)AlCl2, (C6H5)A1C12, (C6H50)A1C12, (C6H130)AIC12, and combinations thereof.
26. The spray-dried composition of claim 23 wherein the Lewis acid is selected from the group consisting of BC13, BBr3, B(C2H5)C12, B(OC2HS)C12, B(0C2H5)2C1, B(C6H5)C12, B(0C6H5)C12, B(C6H13)C12, B(OC6Hl3)Cl2 and B(OC6H5)2Cl, and combinations thereof.
27. The spray-dried composition of claim 1, wherein the inert filler is selected from the group consisting of silica, titanium dioxide, zinc oxide, magnesium carbonate, magnesium oxide, carbon, and calcium carbonate.
28. The spray-dried composition of claim 1, wherein the inert filler has a pore mode of 50 A to 600 A.
29. The spray-dried composition of claim 1, wherein the inert filler has a pore mode of 250 A to 400 A.
30. The spray-dried composition of claim 1, wherein the spray-dried particle has a cumulative pore volume of 10 to 5 cc/g.
31. The spray-dried composition of claim 1, wherein the inert filler has a surface area ranging from 25 m2/g to 200m2/g.
32. The spray-dried composition of claim 1, wherein the inert filler comprises particle?., of hydrophobic silica, the particles having a cumulative pore volume ranging from 1.5 to ; .0 ml/g.
33. The spray-dried composition of claim 31 wherein the inert filler has a median parti- size of 10 (am to 60 (am and a span of 1.5 to 2.0.
34. The spray-dried composition of claim 1, further comprising a second inert fll; r selected from the group consisting of silica, titanium dioxide, zinc oxide, magnesm-; carbonate, magnesium oxide, carbon, and calcium carbonate.
35. A composition of spray-dried particles, substantially as herein described with reference to the accompanying drawings.

Documents:

3187-CHENP-2004 CORRESPONDENCE OTHERS 23-07-2013.pdf

3187-chenp-2004 other document 05-05-2011.pdf

3187-CHENP-2004 AMENDED PAGES OF SPECIFICATION 08-08-2013.pdf

3187-CHENP-2004 AMENDED CLAIMS 08-08-2013.pdf

3187-chenp-2004 correspondence others 05-05-2011.pdf

3187-CHENP-2004 CORRESPONDENCE OTHERS 26-04-2013.pdf

3187-CHENP-2004 CORRESPONDENCE OTHERS 08-08-2013.pdf

3187-CHENP-2004 CORRESPONDENCE OTHERS 25-01-2012.pdf

3187-CHENP-2004 CORRESPONDENCE OTHERS 28-05-2012.pdf

3187-chenp-2004 form-13 05-05-2011.pdf

3187-CHENP-2004 FORM-3 12-04-2013.pdf

3187-CHENP-2004 AMENDED CLAIMS 12-04-2013.pdf

3187-CHENP-2004 AMENDED PAGES OF SPECIFICATION 12-04-2013.pdf

3187-CHENP-2004 ASSIGNMENT 12-04-2013.pdf

3187-chenp-2004 claims.pdf

3187-CHENP-2004 EXAMINATION REPORT REPLY RECEIVED 12-04-2013.pdf

3187-CHENP-2004 FORM-1 12-04-2013.pdf

3187-CHENP-2004 OTHER PATENT DOCUMENT 1 12-04-2013.pdf

3187-CHENP-2004 OTHER PATENT DOCUMENT 12-04-2013.pdf

3187-CHENP-2004 POWER OF ATTORNEY 12-04-2013.pdf

3187-chenp-2004 correspondence others.pdf

3187-chenp-2004 correspondence po.pdf

3187-chenp-2004 description (complete).pdf

3187-chenp-2004 drawings.pdf

3187-chenp-2004 form 1.pdf

3187-chenp-2004 form 18.pdf

3187-chenp-2004 form 3.pdf

3187-chenp-2004 form 5.pdf

3187-chenp-2004 pct.pdf

3187-chenp-2004 power of attorney.pdf


Patent Number 257017
Indian Patent Application Number 3187/CHENP/2004
PG Journal Number 35/2013
Publication Date 30-Aug-2013
Grant Date 27-Aug-2013
Date of Filing 31-Dec-2004
Name of Patentee DOW GLOBAL TECHNOLOGIES,LLC
Applicant Address 2040 DOW CENTER,MIDLAND,MICHIGAN 48674
Inventors:
# Inventor's Name Inventor's Address
1 WAGNER, BURKHARD, ERIC 40 LAWRENCE AVENUE, HIGHLAND PARK, NJ 08904
2 JORGENSEN, ROBERT, JAMES 38 BUNKER DRIVE, BELLE MEAD, NJ J08502
3 SMALE, MARK, WILTON 4905 OAKRIDGE DRIVE, MIDLAND, MI 48640
PCT International Classification Number C08F10/00
PCT International Application Number PCT/US03/22070
PCT International Filing date 2003-07-15
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/196,663 2002-07-15 U.S.A.