Title of Invention

A PROCESS FOR OPTIMIZING THE PRODUCTION PERFORMANCE OF A SPINNING MACHINE

Abstract This invention relates to a process for optimizing production performance of a spinning machine having a plurality of spinning positions (1, 2, 3, 4), each spinning position being equipped with a yarn breakage detector (19), individually controllable drive elements (20, 21) and individually controllable twisting elements, in which spinning machine production speed is reduced in a case of an increase in the number of end breaks, and is increased in the case of decreasing number of end breaks, the process comprising the steps of monitoring each individual spinning position (1, 2,...) of the spinning machine separately with regard to the number of end breaks; and adjusting each individual spinning position (1, 2,...) to an optimized production- speed, wherein when the production speed is adjusted by a regular (23), the level of the imparted spinning twist is accordingly adapted thereto , and control of the amount of imparted spinning twist is performed by a controllable choke valve (25).
Full Text BACKGROUND AND SUMMARY OF THE INVENTION
A process for optimizing the production performance of a spinning machine
The present invention relates to a process for optimizing the production performance
of a spinning machine, in that the production speed is reduced in the case of an
increase in the number of end breaks, while in the case of a decreasing number of
end breaks the production speed is increased.
A process of this type is known from the Soviet Union patent application 10 30 432.
According to this patent application, the machine speed is adapted to the rate of end
breaks. The process is demonstrated on a false twist spinning machine.
It has been shown however in practice that, in regard to the number of end breaks,
the individual spinning positions of a spinning machine can behave in very different
ways. If the process is oriented towards the worst spinning position, as is the case in
the known process, a state is reached where few end breaks occur, but where the
production performance of the spinning machine overall is not optimized.
It is an object of the present invention to duly take into consideration the different end
break rates at the individual spinning positions for the purpose of optimizing the
production performance of the machine.
This object has been achieved in accordance with the present invention in that each
individual spinning position of the spinning machine is separately monitored with
regard to the number of end breaks and adjusted to an optimized production speed.
Such individual adjustment of the individual spinning positions depending on the
number of end breaks assumes, of course, that each of the spinning positions can be
driven separately. This means that, for the feed of the fibre material, the driving of
twisting devices as well as the draw-off and the winding up of the spun thread,
correspondingly regulatable individual drives must be on hand. Despite the increased
technical complexity in comparison to the above mentioned prior art, the great
advantage arises in that the entire spinning machine does not have to be reduced in
speed because of one single "bad" spinning position, but rather each individual
spinning position operates at an optimized spinning speed, which ultimately results in
an optimized production performance of the entire machine.

When adjusting the production speed it is practical when the level of the spinning
twist is accordingly adapted thereto. When applied to an air jet spinning machine, this
means that the compressed air fed to the spinning positions is adjusted with regard
to the spinning pressure depending on the respective production speed. The
measuring of the static pressure at the individual spinning positions can be useful for
this purpose. This has the added advantage in that, even in the case of a slight
blockage of the compressed air fed to the individual spinning positions, the spinning
process operates in spite of this with the correct spinning twist. A controller,
comprising an evaluator, is arranged to each individual spinning position for the
adjustment of the production speed.
BRIEF DESCRIPTION OF THE DRAWINGS
These and further objects, features and advantages of the present invention will
become more readily apparent from the following detailed description thereof when
taken in conjunction with the accompanying schematic drawing showing a schematic
air jet spinning machine comprising the devices for adjusting an optimized production
speed.
DETAILED DESCRIPTION OF THE DRAWINGS
An air jet spinning machine comprises a number of spinning positions, of which only
four spinning positions 1, 2, 3, and 4 are shown in Figure 1. Each spinning position 1,
2 ... serves to spin a thread 5 from a staple fibre strand 6 and comprises as essential
components an air jet aggregate 7, a drafting device 8 advantageously designed as a
three-cylinder drafting device, further a draw-off roller pair 9 and a winding up device
(not shown), to which the drawn off thread 5 is fed in draw-off direction B.
As can be seen in the example of the spinning position 4, each drafting device 8
comprises an entry roller pair 10, to which the staple fibre strand 6 to be drafted is
fed in feed direction A, also an apron roller pair 11, which is looped by guiding aprons
12 and 13, and also an exit roller pair 14, at which the drafting zone of the drafting
device 8 ends. The staple fibre strand 6 is drafted in the known way in the drafting
device 8 to the desired degree of fineness.
Each air jet aggregate 7 comprises a feeding channel 15, to which the drafted but still
twist-free staple fibre strand 6 is fed for receiving a spinning twist. The air jet
aggregate 7 comprises further a thread draw-off channel 16 for the spun thread 5.
Compressed air nozzles 17 are arranged in the interior of the air jet aggregate 7,

whose exit openings lead into a vortex chamber 18, where the actual spinning twist is
imparted.
Between the air jet aggregate 7 and the draw-off roller pair 9, an end break detector
19 is arranged, which causes the relevant spinning position 1, 2 ... to come to a
standstill in the case of an end break.
As can be seen in the example of the spinning position 1, a joint first drive motor 20
is provided for the drive of the exit roller pair 14 and also for the draw-off roller pair 9
of each individual spinning position 1,2..., so that the roller pairs 14 and 9 are
always driven together, at however slightly different speeds, which permits a desired
tension of the thread 5. The speed of the drive motor 20 is adjustable.
The entry roller pair 10 and the apron roller pair 11 of the drafting device 8 is each
driven by a joint second drive motor 21. In this case, the fact that the apron roller pair
11 must run significantly faster than the entry roller pair 10, as in this area the pre-
draft of the staple fibre strand 6 takes place. The speed of the drive motor 21 is also
adjustable.
Due to various causes, for example an end break, the normal spinning operation is
interrupted, which reduces the production performance at the respective spinning
position 1,2.... In order to prevent the continued feed of staple fibre strand 6 to the
drafting device 8 in the case of an end break, it is provided, controlled by the end
break detector, that the drive motors 20 and 21 are then shut down. The compressed
air feed to the compressed air nozzles 17 is also shut off at the spinning position 1, 2
... requiring maintenance.
According to the present invention, the production performance of the air jet spinning
machine is to be optimized, in that each individual spinning position 1, 2 ... runs at an
optimized speed. For this purpose, each individual spinning position 1, 2 ... is
separately monitored with regard to the number of end breads and adjusted to an
optimized production speed, which is reduced in the case of a high rate of end
breaks, and increased in the case of a relatively low rate of end breaks.
In order to establish at which spinning position 1, 2 ... more end breaks and at which
spinning position 1, 2 ... less end breaks are occurring, an end break counter 22 is
present at each spinning position 1, 2 ... . The end break counter 22 is connected

directly with the respective end break detector 19. Each spinning position 1, 2 ...
comprises a regulator 23, which comprises, amongst others, an evaluator for the
number of the registered end breaks. The regulator 23 is capable of adjusting the
drive motors 20 and 21 to an optimized production speed, at which the number of
end breaks does not exceed a predetermined amount.
In order that the level of imparted spinning twist remains constant in relation to the
delivery speed in spite of the differing production speeds at the individual spinning
positions 1, 2 ..., it is provided that at each individual spinning position 1, 2 ... , the
fed compressed air is also adjustable depending on the respective production speed.
Each spinning position 1, 2 ... is connected via a connection 26 with a machine
compressed air conduit 27. At each connection 26 a compressed air sensor 24 and a
choke valve 25 can for example be provided, so that the choke valve 25 can be
activated via the regulator 23 and the spinning pressure can be adjusted.


WE CLAIM :
1. A process for optimizing production performance of a
spinning machine having a plurality of spinning positions (1,
2, 3, 4), each spinning position being equipped with a yarn
breakage detector (19), individually controllable drive
elements (20, 21) and individually controllable twisting
elements, in which spinning machine production speed is
reduced in a case of an. increase in the number of end
breaks, and is increased in the case of a decreasing number
of end breaks, the process comprising the steps of:
monitoring each individual spinning position(1, 2,...) of the
spinning machine separately with regard to the number of
end breaks; and

adjusting each individual spinning position (1, 2,...) to an
optimized production speed,
wherein
when the production speed is adjusted by a regular (23), the
level of the imparted spinning twist is accordingly adapted
thereto, and control of the amount of imparted spinning
twist is performed by a controllable choke valve (25).
2. The process as claimed in claim 1, wherein in the
case of application to an jet spinning machine, the
compressed air fed to the spinning positions (1,2,3,4) is
adjusted depending on the respective production speed.


This invention relates to a process for optimizing production
performance of a spinning machine having a plurality of spinning
positions (1, 2, 3, 4), each spinning position being equipped with a
yarn breakage detector (19), individually controllable drive elements
(20, 21) and individually controllable twisting elements, in which
spinning machine production speed is reduced in a case of an
increase in the number of end breaks, and is increased in the case of
decreasing number of end breaks, the process comprising the steps
of monitoring each individual spinning position (1, 2,...) of the
spinning machine separately with regard to the number of end
breaks; and adjusting each individual spinning position (1, 2,...) to an
optimized production- speed, wherein when the production speed is
adjusted by a regular (23), the level of the imparted spinning twist is
accordingly adapted thereto , and control of the amount of imparted
spinning twist is performed by a controllable choke valve (25).

Documents:

01051-kolnp-2007-abstract.pdf

01051-kolnp-2007-claims.pdf

01051-kolnp-2007-correspondence others 1.1.pdf

01051-kolnp-2007-correspondence others 1.2.pdf

01051-kolnp-2007-correspondence others.pdf

01051-kolnp-2007-description complete.pdf

01051-kolnp-2007-drawings.pdf

01051-kolnp-2007-form 1.pdf

01051-kolnp-2007-form 18.pdf

01051-kolnp-2007-form 2.pdf

01051-kolnp-2007-form 3.pdf

01051-kolnp-2007-form 5.pdf

01051-kolnp-2007-gfa.pdf

01051-kolnp-2007-international publication.pdf

01051-kolnp-2007-international search report.pdf

01051-kolnp-2007-pct others.pdf

01051-kolnp-2007-pct request form.pdf

01051-kolnp-2007-priority document.pdf

1051-KOLNP-2007-ABSTRACT 1.1.pdf

1051-kolnp-2007-amanded claims-1.1.pdf

1051-KOLNP-2007-AMANDED CLAIMS.pdf

1051-KOLNP-2007-CANCELLED PAGES.pdf

1051-kolnp-2007-correspondence-1.3.pdf

1051-kolnp-2007-correspondence.pdf

1051-KOLNP-2007-DESCRIPTION (COMPLETE) 1.1.pdf

1051-kolnp-2007-description (complete)-1.2.pdf

1051-KOLNP-2007-DRAWINGS 1.1.pdf

1051-kolnp-2007-drawings-1.2.pdf

1051-kolnp-2007-examination report.pdf

1051-KOLNP-2007-FORM 1 1.1.pdf

1051-kolnp-2007-form 1-1.2.pdf

1051-kolnp-2007-form 18.pdf

1051-KOLNP-2007-FORM 2 1.1.pdf

1051-kolnp-2007-form 2-1.2.pdf

1051-kolnp-2007-form 26.pdf

1051-KOLNP-2007-FORM 3 1.1.pdf

1051-kolnp-2007-form 3.pdf

1051-KOLNP-2007-FORM 5 1.1.pdf

1051-kolnp-2007-form 5.pdf

1051-KOLNP-2007-FORM-27.pdf

1051-kolnp-2007-granted-abstract.pdf

1051-kolnp-2007-granted-claims.pdf

1051-kolnp-2007-granted-description (complete).pdf

1051-kolnp-2007-granted-drawings.pdf

1051-kolnp-2007-granted-form 1.pdf

1051-kolnp-2007-granted-form 2.pdf

1051-KOLNP-2007-GRANTED-LETTER PATENT.pdf

1051-kolnp-2007-granted-specification.pdf

1051-KOLNP-2007-INTERNATIONAL SEARCH REPORT.pdf

1051-KOLNP-2007-OTHERS 1.1.pdf

1051-KOLNP-2007-OTHERS PCT FORM.pdf

1051-kolnp-2007-others-1.2.pdf

1051-KOLNP-2007-PA.pdf

1051-KOLNP-2007-REPLY TO EXAMINATION REPORT 1.1.pdf

1051-KOLNP-2007-REPLY TO EXAMINATION REPORT.pdf

1051-kolnp-2007-reply to examination report1.1.pdf

1051-KOLNP-2007-TRANSLATED COPY OF PRIORITY DOCUMENT.pdf


Patent Number 250296
Indian Patent Application Number 1051/KOLNP/2007
PG Journal Number 51/2011
Publication Date 23-Dec-2011
Grant Date 21-Dec-2011
Date of Filing 26-Mar-2007
Name of Patentee MASCHINENFABRIK RIETER AG
Applicant Address KOLSTERSTRASSE 20 CH 8406 WINTERTHUR
Inventors:
# Inventor's Name Inventor's Address
1 SCHAFFLER, GERNOT NARZISSENWEG 4, 73116 WASCHENBEUREN
PCT International Classification Number D01H 4/42
PCT International Application Number PCT/EP2005/011534
PCT International Filing date 2005-10-28
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10 2004 053 505.1 2004-11-02 Germany