Title of Invention

A TRANSMISSION FOR A HYBRID VEHICLE

Abstract A transmission for a hybrid vehicle including a combustion engine and an electric propulsion system may include a forward clutch assembly, a fluid chamber, a fluid supply, and a forward clutch holding valve. The forward clutch assembly may include a hydraulically actuated clutch member in communication with the fluid chamber. The forward clutch holding valve may be in communication with the fluid chamber and the fluid supply. The valve may provide communication between the fluid supply and the fluid chamber when in a first position and may seal the fluid chamber when in a second position, thereby maintaining a fixed quantity of fluid within the fluid chamber.
Full Text 1
FORWARD CLUTCH HIGH PRESSURE HOLDING VALVE FOR HYBRID
VEHICLES TO ENABLE ENGINE START-STOP-DRIVE FUNCTIONS
FIELD
[0001] The present disclosure relates to hybrid vehicles, and more
specifically to transmissions for hybrid vehicles.
BACKGROUND
[0002] The statements in this section merely provide background
information related to the present disclosure and may not constitute prior art.
[0003] Internal combustion engines produce drive torque that is
transferred to a drivetrain. The drive torque is transferred through a
transmission that multiplies the drive torque by a gear ratio. Transmissions
generally include multiple gear ratios through which the drive torque is
transferred. Automatic transmissions automatically shift between gear ratios
based on driver input and vehicle operating conditions. Traditionally,
automatic transmissions include a forward clutch and a reverse clutch for
actuation between forward and reverse driving conditions through the use of a
pressurized hydraulic fluid. The hydraulic fluid is typically pressurized during
operation of the engine.
[0004] Hybrid powertrains typically include an electric machine and
an energy storage device (ESD) such as battery or super capacitor. In one
mode, the electric machine drives the transmission using energy stored in the
ESD. In another mode, the electric machine is driven by the engine to charge
the ESD. When operated in the first mode, the hybrid vehicle may be
operated without the use of the engine. When operated without the use of the
engine, an auxiliary pressurizing mechanism, such as an electric pump, is
typically used to pressurize the hydraulic transmission fluid to provide for
engagement of the forward clutch.

2
SUMMARY
[0005] Accordingly, a transmission for a hybrid vehicle including a
combustion engine and an electric propulsion system may include a forward
clutch assembly, a fluid chamber, a fluid supply, and a forward clutch holding
valve. The forward clutch assembly may include a hydraulically actuated
clutch member in communication with the fluid chamber. The forward clutch
holding valve may be in communication with the fluid chamber and the fluid
supply. The valve may provide communication between the fluid supply and
the fluid chamber when in a first position and may seal the fluid chamber
when in a second position, thereby maintaining a fixed quantity of fluid within
the fluid chamber.
[0006] Further areas of applicability will become apparent from the
description provided herein. It should be understood that the description and
specific examples are intended for purposes of illustration only and are not
intended to limit the scope of the present disclosure.
DRAWINGS
[0007] The drawings described herein are for illustration purposes
only and are not intended to limit the scope of the present disclosure in any
way.
[0008] Figure 1 is a schematic illustration of a hybrid vehicle
according to the present disclosure;
[0009] Figure 2 is a functional block diagram illustration of a
transmission of the hybrid vehicle of Figure 1;
[0010] Figure 3 is a schematic illustration of a forward clutch portion
of the transmission of Figure 2;
[0011] Figure 4 is an additional schematic illustration of the forward
clutch portion of the transmission of Figure 2; and
[0012] Figure 5 is a flow chart illustrating operation of the
transmission of Figure 2.

3
DETAILED DESCRIPTION
[0013] The following description is merely exemplary in nature and
is not intended to limit the present disclosure, application, or uses. For
purposes of clarity, the same reference numbers will be used in the drawings
to identify similar elements. As used herein, the term module refers to an
application specific integrated circuit (ASIC), an electronic circuit, a processor
(shared, dedicated, or group) and memory that execute one or more software
or firmware programs, a combinational logic circuit, or other suitable
components that provide the described functionality.
[0014] Referring now to Figure 1, an exemplary hybrid vehicle 10 is
schematically illustrated. The hybrid vehicle 10 includes a combustion engine
12 and an electric machine 14, which selectively drive a transmission 16.
Drive torque may be transmitted from engine 12 and/or electric machine 14 to
transmission 16 through a coupling device 18. Transmission 16 may be an
automatic transmission and coupling device 18 may include a torque
converter.
[0015] Hybrid vehicle 10 may be operable in first and second
modes. Control module 20 may be in communication with and may receive
and send control signals to engine 12 and transmission 16 to control
operation thereof in the first and second modes. In a first mode of operation,
engine 12 may be operated, providing drive toque for hybrid vehicle 10 and/or
charging of electric machine 14. In the second mode, engine 12 may be
powered off. In the second mode, drive torque for hybrid vehicle 10 may be
provided solely by electric machine 14. Whether operating in the first or
second modes, drive torque is transmitted to transmission 16 in order to drive
hybrid vehicle 10.
[0016] With additional reference to Figure 2, a functional block
diagram of transmission 16 is illustrated. Transmission 16 may include a fluid
source 22 providing hydraulic fluid for transmission 16. Fluid source 22 may

4
include) a pumping mechanism powered by engine 12 for pressurizing the
hydraulic transmission fluid for actuation of transmission 16, as discussed
below. Fluid source 22 may be in communication with a control valve 24 and
a locking valve 26. Control valve 24 may be in fluid communication with a
forward clutch regulator valve 28 and a reverse clutch regulator valve 30.
Control valve 24 may provide selective communication between fluid source
22 and the forward and reverse clutch regulator valves 28, 30. Transmission
16 may be actuated between forward, reverse, and neutral conditions by the
pressurized hydraulic fluid provided by fluid source 22 during operation of
engine 12. More specifically, forward and reverse clutch regulator valves 28,
30 may be in fluid communication with forward and reverse clutch assemblies
32, 34. Selectively providing the pressurized hydraulic fluid to forward and
reverse clutch assemblies 32, 34 allows actuation between the forward,
reverse, and neutral conditions.
[0017] A forward clutch holding valve 36 may be disposed between
and in fluid communication with forward clutch regulator valve 28 and forward
clutch assembly 32. Locking valve 26 may also be in fluid communication
with forward clutch holding valve 36, as discussed below. With additional
reference to Figures 3 and 4, forward clutch holding valve 36 may include a
valve housing 38 containing a valve 40 therein. Valve housing 38 may
include an inlet port 42, an outlet port 44, and first and second valve actuation
ports 46, 48. An inner bore 50 may include first and second portions 52, 54
housing valve 40 therein.
[0018] Valve 40 may include a central portion 56 having first and
second portions 58, 60 extending therefrom. Central portion 56 may be
disposed in bore second portion 54 and may have an outer diameter generally
corresponding to the inner diameter of bore second portion 54. Valve first
portion 58 may be disposed in bore first portion 52 and may have an outer
diameter generally corresponding to the inner diameter of bore first portion 52.
The outer diameter of valve first portion 58 may be less than the outer

5
diameter of valve central portion 56 creating an annular surface 62 on a first
side of central portion 56. Valve second portion 60 may have an outer
diameter that is less than the outer diameter of valve central portion 56
creating an annular surface 64 on a second side of central portion 56. A
biasing member 66, such as a spring, may extend between a first end 68 of
bore second portion 54 and valve annular surface 64. The outer diameter of
valve second portion 60 may be less than the outer diameter of valve first
portion 58. As such, annular surface 64 on the second side of central portion
56 may have a greater surface area than annular surface 62. First end 68 of
bore second portion 54 may act as a first stop for valve 40, as discussed
below.
[0019] Valve housing inlet port 42 may extend into bore first portion
52. A flow path 70 may extend from an end 72 of bore first portion 52 to outlet
port 44. End 72 may act as a second stop for valve 40, as discussed below.
First and second valve actuation ports 46, 48 may extend into bore second
portion 54.
[0020] Forward clutch assembly 32 may include a hydraulic
chamber 74, a clutch piston 76, and a series of clutch plates 78. Hydraulic
chamber 74 may be in communication with clutch piston 76. Clutch piston 76
may be operably coupled to clutch plates 78 for selective engagement
thereof, as discussed below. A first fluid path 80 extends between hydraulic
chamber 74 and valve housing outlet port 44. A second fluid flow path 82
extends between inlet port 42 and forward clutch regulator valve 28 and a
third fluid flow path 84 extends between first valve actuation port 46 and
forward clutch regulator valve 28. A fourth fluid flow path 86 extends between
second valve actuation port 48 and locking valve 26.
[0021] With additional reference to Figure 5, flow chart 100
generally shows the operation of transmission 16. As indicated in step 110,
engine 12 is initially operated to allow for pressurization of fluid source 22, as
discussed above. Transmission 16 may then provide for a forward drive

6
condition by providing pressurized fluid from forward clutch holding valve 36.
As indicated at step 112, forward clutch holding valve 36 may be opened to
provide for engagement of forward clutch assembly 32, as indicated at step
114.
[0022] More specifically, as seen in Figure 3, valve 40 may be
displaced to an open position, allowing fluid communication between inlet port
42 and outlet port 44. Valve 40 may be displaced to the open position by
pressurized fluid provided by forward clutch regulator valve 28 entering valve
housing 38 at first valve control port 46 and acting upon annular surface 62 of
valve 40. The force created by the pressurized fluid may be greater than that
applied by biasing member 66, resulting in the opening of forward clutch
holding valve 36. Pressurized fluid may therefore travel through first fluid path
80 and into hydraulic chamber 74, where it acts upon clutch piston 76, urging
clutch plates 78 into engagement.
[0023] As indicated at step 116, and seen in Figure 4, forward
clutch holding valve 36 may be closed. Operation of hybrid vehicle 10 may
then be operated in an engine-off condition while maintaining engagement of
the forward clutch assembly without the use of an auxiliary fluid pump or fluid
source. Forward clutch holding valve 36 may be closed before the engine-off
condition to maintain fluid pressure in hydraulic chamber 74. More
specifically, locking valve 26 may provide pressurized fluid to bore second
portion 54, resulting in a force being applied on annular surface 64 of valve
central portion 56. The combination of the force applied by the pressurized
fluid on annular surface 64 and the force applied by biasing member 66 may
be greater than the force applied by the pressurized fluid acting upon annular
surface 62, resulting in displacement of valve 40 to the closed position.

7
[0024] When in the closed position (seen in Figure 4), valve first
portion 58 abuts bore end 72, sealing outlet port 44 from inlet port 42. As
such, hydraulic chamber 74 is in a sealed condition, where fluid neither exits
nor enters, resulting in a generally constant pressure being applied to clutch
piston 76. The pressure in hydraulic chamber 74 is sufficient for engagement
of clutch plates 78 by clutch piston 76 when hydraulic chamber 74 is sealed.
Therefore, clutch plates 78 remain in an engaged condition when hydraulic
chamber 74 is sealed.
[0025] As indicated at step 118, engine 12 may then be powered off
resulting in the pressure provided by locking valve 26 and forward clutch
regulator valve 28 being greatly reduced. When in the engine-off condition,
valve 40 may be held in the closed position through the force applied by
biasing member 66 maintaining engagement of the forward clutch assembly
32, as indicated at step 120. As such, forward clutch engagement may be
maintained in hybrid vehicle 10 without the use of an auxiliary source of
pressurized fluid.
[0026] Those skilled in the art can now appreciate from the
foregoing description that the broad teachings of the present disclosure can
be implemented in a variety of forms. Therefore, while this disclosure has
been described in connection with particular examples thereof, the true scope
of the disclosure should not be so limited since other modifications will
become apparent to the skilled practitioner upon a study of the drawings, the
specification and the following claims.

8
CLAIMS
What is claimed is:
1. A transmission for a hybrid vehicle including a combustion
engine and an electric propulsion system, said transmission comprising:
a forward clutch assembly including a hydraulically actuated
clutch member;
a fluid chamber in communication with said hydraulically
actuated clutch member;
a fluid supply; and
a forward clutch holding valve in communication with said fluid
chamber and said fluid supply, said valve providing communication between
said fluid supply and said fluid chamber when in a first position and sealing
said fluid chamber when in a second position, thereby maintaining a fixed
quantity of fluid within said fluid chamber.
2. The transmission of claim 1, wherein said fluid supply provides a
quantity of fluid to said fluid chamber creating a force on said clutch member
resulting in an engaged condition of said forward clutch assembly when said
valve is in said first position.
3. The transmission of claim 2, wherein said engaged condition is
maintained by displacing said valve to said second position, said fluid
chamber containing a volume of fluid sufficient to maintain said force on said
clutch member when sealed by said valve.
4. The transmission of claim 3, wherein said valve is in said
second position during non-operation of the combustion engine.

9
5. The transmission of claim 1, wherein said forward clutch holding
valve includes a biasing member applying a first biasing force urging said
valve into said second position.
6. The transmission of claim 5, wherein said fluid supply applies a
second biasing force generally opposite said first biasing force, said second
biasing force being greater than said first biasing force and urging said valve
into said first position.
7. The transmission of claim 6, further comprising a second fluid
supply, said second fluid supply selectively supplying a pressurized fluid to
said valve, said pressurized fluid applying a third biasing force generally
opposite said second biasing force, the combination of said first and third
biasing forces being greater than said second biasing force.
8. The transmission of claim 6, wherein said first biasing force is
greater than said second biasing force during non-operation of the engine,
biasing said valve to said second position.
9. The transmission of claim 1, wherein said forward clutch
assembly is maintained in an engaged condition when said forward clutch
holding valve is in said second position without communication between said
fluid chamber and a source of pressurized fluid.
10. The transmission of claim 9, wherein said forward clutch holding
a
valve is in said second position during non-operation of the combustion
engine.

10
11. A method of engaging a hydraulically actuated forward clutch
assembly of a transmission for a hybrid vehicle including a combustion engine
and an electric propulsion system, said method comprising:
providing a fluid to a fluid chamber of the hydraulically actuated
forward clutch assembly;
engaging a clutch member of the forward clutch due to a force
applied by the fluid contained in the fluid chamber; and
sealing the fluid chamber to maintain said engagement of the
clutch member.
12. The method of claim 11, wherein said sealing is maintained
during non-operation of the combustion engine.
13. The method of claim 11, wherein said providing includes
selectively providing a pressurized fluid from a fluid supply source during
operation of the combustion engine.
14. The method of claim 13, wherein said sealing includes isolating
the fluid chamber from the fluid supply source after said providing.
15. The method of claim 14, wherein said sealing includes
maintaining the fluid within the fluid chamber at a predetermined pressure.
16. The method of claim 15, wherein said sealing includes
preventing the fluid within the fluid chamber from escaping the fluid chamber.
17. A method of engaging a hydraulically actuated forward clutch of
a transmission for a hybrid vehicle including a combustion engine and an
electric propulsion system during non-operation of the combustion engine,
said method comprising:

11
providing a hydraulically actuated clutch including a fluid
chamber for engagement of a clutch member, the fluid chamber containing a
fluid at a predetermined pressure corresponding to an engaged condition of
the clutch member;
engaging the forward clutch based on said providing;
sealing the fluid chamber, thereby maintaining the
predetermined pressure within the fluid chamber; and
powering off the combustion engine.
18. The method of claim 17, wherein the fluid chamber remains
sealed after said powering off of the combustion engine.
19. The method of claim 18, wherein said engaging continues after
said powering off of the combustion engine.
20. The method of claim 17, wherein said engaging is maintained
after said powering off of the combustion engine solely by said sealing.

A transmission for a hybrid vehicle including a combustion engine and an electric propulsion system may include a forward clutch assembly, a fluid chamber, a fluid supply, and a forward clutch holding valve. The forward
clutch assembly may include a hydraulically actuated clutch member in communication with the fluid chamber. The forward clutch holding valve may be in communication with the fluid chamber and the fluid supply. The valve may provide communication between the fluid supply and the fluid chamber when in a first position and may seal the fluid chamber when in a second
position, thereby maintaining a fixed quantity of fluid within the fluid chamber.

Documents:

00196-kol-2008-abstract.pdf

00196-kol-2008-claims.pdf

00196-kol-2008-correspondence others.pdf

00196-kol-2008-description complete.pdf

00196-kol-2008-drawings.pdf

00196-kol-2008-form 1.pdf

00196-kol-2008-form 2.pdf

00196-kol-2008-form 3.pdf

00196-kol-2008-form 5.pdf

196-KOL-2008-(17-08-2012)-ABSTRACT.pdf

196-KOL-2008-(17-08-2012)-AMANDED CLAIMS.pdf

196-KOL-2008-(17-08-2012)-DESCRIPTION (COMPLETE).pdf

196-KOL-2008-(17-08-2012)-DRAWINGS.pdf

196-KOL-2008-(17-08-2012)-EXAMINATION REPORT REPLY RECEIVED.pdf

196-KOL-2008-(17-08-2012)-FORM-1.pdf

196-KOL-2008-(17-08-2012)-FORM-2.pdf

196-KOL-2008-(17-08-2012)-OTHERS.pdf

196-KOL-2008-(17-08-2012)-PA-CERTIFIED COPIES.pdf

196-KOL-2008-(17-08-2012)-PETITION UNDER RULE 137.pdf

196-KOL-2008-ASSIGNMENT.pdf

196-KOL-2008-CORRESPONDENCE OTHERS 1.1.pdf

196-kol-2008-form 18.pdf

abstract-00196-kol-2008.jpg


Patent Number 256326
Indian Patent Application Number 196/KOL/2008
PG Journal Number 23/2013
Publication Date 07-Jun-2013
Grant Date 03-Jun-2013
Date of Filing 04-Feb-2008
Name of Patentee GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Applicant Address 300 GM RENAISSANCE CENTER DETROIT, MICHIGAN
Inventors:
# Inventor's Name Inventor's Address
1 WAYNE B. VOGEL 824 BURLINGTON CANTON, MICHIGAN 48188
PCT International Classification Number F01P3/18
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/673,810 2007-02-12 U.S.A.