Title of Invention

ROOM TEMPERATURE CURABLE ORGANOPOLYSILOXANE COMPOSITION

Abstract This invention relates to a room temperature curable composition containing, inter alia, diorganopolysiloxane(s) and organic nanoclay(s), the cured composition exhibiting low permeability to gas(es).
Full Text FORM 2
THE PATENT ACT 1970 (39 of 1970)
The Patents Rules, 20o3 COMPLETE SPECIFICATION See Section 10, and rule 13)
1. TITLE OF INVENTION
ROOM TEMPERATURE CURABLE ORGANOPOLYSILOXANE COMPOSITION
APPLICANT(S)



a) Name
b) Nationality
c) Address

MOMENTIVE PERFORMANCE MATERIALS, INC
AMERICAN Company
187 DANBURY ROAD,
WILTON, CONNECTICUT 06897-4122,
U.S.A.

PREAMBLE TO THE DESCRIPTION
The following specification particularly describes the invention and the manner in which it is to be Performed : -


FIELD OF THE INVENTION
This invention relates to a room temperature curable composition exhibiting, when cured, low permeability to gas(es).
BACKGROUND OF THE INVENTION
Room temperature curable (RTC) compositions are well known for their use as sealants. In the manufacture of Insulating Glass Units (IGU), for example, panels of glass are placed parallel to each other and sealed at their periphery such that the space between the panels, or the inner space, is completely enclosed. The inner space is typically filled with a gas or mixture of gases of low thermal conductivity, e.g. argon. Current room temperature curable silicone sealant compositions, while effective to some extent, still have only a limited ability to prevent the loss of insulating gas from the inner space of an IGU. Over time, the gas will escape reducing the thermal insulation effectiveness of the IGU to the vanishing point.
A need therefore exists for an RTC composition of reduced gas permeability compared to that of known RTC compositions. When employed as the sealant for an IGU, an RTC composition of reduced gas permeability will retain the intra-panel insulating gas for a longer period of time compared to that of a more permeable RTC composition and will therefore extend the insulating properties of the IGU over a longer period of time.
SUMMARY OF THE INVENTION
The present invention is based on the discovery that curable silanol-terminated diorganopolysiloxane combined with filler of a certain type upon curing exhibits reduced permeability to gas. The composition is especially suitable for use as a sealant where high gas barrier properties together with the desired characteristics of softness, processability and elasticity are important performance criteria.
-2-

In accordance with the present invention, there is provided a curable composition comprising:
a) at least one silanol-terminated diorganopolysiloxane;
b) at least one crosslinker for the silanol-terminated diorganopolysiloxane( s);
c) at least one catalyst for the crosslinking reaction;
d) at" least one organic nanoclay; and, optionally,
e) at least one solid polymer having a permeability to gas that is less than the permeability of the crosslmked diorganopolysiloxane(s).
When used as a gas barrier, e.g., in the manufacture of an IGU; the foregoing composition reduces the loss of gas(es) thus providing a longer service life of the article in which it is employed.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a graphic presentation of permeability data for the sealant compositions of Comparative Examples 1-2 and Examples 1-3 and 5-8.
Fig. 2 is a graphic presentation of permeability data for the sealant compositions of Comparative Examples 1-2 and Examples 4 and 9.
DETAILED DESCRIPTION OF THE INVENTION
The curable sealant composition of the present invention is obtained by mixing (a) at least one diorganopolysiloxane, (b) at least one crosslinker for the diorganopolysiloxane(s), (c) at least one catalyst for the crosslinking reaction, (d) at least one organic nanoclay and, optionally, (e) at least one solid polymer having a permeability to gas that is less than the permeability of the crosslinked diorganopolysiloxane(s), the composition following curing exhibiting low permeability to gas(es).
-3-

The compositions of the invention are useful for the manufacture of sealants, coatings, adhesives, gaskets, and the like, and are particularly suitable for use in sealmts intended for insulating glass units.
The viscosity of the silanol-terminated diorganopolysiloxane that is 'employed in the curable composition of the invention can vary widely and advantageously ranges from about 1,000 to about 200,000 cps at 25°C.
Suitable silanol-terminated diorganopolysiloxanes (a) include those of the general formula: .
MaDbD'c
wherein "a" is 2, and "b" is equal to .or greater than1} and "c" is zero or positive; M is
(HO)3.x.yR1xR2ySiOl/2 wherein "x" is 0, 1 or 2 and "y" is either 0 or 1, subject to the limitation that x + y is less than or is equal to 2, R1 and R2 each independently is a monovalent hydrocarbon group up to 60 carbon atoms; D is
R3R4SiOl/2; wherein R3 and R4 each independently is a monovalent hydrocarbon group up to 60 carbon atoms; and D' is
R5R6SiO2/2
wherein R5 and R6 each independently is a monovalent hydrocarbon group up to 60
carbon atoms.
Suitable crosslinkers (b) for the silanol-terminated diorganopolysiloxane(s) present in the composition of the invention include alkylsilicates of the general formula:
(R14O)(R15O)(R16O)(R17O)Si wherein R14, R15, R16 and R17 each independently is a monovalent hydrocarbon group up to 60 carbon atoms. Crosslinkers of this type include, n-propyl silicate, tetraethylortho silicate and methyltrimethoxysilane and similar alkyl-substituted alkoxysilane compounds, and the like.



Suitable catalysts (c) for the crosslinking reaction of the silanol-terminated diorganopolysiloxane(s) can be any of those known to be useful for facilitating the cross linking of such siloxanes. The catalyst can be a metal-containing or non-metallic compound. Examples of useful metal-containing compounds include those of tin, titanium, zirconium, lead, iron cobalt, antimony, manganese, bismuth and zinc.
In one embodiment of the present invention, tin-containing compounds useful as crosslinking catalysts include: dibutyltindilaurate, dibutyltindiacetate, dibutyltindimethoxide, tinoctoate, isobutyltintriceroate, dibutyltinoxide, soluble dibutyl tin oxide, dibutyltin bis-diisooctylphthalate, bis-tripropoxysilyl dioctyltin, dibutyltin bis- acetyl acetone, silylated dibutyltin dioxide, carbomethoxyphenyl tin tris-uberate, isobutyltin triceroate, dimethyltin dibutyrate, dimemyltin di-neodecanoate, triethyltin tartarate, dibutyltin dibenzoate, tin oleate, tin naphthenate, butyltintri-2-ethylhexylhexoate, tinbutyrate, diorganotin bis (3-diketonates, and the like. Useful titanium-containing catalysts include: chelated titanium compounds, e.g., 1,3-propanedloxytitanium bis(ethylacetoacetate), diisopropoxytitanium bis(ethylacetoacetate), and tetraalkyl titanates, e.g:, tetra n-butyl titanate and tetra-isopropyl titanate. In yet another embodiment of the present invention, diorganotin bis (3-diketonates is used for facilitating crosslinking in silicone sealant composition.
The curable composition of the present invention includes at least one organic nanoclay filler (d). Nanoclays possess a unique morphology with one dimension being in the nanometer range. The nanoclays can form chemical complexes with an intercalant that ionically bonds to surfaces in between the layers making up the clay particles. This association of inter cal ant and clay particles results in a material which is compatible with many different kinds of host resins permitting the clay filler to disperse therein.
The term "exfoliation" as used herein describes a process wherein packets of nanoclay platelets separate from one another in a polymer-matrix. During
-5-

exfoliation, platelets at the outermost region of each packet cleave off, exposing more platelets for separation.
The term "gallery" as used herein describes the space between parallel layers of clay platelets. The gallery spacing changes depending on the nature of the molecule or polymer occupying the space. An interlayer space between individual nanoclay platelets varies, again depending on the type of molecules that occupy the space.
The term "intercalant" as used herein includes any inorganic or organic compound that is capable of entering the clay gallery and bonding to its surface.
The term "intercalate" as used herein designates a clay-chemical complex wherein the clay gallery spacing has increased due to the process of surface modification. Under the proper conditions of temperature and shear, an intercalate is capable of exfoliating in a resin matrix.
The expression "low permeability to gas(es)" as applied to the cured composition of this invention shall be understood to mean an argon permeability coefficient of not greater than about 900 barrers (1 barrer=l0-10 (STP)/cm sec(cmHg) measured in accordance with the constant pressure variable-volume method at a pressure of 100 psi and temperature of 25°C.
The expression "modified clay" as used herein designates a clay material that has been treated with any inorganic or organic compound that is capable of undergoing ion exchange reactions with the cations present at the interlayer surfaces of the clay.
The term "nanoclay" as used herein describes clay materials that possess a unique morphology with one dimension being in the nanometer range. Nanoclays can form chemical complexes with an intercalant that ionic ally bonds to surfaces in between the layers making up the clay particles. This association of intercalant and clay
-6-

particles results in a material which is compatible with many different kinds of host resins permitting the clay filler to disperse therein.
The expression "organic nanoclay" as use herein describes a nanoclay that has been treated or modified with an organic intercalant.
The term "organoclay" as used herein designates a clay or other layered material that has been treated with organic molecules (variously referred to as "exfoliating agents/' "surface modifiers" or "intercalants") that are capable of undergoing ion exchange reactions with "the cations present at the interlayer surfaces of the clay.
The nanoclays can be natural or synthetic materials. This distinction can influence the particle size and for this invention, the particles should have a lateral dimension of between about 0.01 µm and about 5 µm, and preferably between about 0.05 µm and about 2 µm, and more preferably between about 0.1 (µm and about 1 µm. The thickness or the vertical dimension of the particles can in general vary between about 0.5 ran and about 10 ran and preferably between about 1 ran and about 5 nm.
Useful nanoclays for providing the organic nanoclay filler component of the composition of the invention include natural or synthetic phyllosilicates, particularly smectic clays such as montmorillonite, sodium montmorillonite, calcium montmorillonite, magnesium montmorillonite, nontronite, beidellite, volkonskoite, laponite, hectorite, saponite, sauconite, magadite, kenyaite, sobockite, svindordite, stevensite, talc, mica, kaolinite, vermiculite, halloysite, aluminate oxides, or hydrotalcites and the like, and their mixtures. In another embodiment, useful nanoclays include micaceous minerals such as illite and mixed layered illite/smectite minerals such as rectorite, tarosovite, ledikite and admixtures of illites with one or more of the clay minerals named above. Any swellable layered material that sufficiently sorbs the organic molecules to increase the interlayer spacing between adjacent phyllosilicate platelets to at least about 5 angstroms, or to at least
-7-

I

about 10 angstroms, (when the phyllosilicate is measured dry) can be used in producing the filler component to provide the curable composition of the invention.
In one embodiment of the present invention, organic compounds that are useful for treating nanoclays and layered materials to provide the filler component herein include cationic surfactants such as ammonium, aminonium chloride, alkyl ammonium (primary, secondary, tertiary and quaternary), phosphonium or sulfonium derivatives of aliphatic, aromatic or aryl aliphatic amines, phosphines or sulfides.
Other organic treating agents for nanoclays that can be used herein include amine compounds and/or quarternary ammonium compounds R6 R7 R8 N+X- each independently is an alkoxy silane group, alkyl group or alkenyl group of up to 60 carbon atoms and X is an anion such as Cl, F-, SO4, etc.
Optionally, the curable composition herein can also contain at least one solid polymer (e) having a permeability to gas that is less than the permeability of the crosslinked diorganopolysiloxane. Suitable polymers include polyethylenes such as low density polyethylene (LDPE), very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE); polypropylene " (PP), polyisobutylene (PIB), polyvinyl acetate(PVAc), polyvinyl alcohol (PVoH), polystyrene, polycarbonate, polyester, such as, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene napthalate (PEN), glycol-modified polyethylene terephthalate (PETG); polyvinylchloride (PVC), polyvinylidene chloride, polyvinylidene floride, thermoplastic polyurethane (TPU), acrylonitrile butadiene styrene (ABS), polymethylmethacrylate (PMMA), polyvinyl fluoride (PVF), Polyamides (nylons), polymethylpentene, polyimide (PI), polyetherimide (PEI), polether ether ketone (PEEK), polysulfone , polyether sulfone, ethylene chlorotrifluoroethylene, polytetrafluoroethylene (PTFE), cellulose acetate, cellulose acetate butyrate, plasticized polyvinyl chloride, ionomers (Surtyn),
-8-



polyphenylene sulfide (PPS), styrene-maleic anhydride, modified polyphenylene oxide (PPO), and the like and mixture thereof.
The optional polymer(s) can also be elastomeric in nature, examples include, but are not limited to ethylene- propylene rubber (EPDM), polybutadiene, polychloroprene, polyisoprene, polyurethane (TPU), styrene-butadiene-styrene (SBS), styrene-ethylenebutadiene-styrene (SEEBS), polymethylphenyl siloxane (PMPS), and the like.
These optional polymers can be blended either alone or in combinations or in the form of coplymers, e.g. polycarbonate-ABS blends, polycarbonate polyester blends, grafted polymers such as, silane grafted polyethylenes, and silane grafted polyurethanes.
In one embodiment of the present invention, the curable composition contains a polymer selected from the group consisting of low density polyethylene (LDPE), very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE), and mixtures thereof. In another embodiment of the invention, the curable composition has a polymer selected from the group consisting of low density polyethylene (LDPE), very low density polyethylene (VLDPE), linear-low density polyethylene (LLDPE), and mixture thereof. In yet another embodiment of the present invention, the optional polymer is a linear low density polyethylene (LLDPE).
The curable composition can contain one or more other fillers in addition to organic nanoclay component (d). Suitable additional fillers for use herein include precipitated and colloidal calcium carbonates which have been treated with compounds such as stearic acid or stearate ester; reinforcing silicas such as fumed silicas, precipitated silicas, silica gels and hydrophobized silicas and silica gels; crushed and ground quartz, alumina, aluminum hydroxide, titanium hydroxide,
-9-

F

diatomaceous earth, iron oxide, carbon black, graphite, mica, talc, and the like, and mixtures thereof.
The curable composition of the present invention can also include one or more alkoxysilanes as adhesion promoters. Useful adhesion promoters include N-2-aminomeyhyl-3-aminopropyltriethoxysilane, y-aminopropyltriethoxysilane, Y " aminopropyltrimethoxysilane, aminopropyltrimethoxysilane, bis- y-trimethoxysilypropyl)amine, N-phenyl- y -aminopropyltrimethoxysilane, triarrunofunctionaltrirnethoxysilane, y-aminopropylmethyldiethoxysilane, y -aminopropy lmethyldiethoxysilane, methacryloxypropyltrimethoxysilane, methylaminopropyltrirnethoxysilane, y _ glycidoxypropylethyldimethoxysilane, y -glycidoxypropyltrimethoxysilane, y _ glycidoxyethyltrimethoxysilane, (3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, β -(3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, isocyanatopropyltriethoxysilane, isocyanatopropylmethyldimethoxysilane, β -cyanoethyltrimethoxysilane, y _ acryloxypropyltrimethoxysilane, y -methacryloxypropylmethyldimethoxysilane, 4-amino- 3 ,3,dimemylbutyltrimethoxysilane, and N-ethyl-3-trimethoxysilyl-2-methylpropanamine, and the like. In one embodiment, the adhesion promoter can be a combination of n-2-airunoethyl-3-arriinopropyltrirnethoxysilane and 1,3,5-tris( trimethoxysilylpropyljisocyanurate.
The compositions of the present invention can also include one or more non- ionic surfactants such as polyethylene glycol, polypropylene glycol, ethoxylated castor oil, oleic acid ethoxylate, alkylphenol ethoxylates, copolymers of ethylene oxide (EO) and propylene oxide (PO) and copolymers of silicones and polyethers (silicone polyether copolymers), copolymers of silicones and copolymers of ethylene oxideand propylene oxide and mixtures thereof.
The curable compositions of the present-invention can include still other ingredients that are conventionally employed in RTC silicone-containing compositions such as colorants, pigments, plasticizers, antioxidants, UV stabilizers, biocides, etc., in
-10-

known and conventional amounts provided they do not interfere with the. properties desired for the cured compositions.
The amounts of silanol-terminated diorganopolysiloxane(s), crosslinker(s), cross linking catalyst(s), oranic nanoclay(s), optional solid polymers(s) of lower gas permeability than the crosslinked diorganopolysiloxane(s), optional filler(s) other than organic nanoclay, optional adhesion promoter(s) and optional ionic surfactant(s) can vary widely and, advantageously, can be selected from among the ranges indicated in the following table.
TABLE I: Ranges of Amounts (Weight Percent) of Components of the Curable Composition of the Invention

Components of the Curable Composition First
Range Second Range Third Range
Siianol-terminated • Diorganopolysibxane(s) 50-99 70-99 80-85
Crosslinker(s) 0.1-10 ' 0.3-5 0.5-1.5
Crosslinking Catalyses) 0.001-1 . • 0.003-0.5 0.005-0.2
Organic Nanoclay(s) 0.1-50 10-30 15-20
Solid Polyraerfs) of Lower Gas Permeability than Crosslinked Dioganopoly-Siioxane(s) Q-50 5-40 10-35
Filler(s) other than Organic Nanoclay 0-90 5-60 10-40
Siiane Adhesion Promoter(s) 0-20 0.1-10 0.5-2
Ionic Surfactant(s) 6-10 0.1-5 0.5-0.75
The curable compositions herein can be obtained by procedures that are well known in- the art, e.g., melt blending, extrusion blending, solution blending, dry mixing, blending in a Banbury mixer, etc., in the presence of moisture to provide a substantially homogeneous mixture.
Preferably, the methods of blending the diorganopolysiloxane polymers with polymers may be accomplished by contacting the components in a tumbler or other
-11-



physical blending means, followed by melt blending in an extruder. Alternatively, the components can be melt blended directly in an extruder, Brabender or any other melt blending means.
The invention is illustrated by the following non-limiting examples.
COMPARATIVE EXAMPLE 1 AND EXAMPLES 1-4
A mixture of silanol-terminated polydimethylsiloxanes (PDMS), specifically, Silanol 5000, a silanol-terminated polydirnethylsiloxane of 5000 cs nominal and Silanol 50,000, a silanol-terminated polydirnethylsiloxane of 50,000 cs nominal, both available from Gelest, Inc., were mixed in a 100 ml cup with Cloisite 15A ("C-15A," a montmorillonite clay modified with 125 milliequivalants of dimethyl dehydrogenated tallow ammonium chloride per 100 g of clay available from Southern Clay Products) or SF ME100 (a synthetic fluorohectorite having the general formula NaMg25Si4O10 (F a OH1-a)2 (0.8 Following the foregoing procedure, curable compositions of the following Examples were obtained:
Comparative Example 1: 50 grams mix (Silanol 5000 and Silanol 50000 @ 50:50)
Example 1: 48.75 grams mix (Silanol 5000 and Silanol 50000 @ 50:50) + 1.25 grams of
Cloisite C-15A clay
Example 2: 47.5 grams mix (Silanol 5000 and Silanol 50000 @ 50:50) + 2.5 grams of
Cloisite C-15A clay
Example 3: 45 grams mix (Silanol 5000 and Silanol 50000 @ 50:50) + 5 grams of
Cloisite C-15A clay
-12-


Example 4: 45 grams mix (Silanol.5000 and Silanol 50000 @ 50:50) + 5 grams of SF ME100 clay
The above-indicated blends were then used to make cured sheets as follows: PDMS-nanoclay formulations were mixed with n-propyl silicate ("NPS)" acrosslinker) and solubilized dibutyl tin oxide ("DBTO" a cross linking catalyst), as listed in Table 2) using a hand blender for 5 -7 minutes with air bubbles being removed by vacuum. Each blend was poured into a Teflon sheet-forming mold and maintained for 24 hours under ambient conditions (25°C and 50% humidity) to partially cure the PDMS components. The partially cured sheets were removed from the mold after 24 hours and maintained at ambient temperature for seven days for complete curing.
Table 2 Curable Compositions

Comparative Example 1: Silanol
mixture
Example 1: Silanol mixture with
2.5 wt%C-ISA
Example 2:'SilanoI mixture with
5wt%C-15A
Example 3: Silanol mixture with
10wt%C-15A
Example 4: Silanol mixture with
10wt%SMEl00


grams wt% wl%
NPS DBTO
50 2 1.2
50 2 1.2
50 2 1.2
50 2 1.2
50 2 1.2

The argon permeability of the foregoing curable compositions was measured using a gas permeability set-up. The measurements were based on the variable-volume method at 100 psi pressure and at a temperature of 25°C The permeability measurements were repeated under identical conditions 2-3 times in order to assure their reproducibility.
The permeability data are graphically presented in Figures 1 and 2.
-13-

COMP ARATIVE EXAMPLE 2 AND EXAMPLES 5-9
To provide a 1 weight percent C-15A clay (see Example 5, Table 3): 227.7 g of OMCTS (octamethylcyclotetrasiloxane) and 2.3 g of C-15A were introduced into a three-neck round bottom flask fitted with overhead stirrer and condenser. The mixture was stirred at 250 rpm for 6 hours at ambient temperature. The temperature was increased to 175 C° while stirring was continued. 0.3 g of CsOH in 1ml of water was added to the reaction vessel through a septum. After 15 minutes, polymerization of OMCTS began and 0.5 ml of water was then added with an additional 0.5 ml of water being added after 5 minutes. Heating and stirring were continued for 1 hour after which 0.1 ml of phosphoric acid was added for neutralization. The pH of the reaction mixture was1 determined after 30 minutes. Stirring and heating were continued for another 30 minutes and the pH of the reaction mixture was again determined to assure complete neutralization. Distillation of cyclics was carried out at 175 C° and the mixture was thereafter cooled to room temperature.
The same procedure was followed with 2.5, 5 and 10 wt% of C-15A (see Examples 6-8, Table 3).
Similar in-situ polymerization procedures were followed with 10 wt% high1 aspect ratio clay (SF ME 100) (see Example 9, Table 3). The in-situ polymer with different amounts of clay were then used to make cured sheets as follows: In-situ PDMS-nanoclay formulations were mixed with NPS crosslinker and solubilized DBTO catalyst using a hand blender for 5-7 min with air bubbles being removed by vacuum. The mixture was then poured into a Teflon sheet-forming mold and maintained for 24 hours under ambient conditions (25°C and 50% humidity). The partially cured sheets were removed from the mold after 24 hours and maintained at ambient temperature for seven days for complete curing.
-14-

f
Tabic 3: Curable Compositions

Comparative Example 2: Silanol mixture
Example 5: In-situ silanol with I wt%
C-15A
Example 6: In-situ silanol with 2.5 wt%
C-15A
Example 7: In-situ silanol with 5 wt%
C-15A
Example 8: In-situ silanol with 10 wt%
C-15A
Example 9: In -situ silanol with 10 wt%
SFME100


grams 50 wt%
NPS
2 wt%
DBTO
1.2
50 2 1.2
50 2 1.2
50 2 1.2
50 2 1.2
50 2 1,2

Argon permeability was measured using a gas permeability set-up as in the previous examples. The measurements were based on the variable-volume method at 100 psi pressure and at a temperature of 25°C. Measurements were repeated under identical1 conditions 2-3 times in order to assure their reproducibility.
The permeability data are graphically presented in Figures 1 and 2. As shown in the data, argon permeability in the case of the cured sealant compositions of the invention (Examples 1-3 and 5-8 of Figure 1 and Examples 4 and 9 of Figure 2) was significantly less than that of cured sealant compositions outside the scope of the invention (Comparative Examples 1 and 2 of Figures 1 and 2). In all, while the argon permeability coefficients of the sealant compositions of Comparative Examples 1 and 2 exceed 900 barrers, those of Examples 1-9 illustrative of sealant compositions of this invention did not exceed 900 barrers and in some cases, were well below this level of argon permeability coefficient (see, in particular, examples 3, 8 and 9).
While preferred embodiments of the present invention has been illustrated and described in detail, various modifications of, for example, components, materials and parameters, will become apparent to those skilled in the art, and it is intended to cover in the appended claims all such modifications and changes which come within the scope of this invention.
-15-

r
WE CLAIM:
1. A curable composition comprising:.
a) at least one silanol-terminated diorganopolysiloxane;
b) at least one crosslinker for the silanol-terminated diorganopolysiloxane(s);
c) at least one catalyst for the crosslinking reaction;
d) at least one organic nanoclay; and, optionally,
d) at least one solid polymer having a permeability to gas that is less than the permeability of the crosslinked diorganopolysiloxane(s).
2. The composition of Claim 1 wherein silanol-terminated diorganopolysiloxane
(a) has the general formula:
MaDbD'c wherein "a" is 2, and "b" is equal to or greater than 1 and "c" is zero or positive; M is
(HO)3-x-yR1xR2ySiO1/2 wherein "x" is 0,1 or 2 and "y" is either 0 or 1, subject to. the limitation that x + y is less than or is equal to 2, R1 arid R2 each independently is a monovalent hydrocarbon group up to 60 carbon atoms; D is
R3R4SiO2/2; wherein R3 and R4 each independently is a monovalent hydrocarbon group up to 60 carbon atoms; and D1 is
R5R6SiO2/2
wherein R5 and R6 each independently is a monovalent hydrocarbon group up
to 60 carbon atoms.
3. The composition of Claim 1 wherein cross linker (b) is an alkylsilicate having
the formula:
(R14O)(R15O)(Rl6O)(R17O)Si where R14, R15, R16 and R17 are chosen independently from monovalent C1 to Ceo hydrocarbon radicals.
-16-

4. The composition of Claim 1 wherein catalyst (c) is a tin catalyst.
5. The composition of Claim 4 wherein the tin catalyst is selected from the group consisting of dibutyltindilaurate, dibutyltindiacetate, dibutyltindimethoxide, tinoctoate, isobutyltintriceroate, dibutyltinoxide, dibutyltin 'bis-diisooctylphthalate, bis-tripropoxysilyl dioctyltin, dibutyltin bis-acetylacetone, silylated dibutyltin dioxide, carbomethoxyphenyl tin tris-uberate, isobutyltin triceroate, dimethyltin dibutyrate, dimethyltin di-neodecanoate, triethyltin tartarate, dibutyltin dibenzoatetin oleate, tin naphthenate, butyltintri-2ethylhexylhexoate, tinbutyrate, diorganotin bis β-diketonates and mixtures thereof.
6. The composition of Claim 1 wherein the nanoclay portion of organic nanoclay (d) is selected from the group consisting of montmorillonite, sodium montrnorillonite, calcium montmorillonite, magnesium montmorillonite, nontronite, beidellite, volkonskoite, laponite, hectorite, saponite, sauconite, magadite, kenyaite, sobockite, svindordite, stevensite,: vermiculite, halloysite, aluminate oxides, hydrotalcite, illite, rectorite, tarosovite, Iedikite, kaolinite and, mixtures thereof.
7. The composition of Claim 1 wherein the organic portion of organic nanoclay (d) is at least one tertiary amine compound R3 R4 R5 N and/or quarternary ammonium compound R6 R7 R8 N+X- wherein R3, R4, R5, R6, R7 and R8 each independently is an alkyl, alkenyl or alkoxy silane group of up to -60 carbon atoms and X is an anion.
8. The composition of Claim 6 wherein the nanoclay portion of organic nanoclay (d) is modified with ammonium, primary alkylammonium, secondary alkylammonium, tertiary alkyl ammonium quaternary alkylammonium, phosphonium derivatives of aliphatic, aromatic or arylaliphatic amines,
-17-

phosphines or sulfides or sulfonium derivatives of aliphatic, aromatic or arylaliphatic amines, phosphines or sulfides.
The composition of Claim 1 wherein solid polymer (e) is selected from the group consisting of low density polyethylene, very low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, polyisobutylene, polyvinyl acetate, polyvinyl alcohol, polystyrene, polycarbonate, polyester, such as, polyethylene terephthalate, polybutylene terephthalate, polyethylene napthalate, glycol-modified polyethylene terephthalate, polyvinylchloride, polyvinylidene chloride, polyvinylidene fluoride, thermoplastic polyurethane, acrylonitrile butadiene styrene, polymethylmethacrylate, polyvinyl fluoride, polyamides, polymethylpentene, polyimide, polyetherimide, polether ether ketone, polysulfone , polyether sulfone, ethylene chlorotrifluoroethylene, polytetrafluoroethylene, cellulose acetate, cellulose acetate butyrate, plasticized polyvinyl chloride, ionomers, polyphenylene sulfide, styrene-maleic anhydride, modified polyphenylene oxide, ethylene- propylene rubber, polybutadiene, polychloroprene, polyisoprene, polyurethane, styrene-butadiene-styrene, styrene-ethylene-butadiene-styrene, polymethylphenyl siloxane and mixtures thereof.
The composition of Claim 1 which further comprises 'at least one optional component selected from the group consisting of adhesion promoter, surfactant, colorant, pigment, plasticizer, filler other than organic nanoclay, antioxidant, UV stabilizer, and biocide.
The composition of Claim 10 wherein the adhesion promoter is selected from the group consisting ofn-2-aminoethyl-3-aminopropyltrirnethoxysilane, '1,3,5-tris( trimethoxysilylpropyl)isocyanurate; Y-aininopropyltriethoxysilane, Y-aminopropyltrimethoxysilane, arninopropyltrirnethoxysilane, bis- Y rrirnethoxysilypropyl)arnine, N- Phenyl- Y -aminopropyltrimethoxysilane, triaminofunctionaltrimethoxysilane, Y -aminopropylmethy ldiethoxysilane, Y-
-18-

aminopropylmethyldiethoxysilane,methacryloxypropyltrirnethoxysilane/
methylaminopropyltrimethoxysilane, Y -
glycidoxypropylethyldimethoxysilane, Y- glycidoxypropyltrimethoxysilane, Y - glycidoxyethyltrimethoxysilane, β -(3, 4-
epoxycycIohexyl)propyltrimethoxysilane, p-(3 ,4-epoxycyclohexyl) ethylmethyldimethoxysilane isocyanatopropyltriethoxysilane, isocyanatopropylmethyldimethoxysilane, p-cyanoethyltrimethoxysilane, Y-acryloxypropyltrimethoxysilane, Y-
methacryloxypropylmethyldimethoxysilane, 4-amino- 3,3,-dimethylbutyltrimethoxysilane, n -ethyl- 3 -trimethoxysilyl- 2-methylpropanamine, and mixtures thereof.
The composition of Claim 10 wherein the surfactant is a nonionic surfactant selected from the group consisting of polyethylene glycol, polypropylene glycol, ethoxylated castor oil, oleic acid ethoxylate, alkylphenol ethoxylates, copolymers of ethylene oxide and propylene oxide and copolymers of silicones and polyethers, copolymers of silicones and copolymers of ethylene oxide and propylene oxide and mixtures thereof.
The composition of Claim 12 wherein the non-ionic surfactant is selected from the group consisting of copolymers of ethylene oxide and propylene oxide, copolymers of silicones and polyethers, copolymers of silicones and copolymers of ethylene oxide and propylene oxide and mixtures thereof.
The composition of Claim 10 wherein the filler other than the organic nanoclay is selected from the group consisting of calcium carbonate, precipitated calcium carbonate, colloidal calcium carbonate, calcium carbonate treated with compounds stearate or stearic acid, fumed silica, precipitated silica, silica gels, hydrophobized silicas, hydrophilic silica gels, crushed quartz, ground quartz, alumina, aluminum hydroxide, titanium
-19-

hydroxide, clay, kaolin, bentonite montmorillonite, diatomaceous earth, iron oxide, carbon black and graphite, mica, talc, and mixtures thereof.
The curable composition of Claim 1 wherein:
silanol-terminated diorganopolysiloxane (a) has the general formula:
MaDbD'c
wherein "a" is 2, and 'b" is equal to or greater than 1 and "c" is zero or positive; M is
(HO)3x-yR1R2ySiO1/2 wherein "x" is 0,1 or 2 and "y" is either 0 or 1, subject to the limitation that x + y is less than or is equal to 2, R1 and R2 each independently is a monovalent hydrocarbon group up to 60 carbon atoms; D is
R3R4SiOt/2; wherein R3 and R4,each independently is a monovalent hydrocarbon group up to 60 carbon atoms; and D' is
R5R6SiO2/2. wherein R5 and R6 each independently is a monovalent hydrocarbon group up to 60 carbon atoms;
crosslinker (b) is an alkylsilicate having the formula: (R14O)(R15O)(R16O)(R17O)Si where R14, R15, R16 and R17 are chosen independently from monovalent hydrocarbon radicals of up to 60 carbon atoms;, catalyst (c) is a tin catalyst; and,
nanoclay portion of organic nanoclay (d) is selected from the group consisting of montmorillonite, sodium montmorillonite, calcium montmorillonite, magnesium, montmorillonite, nontronite, beidellite, volkonskoite, laponite, hectorite, saponite, sauconite, magadite, kenyaite, sobockite, svindordite, stevensite, vermiculite, halloysite, aluminate oxides, hydrotalcite, illite, rectorite, tarosovite, ledikite, kaolinite and, mixtures thereof, the organic portion of organic nanoclay (d) being at least one tertiary amine compound R3, R4 R5 N and/or quarternary ammonium compound R6 R7 R8 N +X- wherein R3,
-20-



R4, R5, R6, R7 and R8 each independently is an alkyl, alkenyl or alkoxy silane group of up to 60 carbon atoms and X is an anion.
16. The cured composition of Claim 1.
17. The cured composition of Claim 9.
18. The cured composition of Claim 10.
19. The cured composition of Claim 15.
20. The composition of Claim 16 exhibiting an argon permeability coefficient of
not greater than about 900 barrers.
21. The composition of Claim 17 exhibiting an argon permeability coefficient of
not greater than about 900 barrers.
22. The composition of Claim 18 exhibiting an argon permeability coefficient of
not greater than about 900 barrers.
23. The composition of Claim 19 exhibiting an argon permeability coefficient of
not greater than about 900 barrers.
Dated this 3rd day of July, 2008

-21-

Documents:

1396-MUMNP-2008-ABSTRACT(GRANTED)-(25-11-2011).pdf

1396-mumnp-2008-abstract.doc

1396-mumnp-2008-abstract.pdf

1396-MUMNP-2008-ASSIGNMENT(23-9-2011).pdf

1396-MUMNP-2008-CANCELLED PAGES(23-9-2011).pdf

1396-MUMNP-2008-CANCELLED PAGES(8-11-2011).pdf

1396-MUMNP-2008-CLAIMS(AMENDED)-(23-9-2011).pdf

1396-MUMNP-2008-CLAIMS(AMENDED)-(8-11-2011).pdf

1396-MUMNP-2008-CLAIMS(GRANTED)-(25-11-2011).pdf

1396-mumnp-2008-claims.doc

1396-mumnp-2008-claims.pdf

1396-MUMNP-2008-COPY OF US ASSIGNMENT(8-9-2008).pdf

1396-MUMNP-2008-CORRESPONDENCE(23-9-2011).pdf

1396-MUMNP-2008-CORRESPONDENCE(8-9-2008).pdf

1396-MUMNP-2008-CORRESPONDENCE(IPO)-(25-11-2011).pdf

1396-mumnp-2008-correspondence.pdf

1396-mumnp-2008-description(complete).doc

1396-mumnp-2008-description(complete).pdf

1396-MUMNP-2008-DESCRIPTION(GRANTED)-(25-11-2011).pdf

1396-mumnp-2008-drawing(4-7-2008).pdf

1396-MUMNP-2008-DRAWING(GRANTED)-(25-11-2011).pdf

1396-mumnp-2008-form 1.pdf

1396-mumnp-2008-form 13(23-9-2011).pdf

1396-mumnp-2008-form 18(4-7-2008).pdf

1396-mumnp-2008-form 18.pdf

1396-MUMNP-2008-FORM 2(GRANTED)-(25-11-2011).pdf

1396-MUMNP-2008-FORM 2(TITLE PAGE)-(GRANTED)-(25-11-2011).pdf

1396-mumnp-2008-form 2(title page).pdf

1396-mumnp-2008-form 2.doc

1396-mumnp-2008-form 2.pdf

1396-MUMNP-2008-FORM 26(8-11-2011).pdf

1396-MUMNP-2008-FORM 3(23-9-2011).pdf

1396-mumnp-2008-form 3.pdf

1396-mumnp-2008-form 5.pdf

1396-MUMNP-2008-GENERAL POWER OF ATTORNEY(23-9-2011).pdf

1396-mumnp-2008-international publication report a2.pdf

1396-mumnp-2008-international publication report a3.pdf

1396-mumnp-2008-pct-isa-210.pdf

1396-mumnp-2008-pct-isa-220.pdf

1396-mumnp-2008-pct-isa-237.pdf

1396-mumnp-2008-pct-request.pdf

1396-MUMNP-2008-PETITION UNDER RULE 137(23-9-2011).pdf

1396-MUMNP-2008-REPLY TO EXAMINATION REPORT(23-9-2011).pdf

1396-MUMNP-2008-REPLY TO HEARING(8-11-2011).pdf

1396-MUMNP-2008-SPECIFICATION(AMENDED)-(23-9-2011).pdf

1396-MUMNP-2008-SPECIFICATION(AMENDED)-(8-11-2011).pdf

1396-MUMNP-2008-SPECIFICATION(MARKED COPY)-(23-9-2011).pdf

1396-MUMNP-2008-SPECIFICATION(MARKED COPY)-(8-11-2011).pdf

1396-MUMNP-2008-US DOCUMENT(23-9-2011).pdf

abstract1.jpg


Patent Number 249993
Indian Patent Application Number 1396/MUMNP/2008
PG Journal Number 48/2011
Publication Date 02-Dec-2011
Grant Date 25-Nov-2011
Date of Filing 04-Jul-2008
Name of Patentee MOMENTIVE PERFORMANCE MATERIALS, INC.
Applicant Address 187 DANBURY ROAD, WILTON, CONNECTICUT 06897-4122,
Inventors:
# Inventor's Name Inventor's Address
1 LANDON, SHAYNE, J. 16 BIRCH HILL ROAD, BALLSTON LAKE, NY 12091,
2 WILLIAMS, DAVID, A. 26 CASTLEBERRY DRIVE, GANESVOORT, NY 12831,
3 KUMAR, VIKRAM B-411 SNS ARCADE, AIRPORT ROAD, BANGALORE 560 017,
4 NESAKUMAR, EDWARD, J. 18, AL-SAINO, 5TH CROSS, NAL WIND TUNNEL ROAD, MURUGESH PALAYA, BANGALORE 560 017,
5 RAMAKRISHNAN, INDUMATHI 918, C-BLOCK, 7TH MAIN , AECS LAYOUT, KUNDALAHALLI, BANGALORE 560 037,
PCT International Classification Number C08L83/04
PCT International Application Number PCT/US2007/000262
PCT International Filing date 2007-01-05
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/327,894 2006-01-09 U.S.A.