Title of Invention

POWDER METALLURGICAL COMPOSITION COMPRISING CARBON BLACK AS FLOW ENHANCING AGENT

Abstract The invention concerns a powder metallurgical composition comprising iron or iron-based powder and a minor amount, i.e. o.001-0.2 wt-%, of carbon black. The carbon black acts as flow enhancing agent.
Full Text

Powder metallurgical composition comprising carbon: black as flow enhancing agent.
FIELD OF THE INVENTION
The invention relates to iron-based powder metallurgical compositions. More particularly, the present invention relates to compositions containing flow agents to improve flowability, but also to improve apparent density.
BACKGROUND OF THE INVENTION
Powder metallurgical compositions are well known for the production of powder metallurgical parts. Production of powder metallurgical parts involves filling of the powder in a compaction tool, compaction of the powder and subsequent sintering of the compacted body. A prerequisite for filling of the powder is that the powder is free-flowing and has a sufficient flow. A high flow rate of the powder is essential to obtain a high production rate giving lower production costs and a better economy for each part produced.
Another factor which is essential for the production efficiency and economy is the apparent density. Apparent density is essential for the tool design. Powder with low apparent density needs higher filling height which results in unnecessarily high pressing tools, and this in turn will result in longer compaction strokes and lower pressing performances.
Agents which improve the flow properties are previously known. Thus the US patent 3 357 818 discloses that silicic acid may be used to this end. The US 5 782 954 discloses that metal, metal oxides or silicon oxide can be used as flow agents.

It is an object of the present invention to provide a powder metallurgical composition with improved powder properties such as flowabiiity and apparent density.
SUMMARY OF THE INVENTION
It has unexpectedly been found that by adding a small amount of carbon black, to an iron-based powder composition, the properties of the powder composition can be improved. Additionally the addition of controlled amounts of carbon black will not deteriorate the properties of green and sintered parts prepared from the new iron-based composition but these properties may even be improved.
DETAILED DESCRIPTION OF THE INVENTION
Generally powder metallurgical compositions contain an iron or iron-based powder and a lubricant. The compositions may also include a binding agent, graphite and other alloying elements. Hard phase material, liquid phase forming material and machinability enhancing agents may also be included.
The iron-based powder may be of any type of iron-based powder such as water-atomised iron powder, reduced iron powder, pre-alloyed iron-based powder or diffusion alloyed iron-based powder. Such powders are e.g. the iron powder ASC100.29, the diffusion alloyed iron-based powder Distaloy AB containing Cu, Ni and Mo, the iron-based powder Astaloy CrM and Astaloy CrL pre-alloyed with Cr and Mo, all available from Hoganas AB, Sweden.
The amount of carbon black in the iron-based powder composition according to the invention is between 0.001

and 0.2% by weight, preferably between 0.01 and 0.1%. The primary particle size of the carbon black is preferably below 200 run, more preferably below 100 nm and most preferably below 50 nm. The specific surface area is in a preferred embodiment between 150 and 1000 m2/g measured by the BET-method. However, other types of carbon black having other surface areas and primary particle sizes are possible to use.
Carbon black is normally used as filler in rubber material and as colour pigments. It is also used for its electrical conductivity, in products for reducing static electricity. Carbon black in combination with iron or iron-based powders is disclosed in US patent 6 602 315. This patent discloses a composition wherein an alloying powder is bound to an iron-based powder by binder, to which carbon black may be added. US 6 602 315 does not disclose any content, particle size or effect of carbon black and is only relevant to the binding material. Also in patent application JP 7-157838 a powder composition containing carbon black is disclosed. Here the purpose of carbon black is to deoxidize a base-material.
The compositions according to the present invention may also include alloying elements chosen from the group consisting of graphite, Cu, Ni, Cr, Mn, Si, V, Mo, Pr W, S and Nb
In order to enhance the compressibility of the powder and to facilitate ejection of the green component a lubricant or a combination of different lubricants may be added to the powder metallurgical composition. The lubricant may be present as a particulate powder or bonded to the surface of the iron-based powder. By adding a bonding agent dissolved in a solvent followed by evaporation of the solvent the lubricant may be bonded to the surface of

the iron-based powder. The binder may also be added in its natural liquid state with a capacity of forming a film around the iron-based powder. Another alternative is to use the lubricants as binding agents by heating the composition above the melting point of the lubricant or above the melting point of at least one of the lubricant components followed by cooling the composition to a temperature below the melting point.
The lubricants may be selected from the group consisting of fatty acids, amide waxes such as ethylene bisstearamide (EBS), or other derivates of fatty acids such as metal stearates, polyalkylenes such as polyethylene, polyglycols, amide polymers, or amide oligomers. Preferably the lubricants are selected from the group consisting of polyalkylenes, amide waxes, amide polymers or amide oligomers.
The binders are selected from the group consisting of cellulose ester resins, high molecular weight thermoplastic phenolic resins, hydroxyalkylcellulose resins, and mixtures thereof. Preferably binders are selected from the group of cellulose ester resins and hydroxyalkylcellulose resins
Other possible additives are machinability improving agents, hard phase material and liquid phase forming agent.
According to a preferred embodiment carbon black is used as flow agent in bonded mixtures, i.e. mixtures,, wherein finer powder of e.g. alloying element particles are bonded by means of a binding agent to the surface of the iron or iron-based powder particles, as these mixtures often have poor flow properties. When used in bonded mixtures carbon black is preferably added after the binding operation has been effectuated. The binding

operation may be accomplished by heating the mixture during mixing to a temperature above the melting point of the binding agent and cooling the mixture until the binder has solidified. The binder may also be added dissolved in a solvent. The binding operation is in this case accomplished by evaporating the solvent by means of heating or by vacuum. The composition is compacted and sintered to obtain the final powder metal part.
The invention is further illustrated by the following non-limiting examples:
Example 1
Three types of carbon black were selected with various specific areas and particle sizes according to table 1. The specific surface area was determined by the BET-method. The particle size was measured by electron microscopy and refers to the primary particle size of the carbon black.

Iron-base powder ASC100.29, available from Hoganas AB, Sweden, was mixed with 0.77% by weight of graphite, 0.8% of a binder/lubricant system (consisting of 0.2% of polyethylene (Polywax 650) and 0.6% of ethylene bis-stearamide (EBS)). The mixture was heated during mixing to a temperature above the melting point of Polywax and subsequently cooled. At a temperature below the melting point of Polywax, 0.03% of carbon black was added. Three

different types of carbon black, according to table 1, were tested. Two mixtures were prepared as reference mixtures. Reference mixture C was prepared according to the test mixtures with the exception that 0.8% of graphite and no flow agent was added. In reference mixture R 0.8% of graphite and 0.06% of Aerosil® A-200, available from Degussa AG, was added.
Powder properties were measured. Flow property was
measured using the standard method, Hall-flow cup according to ISO 4490 and the apparent density, AD, was measured using standard method ISO 3923.
The results of the powder properties are presented in table 2.

The tests show that the addition of carbon black to a powder metallurgical mixture improves the flow rate and AD compared to the mixture without any flow agent. Addition of CB1 improves flow and AD compared to addition of known flow agent whereas addition of CB2 and CB3 gives about the same flow improvement but a higher AD compared to addition of flow agent A-200.

Example 2
Carbon black type CB 1 was selected in order to determine the optimal added amount to the iron-based powder mixture. The mixtures were prepared according to the description of example 1. Added amounts of alloying elements, binder/lubricant, flow agent and graphite are shown in table 3.
Reference mixtures, Rl without flow agents and R2 with a commercial available flow agent, which is Aerosil® A-200 available from Degussa AGr were prepared.

Test pieces according to ISO 2740 were compacted at a pressure of 600 MPa at ambient temperature and sintered at 1120°C in an 90/10 N2/H2 atmosphere. In table 4 the mechanical properties are presented for the powder compositions according to table 3.


As can be seen from table 4 an added amount of 0.06 % of carbon black will influence the tensile strength, TS, yield strength, YS, and elongation/ A. The influence on the mechanical properties is negligible when amounts of 0.04 % by weight, and lower, of carbon black were added,.
Example 3
Example 3 shows that the new flow agent can be used in compositions for warm compaction. One test mixture, B5, and one reference mixture, R3, of 3 000 grams, respectively, were prepared as follows.
As a reference mixture 60 grams of a copper powder, 24 grams of graphite, 13.5 grams of a high temperature lubricant Promold® available from Morton International of Cincinnati, Ohio, USA and remaining iron powder, ASC 100.29, was thoroughly mixed during heating to 45°C. Furthermore, 4.5 grams of a cellulose ester resin dissolved in acetone was added and the mixture was mixed for 5 minutes. During a second mixing period of 10-30 minutes, while maintaining a temperature of 45°C of the material, the solvent was evaporated. Finally,as a flow agent 1.8 grams of Aerosil® A-200 was added and thoroughly mixed.
As a test mixture 60 grams of a copper powder, 23.1 grams
of graphite 13.5 grams of a high temperature lubricant

Promold® available from Morton International of Cincinnati, Ohio, USA and remaining iron powder, ASC 100.29, was thoroughly mixed during heating to 45°C. Furthermore, 4.5 grams of a cellulose ester resin dissolved in acetone was added and the mixture was mixed for 5 minutes. During a second mixing period of 10-30 minutes, while maintaining a temperature of 45°C of the material, the solvent was evaporated. Finally,as a flow agent 0.9 grams of carbon black CB1 was added and thoroughly mixed.
Flow and AD of both the mixtures were measured according to ASTM B 213 at a temperature of 120°C. In table 5 it can be seen that a substantial increase in AD was achieved for the powder mixture according to the invention, substantially the same flow rate was achieved for the composition containing the new flow agent compared to the composition containing a known flow agent.

Example 4
Example 4 shows that the new flow agent can be used in combination with different iron-based powders. The mixtures were prepared according to the method of example 1 and the same binder/lubricant system as in example 1 was used. The iron-based powder used and amount of additives are shown in table 6. The identifications RA, RB, RC, RE and RF indicate that the mixtures are reference mixtures containing 0.06% flow agent Aerosil A-200, available from Degussa AG. The identifications C, E, and F indicate that the mixtures are reference mixtures

without any flow agents. Carbon black CB1 was used in all
mixtures.The iron or iron-based powder used were:
ASC 100.29, an atomised plain iron powder from Hoganas
AB.
Distaloy AB,a diffusion alloyed iron-based powder
containing Cu,Ni and Mo from Hoganas AB.
Astaloy CrM,a pre-alloyed iron-based powder containing
Cr and Mo from Hogan&s AB.
Astaloy CrL,a pre-alloyed iron-based powder containing
Cr and Mo from Hoganas AB.

The powder properties of the powder mixtures were measured. Test pieces according to ISO 2740 were compacted at a pressure of 600 MPa at ambient temperature

and sintered at 1120 °C 90/10 N2/H2 atmosphere. Mechanical properties such as green strength, GS, dimensional changes, DC, as well as sintered density, SD, were determined and the results are presented in table 7.

Table 7 shows that carbon black gives improved flow, AD and green strength in mixtures having different base powders compared to mixtures containing a known flow agent.
Example 5
Example 5 shows that the new flow agent also improves flow of a plain mixture without any binding agents (not bonded mixture),Three mixtures containing the iron powder ASC100.29, 2 % of a copper powder, 0.5 % of
graphite, 0.8% of ethylene bisstearamide as lubricant and

different amounts of carbon black, CB1, according to rable 8 were prepared. A mixture without any carbon black was used as reference mixture. The flow rate was measured on the different mixtures.

As can be seen from table 8 additions of carbon black to not bonded mixtures improve the flow rate.

' CLAIMS
1. A powder metallurgical composition comprising an
iron or iron-based metal powder, a lubricant and/or
a binder, and carbon black, wherein the amount of
carbon black is between 0.001 and 0.2% by weight,
preferably between 0.01 to 0.1% by weight.
2. The powder metallurgical composition according to
claim 1, wherein the particle size of carbon black
is below 200 nm, preferably below 100 nm and more
preferably below 50 nm.
3. The powder metallurgical composition according to
claim 1 or 2, wherein the specific surface area is
above 100 m2/g, preferably above 150 m2/g and more
preferably above 200 m /g.
4. The powder metallurgical composition according to
anyone of claims 1 to 3, comprising additives
selected from the group consisting of alloying
elements, machinability improving agents, hard phase
material and liquid phase forming agents.
5. The powder metallurgical composition according to
claim 4 wherein the alloying elements are selected
from the group consisting of graphite, Cu, Ni, Cr,
Mn, Si, V, Mo, P, W, S and Nb.
6. The powder metallurgical composition according to
claim 5, wherein the particles of at least one
alloying element selected from the group consisting
of graphite, Cu are bound to the iron or iron-based
powder particles.
7 .Use of carbon black as a flow enhancing agent in iron-based powder compositions.
Dated this 2 day of January 2007

Documents:

26-CHENP-2007 AMENDED PAGES OF SPECIFICATION 20-11-2012.pdf

26-CHENP-2007 AMENDED CLAIMS 20-11-2012.pdf

26-CHENP-2007 CORRESPONDENCE OTHERS 02-02-2012.pdf

26-CHENP-2007 EXAMINATION REPORT REPLY RECEIVED 20-11-2012.pdf

26-CHENP-2007 FORM-3 20-11-2012.pdf

26-CHENP-2007 OTHER PATENT DOCUMENT 20-11-2012.pdf

26-CHENP-2007 POWER OF ATTORNEY 20-11-2012.pdf

26-CHENP-2007 CORRESPONDENCE OTHERS 04-04-2012.pdf

26-chenp-2007-abstract.pdf

26-chenp-2007-claims.pdf

26-chenp-2007-correspondnece-others.pdf

26-chenp-2007-description(complete).pdf

26-chenp-2007-form 1.pdf

26-chenp-2007-form18.pdf

26-chenp-2007-form3.pdf

26-chenp-2007-form5.pdf

26-chenp-2007-pct.pdf


Patent Number 254631
Indian Patent Application Number 26/CHENP/2007
PG Journal Number 48/2012
Publication Date 30-Nov-2012
Grant Date 29-Nov-2012
Date of Filing 02-Jan-2007
Name of Patentee HOGANAS AB
Applicant Address 263 83, HOGANAS, SWEDEN;
Inventors:
# Inventor's Name Inventor's Address
1 SOLIMNJAD, NAGHI, BETESVAGEN 13, S-263 54 LERBERGET, SWEDEN;
PCT International Classification Number B22F3/00
PCT International Application Number PCT/SE05/01087
PCT International Filing date 2005-07-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 0401778-6 2004-07-02 Sweden