Title of Invention

"LIQUID CLEANSING COMPOSITIONS"

Abstract Novel cleansing competition and methods for making tame are deacribed. Preferred embodiments provide com-potitioni comprising an acrytate copolymer, an alkoxyiated methyl glucocide polyol, and a surfactant Preferred alkoxylated methyl glncoside polyols among those useful herein may include emoxylated and/or propoxylated methyl glucoside polyols.
Full Text LIQUID CLEANSING COMPOSITIONS
Cross-Reference to Related Applications
This application claims benefit of US Provisional Application No. 60/589,304, filed July 20,2004, the disclosure of which is hereby incorporated by reference herein in its entirety.
Background of the Invention
While cleansing compositions comprising various surfactants and structuring agents, such as, for example, acrylate copolymers, have been described (e.g., U. S. Patent No. 6,635,702 Bl, U.S. Patent No. 6,642,198), it has been found that the use of anionic and amphoteric surfactants in combination with acrylate copolymers do not always provide desired characteristics, such as sufficient foam. Acrylate copolymer in cleansing systems can inhibit foaming with use of typical surfactants, such as sodium laureth sulfate and cocamidopropyl betaine.
Brief Summary of the Invention
The present invention is directed, in part, to novel cleansing compositions and
methods for making same. Specifically, in certain embodiments, mere are provided compositions comprising an acrylate copolymer, an alkoxylated methyl glucoside polyol, and a surfactant. Another embodiment of the invention relates to methods for making cleansing compositions.
In certain embodiments, the invention is directed to cleansing compositions that are structured liquids that provide improved foaming, excellent skin feel, and/or good viscosity/rheological profiles for dispensing and the ability to suspend other additives. In certain embodiments, the compositions of the invention are non-emulsion liquid cleansing compositions.
In certain embodiments, the present invention is directed to cleansing compositions comprising at least one alkoxylated methyl glucoside polyol and at least one acrylate copolymer. Preferably, the methyl glucoside is alkoxylated with ethylene or propylene oxide.
According to one embodiment of the present invention, a composition is provided comprising an alkoxylated methyl glucoside polyol, an acrylate copolymer
and at least one surfactant. In certain embodiments of the inventionof, the surfactant comprises an anionic surfactant. In certain embodiments of the invention, the surfactant comprises an amphoteric surfactant. In certain embodiments of the invention, the composition comprises both an anionic surfactant and an amphoteric surfactant.
In certain embodiments of the invention, the anionic surfactant is preferably present in an amount of about 3% to about 25% by weight of the total composition, about 5% to about 18%, or about 7% to about 12% (all by weight of the total composition).
In certain embodiments of the invention, the amphoteric surfactant is preferably present in an amount of about 0.05% to about 15% by weight of the total composition, about 0.5% to about 10%, or about 1% to about 8% (all by weight of the total composition).
In certain embodiments of the invention, the acrylate copolymer is preferably present in an amount of about 0.1% to about 12% by weight of the total composition, about 0.5% to about 8%, or about 1% to about 5% (all by weight of the total composition).
In certain embodiments of the invention, the alkoxylated methyl glucoside polyol is preferably present in an amount of about 0.05% to about 6% by weight of the total composition, about 0.1% to about 4%, or about 0.2 to about 2% (all by weight of the total composition).
In certain embodiments, the alkoxylated methyl glucoside polyol is a methyl glucoside alkoxylated with ethylene or propylene oxide. In certain embodiments, mixtures of ethoxylated glucoside polyols and propoxylated glucoside polyols may be used. Preferably, the ethoxylated and/or propoxylated methyl glucoside is present in an amount of about 0.05% to about 6% by weight of the total composition, about 0.1% to about 4%, or about 0.2% to about 2% (all by weight of the total composition).
In certain embodiments, a basic neutralizing agent is preferably present in an amount of about 0.01% to about 5% by weight of the total composition, about 0.05% to about 4%, or about 0.1% to about 3% (all by weight of the total composition).
In certain embodiments, the composition of the invention additionally comprises water. The amount of water may vary, but may be up to about 99% by
weight of the total composition, for example, about 35% to about 97%, or about 50% to about 90% (all by weight of the total composition).
In certain embodiments, the composition may further comprise effective amounts of optional ingredients including, but not limited to: colorants, fragrances, antibacterials, preservatives, antioxidants, beads, mica, glitter, opacifying agents, and pearlizing agents. In certain embodiments, the beads may comprise fragrance, exfoliating ingredients and/or moisturizing ingredients.
According to one preferred embodiment of the invention, the composition comprises beads containing shea butter. Preferably, the beads have a diameter in the range of about 100 to about 1200 microns.
In certain embodiments, the preferred pH of the composition is at least about 5.5, for example, about 6.0 to about 7.5, or about 6.4 to about 7.2.
Alkoxylated methyl glucoside polyols suitable for use in this invention include, without limitation, those having an average degree of alkoxylation of about 8 to about 22. Suitable alkoxylated methyl glucoside polyols include, but are not limited to, ethoxylated and propoxylated methyl glucosides. Examples include, but are not limited to, methyl gluceth-10, methyl gluceth-20, PPG-10 methyl glucose ether, and PPG-20 methyl glucose ether.
Examples of suitable anionic surfactants include, but are not limited to, alky! sulfates, ethoxylated alkyl sulfates, alkyl sulfonates, alkyl olefin sulfonates, alkyl succinates, alkyl sulfosuccinates, alkyl ethoxy sulfosuccinates, acyl and alkyl glutamates, alkyl phosphates, alkyl ether carboxylates, alkyl isethionates, and acyl amides.
Suitable amphoteric surfactants may include, but are not limited to, betaine surfactants. Examples of suitable amphoteric surfactants include, but are not limited to, alkyl betaines, alkylamido betaines, alkyl sulfobetaines, alkyl sultaines and alkylamido sultaines. Preferably, the alkyl and acyl groups generally contain from about 8 to about 18 carbons.
Suitable acrylate copolymers include, without limitation, those described in U.S. Patent Number 6,635,702 Bl (hereby incorporated by reference herein) and those selected from the group consisting of:
(a) monomers or copolymers of one or more of methacrylic acid, acrylic acid, itaconic
acid, esters of any of the foregoing and mixtures of any of the foregoing;
(b) a member of group (a) copolymerized with one or more members selected from the
group consisting of Steareth-20, Steareth-50, Ceteth-20.
Examples of suitable acrylate copolymers include, without limitation, those sold under the trademarks CARBOPOL® AQUA SF-1 fromNoveon (Cleveland, Ohio), SYNTHALEN® W2000 from 3V (Wehawkin, New Jersey), ACULYN® 22, and ACULYN® 33 available from International Specialty Products Corporation (Wayne, New Jersey).
Suitable alkaline neutralizing agents include, without limitation, inorganic and organic neutralizes selected from the group consisting of alkali hydroxides (such as ammonium, sodium, and potassium) and alkanolamines (such as triethanolamine, isopropanolamines), preferably, sodium hydroxide or triethanolamine.
In certain embodiments, compositions of the invention may optionally comprise opacifying and/or suspending agents including, but not limited to: glycol stearates and glycol distearates, including, without limitation, ethylene glycol distearate, ethylene glycol monostearate and polyethylene glycol distearate; coated micas, glitter and mixtures thereof.
Compositions according to the invention may be made using conventional mixing techniques known to those skilled in the art for mixing ingredients.
EXAMPLES
The invention is further demonstrated in the following examples. The examples are for purposes of illustration and are not intended to limit the scope of the present invention. In the Examples, as elsewhere in this application, values for n, m, etc. in formulas, molecular weights and degree of ethoxylation or propoxylation are averages. Temperatures are in degrees C unless otherwise indicated. The amounts of the components may be in weight percents based on the standard described; if no other standard is described then the total weight of the composition is to be inferred (active basis). Various names of chemical components include those listed in the CTFA International Cosmeti3c ingredient Dictionary (Cosmetics, Toiletry and Fragrance Association, Inc., 7th ed. 1997).
General Method of Miking Compositions
Using the types and amounts of ingredients listed in the examples, the products are prepared at ambient temperature (approximately 20 -25 degrees C) by adding the DMDM Hydantoin to the water in a vessel equipped with center turbine agitation. The acrylate copolymer is then added to the water phase and mixed. The sodium laureth sulfate is added to the mixture and men neutralized with sodium hydroxide to a pH
range of 6.5 - 7.5 at 25°C. Cocamidopropyl betaine is then added and mixed. The other ingredients are added in order and mixed until uniform. The citric acid is added to adjust the pH to approximately 6.4 - 7.2. The sodium chloride is added to adjust the viscosity to approximately 4300 centipoise (cps), wherein the formulation viscositj is in the range of 2500 - 5500 cps as measured by a Brookfield DV EH- Viscometer using Spindle # 5 at 20 RPM at 25°C.
(Table Remove)Rheology of cleansing liquids is key to a consumer's perception of consistency and dispensing. Consumers perform flow experiments when they use the product How a product flows in a bottle and is dispensed, how the product is pumped and dispensed and how the product is spread out in use to generate lamer are all examples of a shear force being applied.
A series of rheological measurements including strain sweep and creep tests were conducted. All rheological measurements were conducted using a Paar Physica MCR300 Rheometer equipped with a TEK150 P-CF peltier plate, a 50 mm parallel plate (PP50) and a 1 millimeter gap at 23°C.
Strain sweeps are used to define the linear viscoelastic (LVE) region and determine the magnitude of G' (elastic modulus) and G" (viscous modulus) of an intact substance and is expressed as tan (delta) which equals G" over G'. If tan (delta) is greater man 1.0, the substance is viscous dominant and if tan (delta) is smaller than 1.0, the substance is elastic dominant. Creep tests determine the relative contribution of the elastic and viscous elements.

(Table Remove)he rheological measurements indicate that the Liquid Hand Soap with the Glucams has a higher elastic portion, a lower tan (delta) and a lower G". The greater the value of G" or tan (delta) the stringier the product, which is consistent with sensory evaluations and not as desirable.
Scosorv Panel — Hand Waflh Dispensing Study
For evaluating aesthetic properties, a composition of Example 1 was compared on the basis of aesthetics for foaming and dispensing from a liquid hand soap container to the composition of Example 2.
Methodology;
Products:
• Pearlized Liquid Hand Soap with Glucams (control) Example 1
• Pearlized Liquid Hand Soap without Glucams Example 2
Procedure:
Two products were tested in two phases: a sequential monadic hand wash phase and a
side-by-side dispensing phase.
PfflftJ- Hand Wash Evaluation: Each panelist washed with each product over 2 test sessions. Panelists dispensed the product using their normal habits, then washed their hands with the product (in water temperature about 37°C +/-1°C) and evaluated the product. Each panelist evaluated all products in a balanced/randomized order of
presentation. Panelists answered a series of questions related to the dispensing and hand washing properties of the product.
Part 2- Dispensinf Evaluation: Upon completing the hand wash portion of the study, panelists evaluated the dispensing properties of the 2 products (randomized presentation). Panelists pumped each product twice into a dish to evaluate the dispensing properties. Panelists were instructed to pump as they would normally pump, wait for the pump to recover (count to 10) and then pump the product again. This procedure was repeated with each product. Panelists answered a series of questions related to the dispensing properties in between each product.
Subjects;
79 liquid hand soap users participated in the study.
Results of Comparison of Pearlized Liquid Hand Soap with glucams versus without
Part I Hand wash .and dispensing (see Table 6)
• Pearlized Liquid Hand Soap without Glucams was rated as having less lather
compared to the Pearlized Liquid Hand Soap with Glucams.
Part II: Dispensing only (see Table 5)
• The Pearlized Liquid Hand Soap without Glucams was rated as being more stringy
as it was dispensed compared to the Pearlized Liquid Hand Soap with Glucams.
Table 6: Rate the Amount of Lather generated while washing

(Table Remove)oam Evaluation Testing - Cylinder Shake The foam characteristics of liquid hand soap products were evaluated using a mechanical cylinder shake method. The procedure uses hard water, synthetic sebum and a Gaum Foam Machine available from Gaum, Inc., Robbinsville, New Jersey.
Hard Water Preparation: In a 2000 milliliter volumetric flask combine 40 grams of magnesium chloride 0 and 45 grams of calcium chloride and fill volumetric to line with deionized water. This will produce 25,000 ppm water hardness. To prepare 250 ppm hard water, put 20 milliliters of 25,000 ppm hard water solution into a 2000 milliliter volumetric flask and fill to the line with deionized water.
Synthetic Sebum Preparation:
The Synthetic Sebum was prepared by melting together the following ingredients at about 71°C while stirring with a spatula.
Palmitic Acid Stearic Acid Coconut Oil Paraffin Spermaceti Olive Oil Squalene Cholesterol Oleic Acid10.0
5.0 15.0 10.0 15.0 20.0
5.00 5.00 10.0
Foam height testing was performed on the compositions in Examples 1 and 2 above. I5 grams of liquid hand soap were added to 84 grams of 250 ppm hard water and 1 gram of Synthetic Sebum. The hard water was prepared by mixing together 40 grams of MgCl- 6H O with 45 grams of CaCl 2-2H2O and diluting to 250 ppm. The test mixture was then heated with moderate agitation and slow heating to 40.5°C. This dispersion was then carefully poured into a 600 ml. graduated cylinder containing a plastic water-filled tube. The cylinder was then mounted onto the center of a Vertical Rotator Assembly and rotated at a constant speed of 30 rpm. The action of the circular mixing of the cylinder and the free falling action of the water-filled tube in the cylinder generated foam which could be measured as foam height using the gradations on the side of the cylinder. After 8 complete revolutions, the Flash Foam Height was measured and after an additional 12 complete revolutions (a total of 20 revolutions) the Maximum Foam Height was measured. At this time the Drainage Time was also measured. Drainage Time is defined as the time measured from the completion of the 20 revolutions to the time at which 100 mis. of apparent liquid has drained. Drainage Time is a measure of the wetness and stability of the foam.
The results of foam evaluation testing indicate that the Pearlized liquid hand soap with Glucams had more flash foam and maximum foam height. The drainage time took less time and represents a more stable foam.
All numerical ranges described herein include all combinations and subcombinations of ranges and specific integers encompassed therein.
Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.-



Claims
What is claimed is:
1. A cleansing composition comprising an acryl ate copolymer, an alkoxylated
methyl glucosidal polios, and a surfactant.
2. The composition of claim 1 further comprising a basic neutralizing agent
3. The composition of claim 1 wherein the surfactant is selected from the group
consisting of anionic surfactants, amphitricha surfactants, and mixtures thereof.
4. The composition of claim 3 wherein the anionic surfactant is present in an
amount of about 3% to about 25% by weight of the total composition.
5. The composition of claim 3 wherein the amphitricha surfactant is present in an
amount of about 0.05% to about 15% by weight of the total composition.
6. The composition of claim 3 wherein the amphitricha surfactant is a beanie
surfactant.
7. The composition of claim 3 wherein the amphitricha surfactant is selected from
the group consisting of alkyl botanies, alkylamido betaines, alkyl sulfobetaines, alkyl
sultanas, alkylamido sultaines, and mixtures thereof.
8. The composition of claim 3 wherein the amphoteric surfactant comprises alkyl
and/or acyl groups having from about 8 to about 18 carbons.
9. The composition of claim 1 wherein the alkoxylated methyl glucoside polyol is
present in an amount of about 0.05% to about 6% by weight of the total composition.
10. The composition of claim 1 wherein the alkoxylated methyl glucoside polyol is
selected from the group consisting of ethoxylated methyl glucosides, propoxylatcd
methyl glucosides, and mixtures thereof.
11. The composition of claim 10 wherein the alkoxylated methyl glucoside polyol
has an average degree of alkoxylation of about 8 to about 22.
12. The composition of claim 1 wherein the alkoxylated methyl glucoside polyol is
selected from the group consisting of methyl gluceth-10, methyl gluceth-20, PPG-10
methyl glucose ether, PPG-20 methyl glucose ether, and mixtures thereof.
13. The composition of claim 1 wherein the acrylate copolymer is present in an •
amount of about 0.1% to about 12% by weight of the total composition.
14. The composition of claim 2 wherein the basic neutralizing agent is present in an
amount of about 0.01% to about 5% by weight of the total composition.
15. The composition of claim 1 further comprising effective amounts of one or
more members selected from the group consisting of colorants, fragrances,
antibacterials, preservatives, antioxidants, beads, mica, glitter, opacifying agents, and
pearlizing agents.
16. The composition of claim 15 wherein the beads comprise members selected
from the group consisting of fragrances, exfoliating agents, moisturizing agents, and
mixtures thereof.
17. The composition of claim 1S wherein the beads comprise shea butter.
18. A cleansing composition comprising:

(a) an anionic surfactant;
(b) an amphoteric surfactant;
(c) an acrylate copolymer;
(d) an alkoxylated methyl glucoside polyol;
(e) a basic neutralizing agent; and
(f) water.
19. A cleansing composition comprising:
a) about 3% to about 25% of an anionic surfactant;
b) about 0.05% to about 15% of an amphoteric surfactant;
c) about 0.1% to about 12% of an acrylate copolymer;
d) about 0.05% to about 6% of alkoxylated methyl glucoside polyol;
e) about 0.01% to about 5% a basic neutralizing agent; and
f) water.
20. A method of making a cleansing composition comprising the steps of:
a) mixing acrylate copolymer and water to form a water phase;
b) adding an anionic surfactant to the water phase of step a) to form a mixture;
c) adding a basic neutralizing agent to the mixture of step b) to form a neutralized
material;
d) mixing an amphoteric surfactant with the neutralized material of step c);
e) adding an alkoxylated methyl glucoside polyol to the result of step d) to form a
cleansing composition.

Documents:

467-delnp-2007-Abstract-(19-12-2012).pdf

467-delnp-2007-abstract.pdf

467-DELNP-2007-Assignment.pdf

467-delnp-2007-Claims-(19-12-2012).pdf

467-delnp-2007-claims.pdf

467-delnp-2007-Correspondence Others-(19-12-2012).pdf

467-delnp-2007-Correspondence Others-(28-08-2012).pdf

467-DELNP-2007-Correspondence-Others.pdf

467-delnp-2007-description (complete).pdf

467-delnp-2007-form-1.pdf

467-delnp-2007-Form-13-(19-12-2012).pdf

467-delnp-2007-form-2.pdf

467-delnp-2007-Form-3-(19-12-2012).pdf

467-DELNP-2007-Form-3.pdf

467-delnp-2007-form-5.pdf

467-delnp-2007-GPA-(19-12-2012).pdf

467-delnp-2007-pct-210.pdf

467-delnp-2007-pct-237.pdf

467-DELNP-2007-PCT-304.pdf

467-delnp-2007-Petition-137-(19-12-2012).pdf


Patent Number 256137
Indian Patent Application Number 467/DELNP/2007
PG Journal Number 19/2013
Publication Date 10-May-2013
Grant Date 07-May-2013
Date of Filing 17-Jan-2007
Name of Patentee COLGATE-PALMOLIVE COMPANY
Applicant Address 300 PARK AVENUE, NEW YORK, NY 10022, USA.
Inventors:
# Inventor's Name Inventor's Address
1 POTECHIN KATHY 15 SPENSER DRIVE, SHORT HILLS, NJ 07078, USA.
2 HAUGK PETER 171 GETTYSBURG WAY, LINCOLN PARK, NJ 07035, USA.
PCT International Classification Number A61Q 19/10
PCT International Application Number PCT/US2005/025798
PCT International Filing date 2005-07-20
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/589,304 2004-07-20 U.S.A.