Title of Invention

A METHOD FOR EXECUTING A SHIFT BETWEEN A FIRST FIXED GEAR AND A SECOND FIXED GEAR IN A POWERTRAIN SYSTEM

Abstract A method and system for executing a shift from a first fixed gear to a second fixed gear in a powertrain system comprising a two-mode, compound- split, electro-mechanical transmission operative to receive a speed input from an engine is described. It includes deactivating an off-going clutch, and generating a time-based profile for rotational speed of an oncoming clutch. The input speed is controlled based upon the rotational speed of the oncoming clutch and an output of the transmission. The oncoming clutch is actuated, preferably when the input speed is synchronized with a rotational speed of an output shaft of the transmission multiplied by a gear ratio of the second fixed gear, preferably after a predetermined elapsed period of time in the range of 500 milliseconds.
Full Text 1
GP-308397
METHOD AND APPARATUS TO CONTROL AN ELECTRO-MECHANICAL
TRANSMISSION DURING SHIFTING EVENT
TECHNICAL FIELD
[0001] This invention pertains generally to control systems for powertrain
systems comprising electro-mechanical transmissions, and more specifically to
control during transmission shifts.
BACKGROUND OF THE INVENTION
[0002] Powertrain architectures comprise torque-generative devices,
including internal combustion engines and electric machines, which transmit
torque through a transmission device to a vehicle driveline. One such
transmission includes a two-mode, compound-split, electro-mechanical
transmission which utilizes ah input member for receiving motive torque from
a prime mover power source, typically an internal combustion engine, and an
output member for delivering motive torque from the transmission to the
vehicle driveline. Electrical machines, operatively connected to an electrical
energy storage device, comprise motor/generators operable to generate motive
torque for input to the transmission, independently of torque input from the
internal combustion engine. The electrical machines are further operable to
transform vehicle kinetic energy, transmitted through the vehicle driveline, to
electrical energy potential that is storable in the electrical energy storage
device. A control system monitors various inputs from the vehicle and the
operator and provides operational control of the powertrain system, including
controlling transmission gear shifting, controlling the torque-generative
devices, and regulating the electrical power interchange between the electrical
energy storage device and the electrical machines.

2
[0003] Engineers implementing powertrain systems having electro-
mechanical transmissions are tasked with developing shifting schemes
between various operating modes, including fixed gear modes and
continuously variable modes. During execution of a shift into a fixed gear
mode, there can be a change in operating conditions which can affect actuation
of an oncoming clutch and associated driveline dynamics.
[0004] Therefore, there is a need to for a method and apparatus to control
operation of a hybrid transmission during gear shifting events, to address
concerns mentioned hereinabove.
SUMMARY OF THE INVENTION
[0005] In order to address the concerns raised hereinabove, an article of
manufacture is provided to effect a method to control operation of a
transmission device of an exemplary powertrain during execution of a shift.
[0006] In accordance with an embodiment of the present invention, a method
is presented for executing a shift from a first fixed gear to a second fixed gear
in a powertrain system comprising a two-mode, compound-split, electro-
mechanical transmission operative to receive a speed input from an engine.
The method comprises deactivating an off-going clutch, and generating a
time-based profile for rotational speed of an oncoming clutch. The speed
input from the engine is controlled based upon the time-based profile for
rotational speed of the oncoming clutch and an output of the transmission.
The oncoming clutch is actuated, preferably when the speed input from the
engine is effective to substantially synchronize the speed of the oncoming
clutch with a rotational speed of an output shaft of the transmission multiplied
by a gear ratio of the second fixed gear, preferably after a predetermined
elapsed period of time in the range of 500 milliseconds.

3
[0007] In accordance with an aspect of the invention, there is provided an
article of manufacture, comprising a storage medium having a computer
program encoded therein for effecting a method to selectively actuate a
plurality of torque-transfer devices of a transmission device operative to
receive torque inputs from a plurality of devices and operative to generate an
output torque. The method comprises executing a shift operation from a first
fixed gear to a second fixed gear.
[0008] These and other aspects of the invention will become apparent to
those skilled in the art upon reading and understanding the following detailed
description of the embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The invention may take physical form in certain parts and
arrangement of parts, the preferred embodiment of which will be described in
detail and illustrated in the accompanying drawings which form a part hereof.
and wherein:
[0010] Fig. 1 is a schematic diagram of an exemplary powertrain, in
accordance with the present invention;
[0011] Fig. 2 is a schematic diagram of an exemplary architecture for a
control modules for a powertrain, in accordance with the present invention;
[0012] Fig. 3 is an exemplary data graph, in accordance with the present
invention; and,
[0013] Figs. 4A, 4B, and 4C are exemplary data graphs, in accordance with
the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0014] Referring now to the drawings, wherein the showings arc for the
purpose of illustrating the invention only and not for the purpose of limiting
the same, Figs. I and 2 depict a system comprising an engine 14, transmission

4
10, control system, and driveline which has been constructed in accordance
with an embodiment of the present invention.
[0015] Mechanical aspects of exemplary transmission 10 are disclosed in
detail in commonly assigned U.S. Patent No. 6,953,409, entitled "Two-Mode,
Compound-Split, Hybrid Electro-Mechanical Transmission having Four Fixed
Ratios", which is incorporated herein by reference. The exemplary two-mode,
compound-split, electro-mechanical transmission embodying the concepts of
the present invention is depicted in Fig. 1, and is designated generally by the
numeral 10. The transmission 10 has an input shaft 12 that is preferably
directly driven by engine 14. A transient torque damper 20 is incorporated
between the output shaft 18 of the engine 14 and the input member 12 of the
transmission 10. The transient torque damper 20 preferably comprises a
torque transfer device 77 having characteristics of a damping mechanism and
a spring, shown respectively as 78 and 79. The transient torque damper 20
permits selective engagement of the engine 14 with the transmission 10, but it
must be understood that the torque transfer device 77 is not utilized to change,
or control, the mode in which the transmission 10 operates. The torque
transfer device 77 preferably comprises a hydraulically operated friction
clutch, referred to as clutch C5.
[0016] The engine 14 may be any of numerous forms of internal combustion
engines, such as a spark-ignition engine or a compression-ignition engine,
readily adaptable to provide a power output to the transmission 10 at a range
of operating speeds, from idle, at or near 600 revolutions per minute (RPM), to
over 6,000 RPM. Irrespective of the means by which the engine 14 is
connected to the input member 12 of the transmission 10, the input member 12
is connected to a planetary gear set 24 in the transmission 10.
|0017] Referring specifically now to Fig. 1, the transmission 10 utilizes three
planetary-gear sets 24, 26 and 28. The first planetary gear set 24 has an outer
ring gear member 30 which circumscribes an inner, or sun gear member 32. A
plurality of planetary gear members 34 are rotatably mounted on a carrier 36

5
such that each planetary gear member 34 meshingly engages both the outer
gear member 30 and the inner gear member 32.
[0018] The second planetary gear set 26 also has an outer ring gear member
38, which circumscribes an inner sun gear member 40. A plurality of planetary
gear members 42 are rotatably mounted on a carrier 44 such that each
planetary gear 42 meshingly engages both the outer gear member 38 and the
inner gear member 40.
[0019] The third planetary gear set 28 also has an outer ring gear member
46, which circumscribes an inner sun gear member 48. A plurality of planetary
gear members 50 are rotatably mounted on a carrier 52 such that each
planetary gear 50 meshingly engages both the outer gear member 46 and the
inner gear member 48.
[0020] The three planetary gear sets 24, 26 and 28 each comprise simple
planetary gear sets. Furthermore, the first and second planetary gear sets 24
and 26 arc compounded in that the inner gear member 32 of the first planetary
gear set 24 is conjoined through a hub plate gear 54 to the outer gear member
38 of the second planetary gear set 26. The conjoined inner gear member 32 of
the first planetary gear set 24 and the outer gear member 38 of the second
planetary gear set 26 are connected to a first electrical machine comprising a
motor/generator 56, also referred to as "MG-A".
[0021] The planetary gear sets 24 and 26 are further compounded in that the
carrier 36 of the first planetary gear set 24 is conjoined through a shaft 60. to
the carrier 44 of the second planetary gear set 26. As such, carriers 36 and 44
of the first and second planetary gear sets 24 and 26, respectively, are
conjoined. The shaft 60 is also selectively connected to the carrier 52 of the
third planetary gear set 28, through a torque transfer device 62 which, as will
be hereinafter more fully explained, is employed to assist in the selection of
the operational modes of the transmission 10. The carrier 52 of the third
planetary gear set 28 is connected directly to the transmission output
member 64.

6
[0022] In the embodiment described herein, wherein the transmission 10 is
used in a land vehicle, the output member 64 is operably connected to a
driveline 90 comprising a gear box or other torque transfer device which
provides a torque output to one or more vehicular axles or half-shafts (not
shown) which terminate in drive members. The drive members may be either
front or rear wheels of the vehicle on which they are employed, or they may be
a drive gear of a track vehicle.
[0023] The inner gear member 40 of the second planetary gear set 26 is
connected to the inner gear member 48 of the third planetary gear set 28,
through a sleeve shaft 66 that circumscribes shaft 60. The outer gear member
46 of the third planetary gear set 28 is selectively connected to ground,
represented by the transmission housing 68, through a torque transfer device
70. Torque transfer device 70, as is also hereinafter explained, is also
employed to assist in the selection of the operational modes of the
transmission 10. The sleeve shaft 66 is also connected to a second electrical
machine comprising a motor/generator 72, referred to as MG-B.
[0024] All the planetary gear sets 24, 26 and 28 as well as MG-A and MG-B
56 and 72 are coaxially oriented, as about the axially disposed shaft 60. MG-
A and MG-B 56 and 72 are both of an annular configuration which permits
them to circumscribe the three planetary gear sets 24, 26 and 28 such that the
planetary gear sets 24, 26 and 28 are disposed radially inwardly of the MG-A
and MG-B 56 and 72.
[0025] A torque transfer device 73 selectively connects the sun gear 40 with
ground, i.e., with transmission housing 68. A torque transfer device, i.e. C4 75
is operative as a lock-up clutch, locking planetary gear sets 24, 26, MG-A and
MG-B 56, 72 and the input to rotate as a group, by selectively connecting the
sun gear 40 with the carrier 44. The torque transfer devices 62, 70, 73, 75 are
all friction clutches, respectively referred to as follows: clutch Cl 70, clutch
C2 62, clutch C3 73, and clutch C4 75. Each clutch is preferably hydraulically
actuated, receiving pressurized hydraulic fluid from a pump when a

7
corresponding clutch control solenoid is actuated. Hydraulic actuation of each
of the clutches is accomplished using a known hydraulic fluid circuit having a
plurality of clutch-control solenoids, which is not described in detail herein.
[0026] The transmission 10 receives input motive torque from the torque-
generative devices, including the engine 14 and the electrical machines 56
and 72, as a result of energy conversion from fuel or electrical potential
stored in an electrical energy storage device (ESD) 74. The ESD 74
typically comprises one or more batteries. Other electrical energy and
electrochemical energy storage devices that have the ability to store electric
power and dispense electric power may be used in place of the batteries
without altering the concepts of the present invention. The ESD 74 is
preferably sized based upon factors including regenerative requirements,
application issues related to typical road grade and temperature, and
propulsion requirements such as emissions, power assist and electric range.
The HSD 74 is high voltage DC-coupled to transmission power inverter
module (TPIM) 19 via DC lines or transfer conductors 27. The TPIM 19 is
an element of the control system described hereinafter with regard to Fig. 2.
The TPIM 19 communicates with the first electrical machine 56 by transfer
conductors 29, and the TPIM 19 similarly communicates with the second
electrical machine 72 by transfer conductors 31. Electrical current is
transferable to or from the ESD 74 in accordance with whether the ESD 74
is being charged or discharged. TPIM 19 includes the pair of power
inverters and respective motor control modules configured to receive motor
control commands and control inverter slates therefrom for providing motor
drive or regeneration functionality.
[0027] In motoring control, the respective inverter receives current from
the DC lines and provides AC current to the respective electrical machine,
i.e. MG-A and MG-B, over transfer conductors 29 and 31. In regeneration
control, the respective inverter receives AC current from the electrical

8
machine over transfer conductors 29 and 31 and provides current to the DC
lines 27. The net DC current provided to or from the inverters determines
the charge or discharge operating mode of the electrical energy storage
device 74. Preferably, MG-A 56 and MG-B 72 are three-phase AC
machines and the inverters comprise complementary three-phase power
electronics.
[0028] Referring again to Fig. 1, a drive gear 80 may be presented from the
input member 12. As depicted, the drive gear 80 fixedly connects the input
member 12 to the outer gear member 30 of the first planetary gear set 24, and
the drive gear 80, therefore, receives power from the engine 14 and/or the
electrical machines 56 and/or 72 through planetary gear sets 24 and/or 26. The
drive gear 80 meshingly engages an idler gear 82 which, in turn, meshingly
engages a transfer gear 84 that is secured to one end of a shaft 86. The other
end of the shaft 86 may be secured to a hydraulic/transmission fluid pump 88.
[0029] Referring now to Fig. 2, a schematic block diagram of the control
system, comprising a distributed control module architecture, is shown. The
elements described hereinafter comprise a subset of an overall vehicle control
architecture, and are operable to provide coordinated system control of the
powertrain system described herein. The control system is operable to
synthesize pertinent information and inputs, and execute algorithms to control
various actuators to achieve control targets, including such parameters as fuel
economy, emissions, performance, driveability, and protection of hardware,
including batteries of ESD 74 and MG-A and MG-B 56, 72. The distributed
control module architecture includes engine control module ("ECM") 23,
transmission control module ('TCM') 17, battery pack control module
('BPCM') 21. and Transmission Power Inverter Module ('TPIM') 19. A
hybrid control module ('HCP') 5 provides overarching control and
coordination of the aforementioned control modules. There is a User Interface
('UI') 13 operably connected to a plurality of devices through which a vehicle
operator typically controls or directs operation of the powertrain through a

9
request for torque including the transmission 10. Exemplary vehicle operator
inputs to the UI 13 include an accelerator pedal, a brake pedal, transmission
gear selector, and, vehicle speed cruise control. Each of the aforementioned
control modules communicates with other control modules, sensors, and
actuators via a local area network ('LAN') bus 6. The LAN bus 6 allows for
structured communication of control parameters and commands between the
various control modules. The specific communication protocol utilized is
application-specific. The LAN bus and appropriate protocols provide for
robust messaging and multi-control module interfacing between the
aforementioned control modules, and other control modules providing
functionality such as antilock brakes, traction control, and vehicle stability.
[0030] The HCP 5 provides overarching control of the hybrid powertrain
system, serving to coordinate operation of the ECM 23, TCM 17, TPIM 19,
and BPCM 21. Based upon various input signals from the UI 13 and the
powertrain, including the battery pack, the HCP 5 generates various
commands, including: an operator torque To, an engine torque command,
clutch torque commands for the various clutches C1, C2, C3, C4 of the
transmission 10; and motor torque commands.
[0031] The ECM 23 is operably connected to the engine 14, and functions to
acquire data from a variety of sensors and control a variety of actuators,
respectively, of the engine 14 over a plurality of discrete lines collectively
shown as aggregate line 35. The ECM 23 receives the engine torque
command from the HCP 5. and generates a desired axle torque, and an
indication of actual engine torque input to the transmission, which is
communicated to the HCP 5. For simplicity, ECM 23 is shown generally
having bi-directional interface with engine 14 via aggregate line 35. Various
other parameters that may be sensed by ECM 23 include engine coolant
temperature, engine input speed (N1) to shaft 12 leading to the transmission,
manifold pressure, ambient air temperature, and ambient pressure. Various

10
actuators that may be controlled by the ECM 23 include fuel injectors, ignition
modules, and throttle control modules.
[0032] The TCM 17 is operably connected to the transmission 10 and
functions to acquire data from a variety of sensors and provide command
signals to the transmission. Inputs from the TCM 17 to the HCP 5 include
estimated clutch torques for each of the clutches C1, C2, C3, and, C4 and
rotational speed, No, of the output shaft 64. Other actuators and sensors may
be used to provide additional information from the TCM to the HCP for
control purposes.
[0033] The BPCM 21 is signally connected one or more sensors operable to
monitor electrical current or voltage parameters of the ESD 74 to provide
information about the state of the batteries to the HCP 5. Such information
includes battery state-of-charge, battery voltage and available battery power.
[0034] The Transmission Power Inverter Module (TPIM) 19 includes a
pair of power inverters and motor control modules configured to receive
motor control commands and control inverter states therefrom to provide
motor drive or regeneration functionality. The TPIM 19 is operable to
generate torque commands for MG-A 56 and MG-B 72 based upon input
from the HCP 5, which is driven by operator input through UI 13 and
system operating parameters. The motor torque commands for MG-A and
MG-B are implemented by the control system, including the TPIM .19, to
control MG-A and MG-B. Individual motor speed signals for MG-A and
MG-B respectively, are derived by the TPIM 19 from the motor phase
information or conventional rotation sensors. The TPIM 19 determines and
communicates motor speeds to the HCP 5. The electrical energy storage
device 74 is high-voltage DC-coupled to the TPIM 19 via DC lines 27.
Electrical current is transferable to or from the TPIM 19 in accordance with
whether the ESD 74 is being charged or discharged.
[0035] Each of the aforementioned control modules is preferably a general-
purpose digital computer generally comprising a microprocessor or central

11
processing unit, storage mediums comprising read only memory (ROM),
random access memory (RAM), electrically programmable read only memory
(EPROM), high speed clock, analog to digital (A/D) and digital to analog
(D/A) circuitry, and input/output circuitry and devices (I/O) and appropriate
signal conditioning and buffer circuitry. Each control module has a set of
control algorithms, comprising resident program instructions and calibrations
stored in ROM and executed to provide the respective functions of each
computer. Information transfer between the various computers is preferably
accomplished using the aforementioned LAN 6.
[0036] Algorithms for control and state estimation in each of the control
modules arc typically executed during preset loop cycles such that each
algorithm is executed at least once each loop cycle. Algorithms stored in the
non-volatile memory devices are executed by one of the central processing
units and are operable to monitor inputs from the sensing devices and execute
control and diagnostic routines to control operation of the respective device,
using preset calibrations. Loop cycles are typically executed at regular
intervals, for example each 3.125, 6.25, 12.5, 25 and 100 milliseconds during
ongoing engine and vehicle operation. Alternatively, algorithms may be
executed in response to occurrence of an event.
[()037] In response to an operator's action, as captured by the UI 13. the
supervisory HCP control module 5 and one or more of the other control
modules determine requested transmission output torque, To at shaft 64, also
referred to as an operator torque request. Selectively operated components of
the transmission 10 are appropriately controlled and manipulated to respond to
the operator demand. For example, in the exemplary embodiment shown in
Fig. 1 and 2, when the operator has selected a forward drive range and
manipulates either the accelerator pedal or the brake pedal, the HCP 5
determines an output torque for the transmission which affects how and when
the vehicle accelerates or decelerates. Final vehicle acceleration is affected by
other factors, including, e.g.. road load, road grade, and vehicle mass. The

12
HCP 5 monitors the parametric states of the torque-generative devices, and
determines the output of the transmission required to arrive at the desired
torque output. Under the direction of the HCP 5, the transmission 10 operates
over a range of output speeds from slow to fast in order to meet the operator
demand.
[0038] The two-mode, compound-split, electro-mechanical transmission,
includes output member 64 which receives output power through two distinct
gear trains within the transmission 10, and operates in several transmission
operating modes, described with reference now to Fig. 1, and Table 1, below.
Table 1
Transmission Operating Mode Actuated Clutches
Mode 1 C1 70
Fixed Ratio (GR1) C1 70 C4 75
Fixed Ratio (GR2) C1 70 C2 62
Model 11 C2 62
Fixed Ratio (GR3) C2 62 C4 75
Fixed Ratio (GR4) C2 62 C3 73
[0039] The various transmission operating modes described in the table
indicate which of the specific clutches C1, C2, C3, C4 are engaged or actuated
for each of the operating modes. Additionally, in various transmission
operating modes, MG-A and MG-B may each operate as electrical motors to
generate motive torque, or as a generator to generate electrical energy. A first
mode, or gear train, is selected when the torque transfer device 70 is actuated
in order to "ground" the outer gear member 46 of the third planetary gear set
28. A second mode, or gear train, is selected when the torque transfer device
70 is released and the torque transfer device 62 is simultaneously actuated to
connect the shaft 60 to the carrier 52 of the third planetary gear set 28. Other
factors outside the scope of the invention affect when the electrical machines
56. 72 operate as motors and generators, and arc not discussed herein.

13
[0040] The control system, shown primarily in Fig. 2, is operable to provide
a range of transmission output speeds, No, of shaft 64 from relatively slow to
relatively fast within each mode of operation. The combination of two modes
with a slow-to-fast output speed range in each mode allows the transmission
10 to propel a vehicle from a stationary condition to highway speeds, and meet
various other requirements as previously described. Additionally, the control
system coordinates operation of the transmission 10 so as to allow
synchronized shifts between the modes.
[0041] The first and second modes of operation refer to circumstances in
which the transmission functions are controlled by one clutch, i.e. either clutch
C1 62 or C2 70. and by the controlled speed and torque of the electrical
machines 56 and 72, which can be referred to as a continuously variable
transmission mode. Certain ranges of operation are described below in which
fixed ratios are achieved by applying an additional clutch. This additional
clutch may be clutch C3 73 or C4 75, as shown in the table, above.
[0042] When the additional clutch is applied, fixed ratio of input-to-output
speed of the transmission, i.e. N1/No, is achieved. The rotations of machines
MG-A and MG-B 56, 72 are dependent on internal rotation of the mechanism
as defined by the clutching and proportional to the input speed, N1. determined
or measured at shaft 12. The machines MG-A and MG-B function as motors
or generators. They are completely independent of engine to output power
flow, thereby enabling both to be motors, both to function as generators, or
any combination thereof. This allows, for instance, during operation in Fixed
Ratio GR1 that motive power output from the transmission at shaft 64 is
provided by power from the engine and power from MG-A and MG-B,
through planetary gear set 28 by accepting power from the energy storage
device 74.

14
[0043] Referring now to Fig. 3, various transmission operating modes are
plotted as a function of transmission output speed, No, and transmission input
speed, N, for the exemplary transmission and control system shown in Fig. 1
and 2. The Fixed Ratio operation is shown as individual lines for each of the
specific gear ratios, GR1, GR2, GR3, and GR4, as described with reference to
Table 1, above. The continuously variable Mode operation is shown as ranges
of operation for each of Mode I and Mode II. The transmission operating
mode is switched between Fixed Ratio operation and continuously variable
Mode operation by activating or deactivating specific clutches. The control
system is operative to determine a specific transmission operating mode based
upon various criteria, using algorithms and calibrations executed by the
control system, and is outside the scope of this invention.
[0044] Selection of the mode of operation of the transmission depends
primarily on operator input and the ability of the powertrain to meet that input.
Referring again to Fig. 3 and Table 1, a first range falls primarily within mode
1 operation when clutches C1 70 and C4 75 are engaged. A second range falls
within mode 1 and mode 11 when clutches C2 62 and C1 70 are engaged. The
first fixed gear ratio is available during mode 1, when clutches C1 and C4 are
engaged. The second fixed gear ratio is available during mode 1, when
clutches C1 and C2 are engaged. The third fixed ratio range is available
during mode II when clutches C2 62 and C4 75 are engaged, and the fourth
fixed ratio range is available during mode \\ when clutches C2 62 and C3 73
are engaged. It should be recognized that the first and second ranges of
continuously variable operation for Mode I and Mode II may overlap.
[0045] Output of the exemplary powertrain system described hereinabove is
constrained due to mechanical and system limitations. The output speed, No,
of the transmission measured at shaft 64 is limited due to limitations of engine
output speed and transmission input speed, N1, measured at shaft 12, and speed
limitations of the MG-A and MG-B. Output torque of the transmission 64 is
similarly limited due to limitations of the engine input torque and input torque

15
measured at shaft 12 after the transient torque damper 20, and torque
limitations of MG-A and MG-B 56, 72.
[0046] In operation, a shift occurs in the exemplary transmission due to a
variety of operating characteristics of the powertrain. There may be a change
in demand for an operator demand for torque. Such demands are typically
communicated through inputs to the U1 13 as previously described.
Additionally, a change in demand for output torque may be predicated on a
change in external conditions, including, e.g. changes in road grade, road
surface conditions, or wind load. A shift change may be predicated on a
change in powertrain torque demand caused by a control module command to
change one of the electrical machines between electrical energy generating
mode and torque generating mode. A shift change may be predicated on a
change in an optimization algorithm or routine operable to determine optimum
system efficiency based upon operator demand for power, battery state of
charge, and energy efficiencies of the engine 14 and MG-A and MG-B 56, 72.
The control system manages torque inputs from the engine 14 and MG-A and
MG-B 56, 72 based upon an outcome of the executed optimization routine,
and there can be changes in system optimization that compel a shift change in
order to optimize system efficiencies to improve fuel economy and manage
battery charging. A shift change may be predicated upon a fault in a
component or system.
[0047] The distributed control architecture acts in concert to determine a
need for a change in the transmission operating state, and executes the
forgoing to effect the change in gear. A shift change in the exemplary system
comprises one of at least three possible situations. There can be a shift from
one fixed gear to a second fixed gear. There can be a shift from a fixed gear to
one of the continuously variable modes. There can be a shift from one of the
continuously variable modes to a fixed gear.

16
[0048] When a shift is from one fixed gear to a second fixed gear, the shift
process includes deactivating an off-going clutch, and actuating an oncoming
clutch. By way of example, in shifting from GR 1 to GR2, off-going clutch C4
75 is deactivated, and oncoming clutch C2 62 is actuated, permitting it to
transmit torque. Clutch C1 70 is actuated throughout the process. Actuating
an oncoming clutch preferably includes synchronizing the speeds of the
elements of the oncoming clutch by controlling the torque-generative devices
and, if necessary, controlling slippage of the oncoming clutch. Clutch speed is
defined generally as a difference in speed between the elements of the clutch.
[0049] A shift change out of any of the fixed gear operating modes can be a
multi-step process, wherein torque transmitted across the off-going clutch is
preferably off-loaded prior to its deactivation. Offloading torque across the
off-going clutch includes adjusting torque-carrying across other torque-
transmission paths, e.g. using MG-A or MG-B, and the oncoming clutch.
Deactivating an off-going clutch comprises decreasing the torque-carrying
capacity of the off-going clutch by reducing hydraulic pressure through
control of one of the solenoids, as previously described.
[0050] To effect a shift into a fixed gear, torque is off-loaded from the off-
going clutch and it is deactivated. An input side of the oncoming clutch is
preferably synchronized with the speed of an output of the oncoming clutch
and slippage is controlled to minimize heat generation in the oncoming clutch
while preventing or reducing driveline jerks and lurches. The oncoming clutch
is actuated by controlling hydraulic pressure applied to the clutch to a
magnitude sufficient to hold the clutch with zero slip across the clutch
elements. Regardless of the type of shift being executed, a shift change takes
a finite amount of time to execute, typically targeted for less than one second,
and is predicated upon specific circumstances that are monitored and
controlled by the control system described hereinabove.

17
[0051] Referring now to Fig. 4, the invention generally comprises an
algorithm resident in one of the modules of the control system and executed
therein, which acts to implement a method to control operation of the
powertrain system, i.e. the transmission 10 and the torque-generative devices
14, 56, 72, during a shift from a first operating mode, preferably one of the
fixed gears, to a second operating mode which one of the fixed gears. When a
shift is commanded, the control system is operable to determine the specific
torque transfer clutch to be off-loaded and deactivated and the specific torque
transfer clutch to be actuated, based upon a calibration that contains the
substance of the information contained in Table 1, above. The off-going
clutch is deactivated, and the transmission enters a speed phase, wherein
output of the transmission is determined based upon operation of the electrical
machines, MG-A and MG-B. A time-based speed profile for the oncoming
clutch established. The output of the transmission, No, is monitored, and, the
input speed, N1, from the engine is controlled based upon the time-based speed
profile for the oncoming clutch and the output ol the transmission preferably
within a limited elapsed time regardless of a change in output of the
transmission. This operation is described in detail herein.
[0052] Referring again to Fig. 4, a series of time-related data graphs are
shown depicting an exemplary shift from a first fixed gear, in this example
GR1, to a second fixed gear, in this example GR2. The first data graph depicts
a measure of input speed, N1, plotted as a function of time for the exemplary
shifting event. Prior to point B, the transmission is operating in first fixed gear
GR1, characterized by actuation of torque-transfer clutches C1 70 and C4 75.
At point B, clutch C4 is deactivated, and the transmission operates in
continuously variable Mode 1, with only clutch C1 actuated, also referred to as
a speed phase. At point G, clutch C2 62 is actuated, and the transmission
begins operation in second fixed gear GR2, and the speed phase ends. During
the speed phase, elements of clutch C2 62 are substantially synchronized to
permit actuation of the oncoming clutch C2 without driveline disturbances.

18
The process of synchronizing the elements of clutch C2 62 comprises
controlling the input speed N, according to a predetermined control scheme,
described as follows. The input speed N, determines the speed of the
oncoming clutch C2, which yields speed of an element of the oncoming
clutch. The speed of the other element of the oncoming clutch is the speed of
the carrier 52 of the third planetary gear set 28 directly connected to the
transmission output member 64. The speed of the carrier 52 is calculable as
being the speed of the output shaft 64, No, multiplied by the gear ratio, GR2,
or N0*GR2. The total elapsed time for executing the shift from the first fixed
gear to the second fixed gear is preferably in the range of about 500
milliseconds, from deactivating of the off-going clutch to actuation of the
oncoming clutch.
[0053] Referring now to the second data-graph of Fig. 4, a graph
representative of an exemplary time-based profile for rotational speed of the
oncoming clutch Nc_DOT during the speed phase is depicted, elements of which are
captured as calibration values in the control system. A time-based speed
profile, shown as the third data-graph and comprising a change in speed of the
oncoming clutch Nc_DOT over the fixed amount of time, is generated therefrom
and used to control input speed N1 during the speed phase of the shift. The
oncoming clutch is initially operating at a known speed, Nc_INIT, determinable
based upon the input speed N1 the output speed No, and the off-going gear
ratio. The Y-axis of the graph is a measure of a change in the speed of the
oncoming clutch, referred to as Nc_D0T. For each initial operating speed NC_INIT
of the oncoming clutch, the operating profile for change in speed of the
oncoming clutch Nc_DOT is determined in terms of the transmission output
speed No, over the fixed amount of time.
[0054] The operating profile is generated as follows, with reference the third
data graph, which depicts a pre-calibrated formal for a time-based change in
speed of the oncoming clutch NC_DOT, preferably stored in a non-volatile
memory device of one of the control modules. The pre-calibrated format for

19
time-based change in speed of the oncoming clutch preferably comprises a
three-step format, designated by time-steps T1, T2, and T3, and each time-step
is preferably a predetermined percentage of the total elapsed time for a shift.
The total time Tl + T2 + T3 comprises the elapsed time from point B to point
G. The first time-step Tl comprises a transition period, wherein there is an
initial ramp up in the clutch speed. The second time-step T2 comprises period
of steady-state change in speed of the oncoming clutch. The third time-step
T3 comprises a ramp down in the speed of the oncoming clutch as
synchronization occurs.
[0055] Referring again to the data graphs of Fig 4, in overall operation
rotational speed of each of the clutches C1, C2, C3, and C4 is determinable
based upon input speed, N1, and output speed No. The elapsed time to execute
the shift is fixed. The format for time-based change in speed of the oncoming
clutch NC_DOT is pre-calibrated, and the desired fixed gear is determined, thus
identifying which of the clutches is oncoming. Therefore, at point B, when the
off-going clutch is deactivated, one of the control modules is operable to
determine initial speed of the oncoming clutch, NC_INIT and a final speed of the
oncoming clutch, which is fixed at zero since clutch speed is calculable based
upon relative speed of opposing clutch elements. A specific time-based speed
profile for the input speed N1 is generated based upon the pre-calibrated format
for time-based change in speed of the oncoming clutch NC_DOT, and the output
speed of the transmission, which is measurable. The "input speed N1 is
controlled by controlling operation of the engine 14 via ECM 23. When the
input speed N1 is synchronized with the speed of the output shaft 64, No,
multiplied by the gear ratio, GR2, or N0*GR2, the oncoming clutch is actuated
and fixed gear operation begins.
[0056] Referring again to Fig. 4, aspects of the speed phase shift execution
are described in greater detail. Line element A comprises a showing of input
speed, N1, as a function of output speed multiplied by the First gear ratio, GR1,
N0*GR1. At time point B, a shift is initiated, with an intent to shift into the

20
second gear, GR2, represented by Line element D. In a first exemplary shift
event, Line segments C and F represent input speed, N1, for a shift event
wherein there is no change in output speed of the transmission during the
speed phase of the shift. At time point G, when the input speed, N1, is
synchronized with output speed multiplied by the second gear ratio, N0*GR2,
oncoming clutch C2 62 is actuated. From this point forward, the transmission
operates in the second fixed gear, GR2. The elapsed time from point B to
point G is a fixed amount of time, typically around 500 milliseconds.
[0057] In a second exemplary shift event, Line segments C and F' represent
input speed, Nb for a shift event wherein there is a change in the output of the
transmission during the speed phase. At point H the transmission output No
changes to No', further represented by the line segment F'. The control
system, which monitors output speed No, is operable to recalculate the time-
based profile for speed of the oncoming clutch, and adjust the engine input
speed, N1, to achieve the change in clutch speed to synchronize to the changed
output speed No'. Point G' represents the point in time at which the input
speed, N1, synchronizes with the output of the transmission, multiplied by the
intervening gear ratio, N0'*GR2. At time point G', when the input speed. N1,
is synchronized with output speed multiplied by the second gear ratio,
N0'*GR2, oncoming clutch C2 62 is actuated. From this point forward, the
transmission operates in the second fixed gear, GR2. The elapsed time from
point B to point G' *is the aforementioned fixed amount of time, typically
around 500 milliseconds.
[0058] In operation, rotational speed of the oncoming clutch is preferably
synchronized with the transmission output speed multiplied by the oncoming
gear ratio, N0*GR2, in order to effect a shift into the oncoming fixed gear
without inducing driveline dynamics, e.g. ringing, jerks, and clutch slippage.
In the exemplary transmission 10, when the output speed, N0, and oncoming
gear ratio arc known, the synchronized speed of the oncoming clutch, in this
example C2, is calculable based upon the output speed and oncoming gear

21
ratio, i.e. NC2 = N0*GR2. The control system controls the input speed, N1,
through known engine control algorithms, including subsequent changes in
output speed, to synchronize the speed of the oncoming clutch and effect
actuation of the clutch in the elapsed amount of time.
[0059] It is understood that modifications in the transmission hardware are
allowable within the scope of the invention. The invention has been described
with specific reference to the preferred embodiments and modifications
thereto. Further modifications and alterations may occur to others upon
reading and understanding the specification. It is intended to include all such
modifications and alterations insofar as they come within the scope of the
invention.

22
Having thus described the invention, it is claimed:
1. Method for executing a shift from a first fixed gear to a second fixed
gear in a powertrain system comprising a two-mode, compound-split, electro-
mechanical transmission operative to receive a speed input from an engine, the
method comprising:
5 deactivating an off-going clutch;
generating a time-based profile for rotational speed of an oncoming clutch;
controlling the speed input from the engine based upon the time-based profile
for rotational speed of the oncoming clutch and an output of the
transmission; and,
10 actuating the oncoming clutch.
2. The method of claim 1, wherein generating the time-based profile for
rotational speed of the oncoming clutch comprises:
determining a rotational speed of the oncoming clutch at a start of the shift;
and.
5 applying the determined speed of the oncoming clutch at the start of the shift
to a precalibrated format for a time-based change in speed of the
oncoming clutch.
3. The method of claim 2, wherein the precalibrated format for a time-
based change in speed of the oncoming clutch comprises a three-step format,
wherein the first step comprises a ramp up in the speed, the second step
comprises a steady state change in speed, and the third step comprises a ramp
5 down in the speed of the oncoming clutch.

23
4. The method of claim 1, wherein controlling the speed input from the
engine based upon the time-based profile for rotational speed of the oncoming
clutch and an output of the transmission comprises controlling the speed input
from the engine effective to substantially synchronize the speed of the
5 oncoming clutch with a rotational speed of an output shaft of the transmission
multiplied by a gear ratio of the second fixed gear.
5. The method of claim 4, further comprising controlling the speed input
from the engine to substantially synchronize the speed of the oncoming clutch
to a rotational speed of an output shaft of the transmission multiplied by a gear
ratio of the second fixed gear after a predetermined elapsed period of lime.
6. The method of claim 5, wherein the predetermined elapsed period of
time comprises a period of approximately 500 milliseconds from deactivation
of the off-going clutch to actuation of the oncoming clutch.
7. Article of manufacture, comprising a storage medium having an
encoded computer program operative to effect a shift from a first fixed gear to
a second fixed gear in a transmission device operative to receive an input
speed from a shaft of an engine, the computer program comprising:
5 code to deactivate an off-going clutch;
code to generate a time-based profile for rotational speed of an oncoming
clutch;
code to control the input speed from the shaft of the engine based upon the
time-based profile for rotational speed of the oncoming clutch and an
10 output of the transmission; and,
code to actuate the oncoming clutch.

24
8. The article of manufacture of claim 7, wherein the transmission
comprises a two-mode, compound-split, electro-mechanical transmission
having four torque-transfer clutches and operable in one of four fixed gear
modes and two continuously variable modes.
9. The article of manufacture of claim 8, wherein the two-mode,
compound-split, electro-mechanical transmission is operable to receive torque
input from first and second electrical machines.
10. The article of manufacture of claim 8, wherein operation of the
transmission in one of the four fixed gears modes is effected by actuation of
pre-selected pairs of the torque-transfer clutches.
11. The article of manufacture of claim 7, wherein the code to control the
input speed from the shaft of the engine based upon the time-based speed
profile for the oncoming torque-transfer clutch and the output of the
transmission comprises code to control input speed of the engine to
5 substantially synchronize the speed of the oncoming clutch to a speed of an
output shaft of the transmission multiplied by a gear ratio of the second fixed
gear after an elapsed period of time.
12. Powertrain system, comprising:
A) an internal combustion engine operatively connected to an electro-
mechanical transmission device effective to operate in one of four fixed gears
via selective actuation of four clutches; and,
5 13) a control system:
i) adapted to monitor an input speed from the engine to the
transmission, and, monitor speed of an output shaft of the transmission; and.
ii) adapted to control the input speed of the engine and adapted to
selectively actuate the four clutches; and,

25
10 iii) including a storage medium having an encoded computer program
operative to effect a shift from a first fixed gear to a second fixed gear in the
transmission, the computer program comprising:
code to deactivate an off-going clutch;
code to generate a time-based profile for speed of an oncoming clutch;
15 code to control the input speed from the engine based upon the time-based
profile for speed of the oncoming clutch and the speed of the output
shaft of the transmission; and,
code to actuate the oncoming clutch.
13. The powertrain system of claim 12, further comprising code to control
the input speed from the engine to substantially synchronize the speed of the
oncoming clutch lo the speed of the output shaft of the transmission multiplied
by a gear ratio of the second fixed gear after a predetermined elapsed period of
5 time.
14. The powertrain system of claim 12, wherein the control system
comprises a distributed control module architecture operative to coordinate
control of the powertrain system.

A method and system for executing a shift from a first fixed gear to a
second fixed gear in a powertrain system comprising a two-mode, compound-
split, electro-mechanical transmission operative to receive a speed input from
an engine is described. It includes deactivating an off-going clutch, and
generating a time-based profile for rotational speed of an oncoming clutch.
The input speed is controlled based upon the rotational speed of the oncoming
clutch and an output of the transmission. The oncoming clutch is actuated,
preferably when the input speed is synchronized with a rotational speed of an
output shaft of the transmission multiplied by a gear ratio of the second fixed
gear, preferably after a predetermined elapsed period of time in the range of
500 milliseconds.

Documents:

00541-kol-2007-abstract.pdf

00541-kol-2007-assignment.pdf

00541-kol-2007-claims.pdf

00541-kol-2007-correspondence others 1.1.pdf

00541-kol-2007-correspondence others.pdf

00541-kol-2007-description complete.pdf

00541-kol-2007-drawings.pdf

00541-kol-2007-form 1.pdf

00541-kol-2007-form 2.pdf

00541-kol-2007-form 3.pdf

00541-kol-2007-form 5.pdf

00541-kol-2007-gpa.pdf

00541-kol-2007-priority document.pdf

541-KOL-2007(16-11-2007)-CORRESPONDENCE.pdf

541-KOL-2007(16-11-2007)-OTHER PATENT DOCUMENT.pdf

541-KOL-2007-(16-11-2011)-ABSTRACT.pdf

541-KOL-2007-(16-11-2011)-AMANDED CLAIMS.pdf

541-KOL-2007-(16-11-2011)-DESCRIPTION (COMPLETE).pdf

541-KOL-2007-(16-11-2011)-DRAWINGS.pdf

541-KOL-2007-(16-11-2011)-EXAMINATION REPORT REPLY RECEIVED.pdf

541-KOL-2007-(16-11-2011)-FORM-1.pdf

541-KOL-2007-(16-11-2011)-FORM-2.pdf

541-KOL-2007-(16-11-2011)-FORM-3.pdf

541-KOL-2007-(16-11-2011)-OTHERS.pdf

541-KOL-2007-ASSIGNMENT.pdf

541-KOL-2007-CORRESPONDENCE 1.1.pdf

541-KOL-2007-CORRESPONDENCE.pdf

541-KOL-2007-EXAMINATION REPORT.pdf

541-KOL-2007-FORM 18 1.1.pdf

541-KOL-2007-FORM 18.pdf

541-KOL-2007-FORM 26.pdf

541-KOL-2007-FORM 3.pdf

541-KOL-2007-GRANTED-ABSTRACT.pdf

541-KOL-2007-GRANTED-CLAIMS.pdf

541-KOL-2007-GRANTED-DESCRIPTION (COMPLETE).pdf

541-KOL-2007-GRANTED-DRAWINGS.pdf

541-KOL-2007-GRANTED-FORM 1.pdf

541-KOL-2007-GRANTED-FORM 2.pdf

541-KOL-2007-GRANTED-LETTER PATENT.pdf

541-KOL-2007-GRANTED-SPECIFICATION.pdf

541-KOL-2007-OTHERS.pdf

541-KOL-2007-REPLY TO EXAMINATION REPORT.pdf


Patent Number 252243
Indian Patent Application Number 541/KOL/2007
PG Journal Number 18/2012
Publication Date 04-May-2012
Grant Date 02-May-2012
Date of Filing 03-Apr-2007
Name of Patentee GM GLOBAL TECHNOLOGY OPERATIONS, INC
Applicant Address 300 GM RENAISSANCE CENTER DETROIT, MICHIGAN
Inventors:
# Inventor's Name Inventor's Address
1 JY-JEN F. SAH 1915, BLOOMFIELD OAKS DRIVE WEST BLOOMFIELD, MICHIGAN 48324
2 ANTHONY H. HEAP 2969 LESLIE PARK CIRCLE AN ARBOR, MICHIGAN 48105
PCT International Classification Number B60K6/365,B60W10/02
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/420,257 2006-05-25 U.S.A.