Title of Invention

"STEAM FEED HOLE FOR RETRACTABLE PACKING SEGMENTS IN ROTARY MACHINES"

Abstract A packing segment 118 for a annular seal ring assembly 114 for use in a hot gas path of a turbomachine, includes a sealing face 120 mounting a plurality of axially spaced sealing teeth 122; a necked-in center portion 124 radially outward of the sealing face; and a mounting portion 127 radially outward of the center portion. At least one steam feed hole 142 extends angularly from a radially outermost face 138 of the segment to a location along a side of the center portion 124 such that, in use, at least a portion of the feed hole 142 is exposed to hot gas in the hot gas path for flow through the feed hole to a cavity 130 behind the segment. FIG. 1
Full Text BACKGROUND OF THE INVENTION
The present invention relates to retractable packing components for rotary machines such as steam and gas turbines.
Rotary machines such as steam and gas turbines used for power generation and mechanical drive applications are generally large machines consisting of multiple turbine stages. In such machines, high pressure fluid flowing through the turbine stages must pass through a series of stationary and rotary components. Annular, segmented seals mounted on the stationary components are used to control leakage of fluid along the path between the stationary and rotary components. The efficiency of the turbine is directly dependent on the ability of the segmented seals (also referred to as packing segments) to prevent leakage, e.g., between the rotor and stator. In certain designs, springs maintain the packing segments radially outwardly of the rotor, for example, during start-up and shutdown. After the rotor has been brought up to speed, fluid pressure is supplied between the packing segments and a cavity in the rotor housing behind the segments to displace the segments radially inwardly to obtain smaller clearances with the rotor.
In the exemplary embodiment, the annular seal ring segments, or packing segments, are secured by dovetail type arrangements to stationary nozzle diaphragms located axially between adjacent rows of buckets on wheels that rotate with the turbine rotor. During unit startup and shutdown, one or more compression springs located between the retractable packing segments and the stationary diaphragm produce forces upon the segments that increases the radial clearance between the packing segments and the rotor. When a sufficient pressure drop occurs between startup and shutdown, the pressure-force exceeds the resisting forces of the spring(s), thereby decreasing the radial clearance. This pressure force is made possible by the introduction of steam through steam feed holes in the packing segments. These holes are typically drilled in the packing segments, opening on the high pressure sides of the segments, to allow

the steam pressure to build in the cavities behind the segments. Conventionally, these feed holes are drilled axially on the steam flow side, and radially on the back face of each packing segment, meeting internally of the segment, thus creating a 90°, L-shaped thru hole. This arrangement, however, requires multiple steps in manufacturing, and the sharp turn in the passageway becomes a location for solid particle erosion and/or build up. The latter will hinder turbine performance over time.
BRIEF DESCRIPTION OF THE INVENTION
This invention relates to a new arrangement for steam feed holes in retractable positive pressure packing segments. In this design, there are one or more holes (as needed) in each packing segment passage, having an angled centerline relative to the packing body. By drilling a single, angled steam feed thru-hole, the L-shaped hole multi step manufacturing process is eliminated, reducing manufacturing time as well as solid particle build up. This new feed hole design also results in a stronger packing segment, compared to conventional steam feed hole designs.
Accordingly, in one aspect, the invention relates to a packing segment for an annular seal ring assembly for use in a hot gas path of a turbomachine, the segment comprising a sealing face mounting a plurality of axially spaced sealing teeth; a center portion radially outward of the sealing face; and a mounting portion radially outward of the center portion, the mounting portion having a radially outermost face; and at least one steam feed hole extending angularly from an entrance location on the radially outermost face to an exit location along a side of the center portion such that, in use, at least a portion of the feed hole is exposed to gas in the gas path for flow through the feed hole to a cavity area behind the segment.
In another aspect, the invention relates to an annular seal ring assembly for a turbine nozzle diaphragm comprising a plurality of part annular packing segments adapted to seat in a dovetail groove in the diaphragm, with a cavity radially between a back face of the segment and the diaphragm, each segment comprising a sealing face mounting a plurality of axially spaced sealing teeth; a center portion radially outward of the sealing face; and a mounting portion radially outward of the center portion, the

mounting portion having a radially outermost back face; and at least one steam feed hole extending angularly from an exit location on the radially outermost face to an entrance location along a side of the center portion such that, in use, at least a portion of the feed hole is exposed to gas in a hot gas path for flow through the feed hole to a cavity behind the segment to thereby displace the packing segment in a radially inward direction.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a schematic illustration of a convention packing ring segment including a known steam feed hole arrangement; and
FIGURE 2 is a schematic illustration similar to Figure 1 but with a new steam feed hole arrangement in accordance with the invention.
DETAILED DESCRIPTION OF THE INVENTION
With reference initially to Figure 1, there is shown a portion of a rotary machine such as, for example, a steam turbine or a gas turbine. The machine includes a shaft or rotor 10 disposed in a turbine diaphragm 12, with the shaft 10 supported by bearings in a conventional manner within the turbine housing. An annular seal ring 14 is disposed in the stationary diaphragm component of the turbine housing, axially between adjacent turbine wheels (not shown), and separating high and low pressure regions on axially opposite sides of the ring. As shown in Figure 1, the high pressure region is to the right, and the low pressure region to the left, with steam or gas flow in the hot gas path indicated by arrow 16. The seal ring 14 is formed by a plurality of arcuate seal ring or packing segments 18 having sealing faces 20 and a plurality of radially projecting, axially spaced labyrinth seal teeth, indicated at 22 by dotted lines. Typically, a packing segment of this type functions by presenting a relatively large number of barriers, e.g., teeth, to the flow of fluid from the high pressure region to the low pressure region, with each barrier or tooth forcing the fluid to follow a tortuous path whereby pressure drop is created. The sum of the pressure drops across the seal is by definition the pressure difference between the high and low pressure regions on axially opposite sides of the seal ring.

Tvpically, the packing segments 18 have a necked-in center portion 24 between the radially inner sealing portion 26 and a radially outer mounting portion 27 that includes dovetail flanges 28. A cavity 30 is defined in part by inward facing hooks 32 that are located within the necked-in portion 24, and limit the inward movement of the segment via interaction with flanges 28, thus securing the segment 18 to the diaphragm 12, but permitting the radial inward and outward movement described above.
Typically, springs 34 are utilized to maintain the segments 18 radially outwardly away from the rotor, for example, during startup and shutdown. When the rotor has been brought up to operating speed, however, fluid pressure supplied between the seal ring segments and the cavity 30 in the rotor housing overcomes the spring forces and displaces the packing segments 18 radially inwardly to obtain a smaller clearance with the rotor 10.
Conventional design requires that two feed holes be drilled in each segment. Specifically, a radial hole 36 is drilled from the radially outer or back face 38 of the packing segment radially inwardly to a location where it intersects with an axially drilled hole 40 that opens along the side of the segment, i.e., open to the high pressure steam flow from right to left. The two holes 36 and 40 meet at a 90° angle internally of the segment, thus forming an L-shaped thru hole.
Turning to Figure 2, a packing segment 118 is shown incorporating a new steam feed hole design in accordance with this invention. For convenience, similar reference numerals are used to designate corresponding components, but with the prefix "1" added. Here, the packing ring segment 118 includes a single hole 142, drilled from the back face 138 of the segment through to the high pressure steam side of the segment 118 at a determined angle, in one continuous set-up. The hole 142 is drilled at an angle consistent with required strength characteristics of the segment, with a diameter determined by steam volume requirements. As shown, the hole 142 cuts across the necked-in portion 124, ensuring that the hole exit will be exposed to the high pressure steam flow. The angle of the centerline, hole size and number of holes will be unique to customer unit requirements. The method of manufacturing the hole

will involve a single drilling process, but could involve a separate reaming step if so desired.
By drilling a single angled steam feed thru hole 142, the prior and less efficient L-shaped hole multi-step manufacturing process is eliminated.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.



I/We claim:
1. A packing segment 118 for an annular seal ring assembly 114 for use in a hot gas path of a turbomachine, the packing segment comprising a radial inner sealing portion including a sealing face 120 mounting a plurality of axially space sealing teeth 122; a necked-in center portion 124 radially outward of said sealing face 120; and a mounting portion 127 radially outward of said center portion, said mounting portion 127 having a radially outermost face 138; and at least one steam feed hole 142 extending angularly between an entrance location on said radially outermost face 138 to an exit location along a side of said necked-in center portion 124 such that, in use, at least a portion of said feed hole 142 is exposed to gas in the gas path for flow through said feed hole to a cavity area 130 behind said segment 118.
2. The packing ring segment as claimed in claim 1, wherein said steam feed hole 142 extends at an acute angle relative to a radial center line through the segment.
3. The packing ring segment as claimed in claim 1, wherein said steam feed hole 142 has a diameter determined by steam volume.
4. The packing ring segment as claimed in claim 1, wherein said mounting portion 127 includes a pair of laterally extending flanges 128 adapted to seat radially behind a pair of dovetail hooks 132 in a nozzle diaphragm.
5. An annular seal ring assembly for a turbine nozzle diaphragm 112 comprising a plurality of part annular packing segments 118 adapted to seat in a dovetail groove in the diaphragm 112, with a cavity 130 radially between a back face 138 of the segment and the diaphragm, each segment 118 comprising a sealing face 120 mounting a plurality of axially spaced sealing teeth 122; a center portion 124 radially outward of said sealing face; and a mounting portion 127 radially outward of said center portion, said mounting portion including a pair of laterally extending flanges to seat radially behind a pair of

dovetail hooks in the nozzle diaphragm; and having a radially outermost face 138; and at least one steam feed hole 142 extending angularly between an exit location on said radially outermost face 138 to an entrance location along a side of said center portion 124 such that, in use, at least a portion of said feed hole 142, is exposed to gas in a hot gas path for flow through said feed hole 142 to a cavity 130 behind said packing segment to thereby displace said packing segment in a radially inward direction.
6. The packing ring segment as claimed in claim 5, wherein said steam feed hole 142 extends at an acute angle relative to a radial center line through the segment.
7. The packing ring segment as claimed in claim 5, wherein said steam feed hole 142 has a diameter determined by steam volume.

Documents:

1046-DEL-2002-Abstract-(25-08-2010).pdf

1046-del-2002-abstract.pdf

1046-del-2002-assignment.pdf

1046-DEL-2002-Claims-(25-08-2010).pdf

1046-del-2002-claims.pdf

1046-DEL-2002-Correspondence-Others-(25-03-2010).pdf

1046-DEL-2002-Correspondence-Others-(25-08-2010).pdf

1046-del-2002-correspondence-others.pdf

1046-del-2002-correspondence-po.pdf

1046-DEL-2002-Description (Complete)-(25-08-2010).pdf

1046-del-2002-description (complete).pdf

1046-DEL-2002-Drawings-(25-08-2010).pdf

1046-del-2002-drawings.pdf

1046-DEL-2002-Form-1-(25-08-2010).pdf

1046-del-2002-form-1.pdf

1046-del-2002-form-18.pdf

1046-DEL-2002-Form-2-(25-08-2010).pdf

1046-del-2002-form-2.pdf

1046-DEL-2002-Form-3-(25-03-2010).pdf

1046-del-2002-form-3.pdf

1046-del-2002-form-5.pdf

1046-DEL-2002-GPA-(25-08-2010).pdf

1046-DEL-2002-Petition 137-(25-08-2010).pdf


Patent Number 256749
Indian Patent Application Number 1046/DEL/2002
PG Journal Number 30/2013
Publication Date 26-Jul-2013
Grant Date 24-Jul-2013
Date of Filing 18-Oct-2002
Name of Patentee GENERAL ELECTRIC COMPANY
Applicant Address ONE RIVER ROAD, SCHENECTADY, NEW YORK 12345, U.S.A
Inventors:
# Inventor's Name Inventor's Address
1 KIRBY III GEORGE HORNER 1480 DIVISION STREET, CHARLOTON, NEW YORK 12019, INDIA
2 CHEVRETTE RICHARD JON 11 SHEPHERD DRIVE, TROY, NEW YORK 12065, U.S.A
3 BOESPFLUG MATTHEW PATRICK 221 MONMOUTH WAY, CLIFTON PARK, NEW YORK 12065, U.S.A
PCT International Classification Number F01D11/02
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/984,659 2001-10-30 U.S.A.