Title of Invention

A THERMOSETTING SOLVENT-FREE SINGLE-COMPONENT COMPOSITIONS

Abstract We propose a thermosetting solvent-free single-component composition having a storage stability at room temperature of at least 2 weeks, consisting of (A) 5-90 parts by weight of one at least difunctional (iso)cyanate component, (B) 5-50 parts by weight of a latent curing agent solid up to a temperature of at least 40 °C based on nitrogen compounds suitable for addition crosslinking, (C) 0-50 parts by weight of an epoxy-containing compound and (D) 0-50 parts by weight of modifiers, with the sum of all parts by weight being 100, and its use for bonding, casting, sealing and coating of substrates, in particular electronic parts. The composition is cured at 120 °C to 150 °C within seconds.
Full Text Thermosetting solvent-free single-component compositions and their use
The present invention relates to thermosetting solvent-free single-component
compositions based on (iso)cyanates and latent curing agents and to their use for
bonding, casting, sealing and coating of substrates. Such compositions have
widespread use and have been utilized as bonding and sealing compositions for
construction purposes, as structural adhesives or as casting and coating
compositions in the electronics industry.
Hereinafter the term „(iso)cyanates" means the group consisting of cyanates,
isocyanates and mixtures of cyanates and isocyanates, with the spelling following
the internationally conventional spelling of the group of (meth)acrylates.
In relation to the present invention, the term "latent curing agents" means
curing agents that are solid under storage conditions up to a temperature of at
least 40 °C and remain inactive during a certain period of time, but become active
in a molten, liquid state at a temperature of from 80 to 160 °C typical for
thermosetting, and cause a polyaddition and crosslinking reaction between the
curing agent and the (iso)cyanate.
The book „Formulierung von Kleb- und Dichtstoffen" by B. Muller and W.
Rath, published in 2004 by Vincentz-Verlag, Hanover, describes the prior art in
detail. Accordingly, a person having ordinary skill in the art knows the following
curing methods:
In the case of two-component polyurethane compositions, the first isocyanate-
containing component is mixed with a second component and applied by the
user. The second component usually comprises compounds containing hydroxy
groups as a curing agent, often polyether polyols or polyester polyols. In general,
amines alone are not used for two-component polyurethanes, since due to their
high reaction speed a sensible use is no longer possible. For this reason,
mixtures of amines and compounds containing hydroxy groups are often
employed. However, two-component compositions are undesirable due to the

mixing process required for many applications, in particular in the electronics
field.
Single-component isocyanate compositions may be cured in the presence of
water, e.g. in the form of atmospheric humidity. For this purpose, blocked amines
may be used; by reacting the amine with ketones or aldehydes, ketimines or
enamines are formed, which hydrolyze in the presence of moisture, causing a
reaction between the amine released and the isocyanate. One major
disadvantage is the release of aldehydes and ketones, which should be avoided
for both the maintenance of industrial health and safety standards and
environmental protection purposes.
It is also possible, by using moisture, to allow isocyanates to react with
themselves. In this case, together with moisture, carbamic acid is formed, which
decarboxylizes to form an amine with the elimination of carbon dioxide.
Subsequently, this amine reacts with the isocyanate to form a polyurea. The
released carbon dioxide causes a foaming of the compositions, which is welcome
for insulating foams in the construction field, but unacceptable for e.g. adhesives.
General disadvantages of moisture curing processes are the relatively slow
curing progress and the dependence on the extent of the atmospheric humidity.
Another way to cure single-component isocyanate compositions is the use of
heat.
Amines blocked by sodium chloride are available from Crompton Chemical.
These complexes, which are dispersed in dioctyl phthalate, decompose at
temperatures of from 100 °C to 160 °C to form the amine and sodium chloride.
Since one sodium chloride molecule is used for blocking one amine group each,
the result - depending on the respective isocyanate - is a proportion of several
percents of sodium chloride in the cured composition. Together with the
dispersing agent, which simultaneously acts as a polymer plasticizer and, as
sodium chloride, does not take part in the curing reaction, the proportion of
unreacted components contained in the cured composition is very
disadvantageous with regard to many properties such as adjusting hardness and
moisture stability. Sodium chloride is particularly disadvantageous for electronics

applications in which the proportion of hydrolyzable chloride should be below 100
ppm due to corrosion hazards.
Blocked isocyanates such as adducts of isocyanates with oximes, phenols, ε-
caprolactam, diethyl malonate or 3,5-dimethyl pyrazole have been widely used
for thermosetting compositions. Dimeric isocyanates ( of the uretdione type) are
also considered to belong to this group. Depending on the type of blocking agent,
the deblocking temperatures range from 100 °C to 180 °C, with the curing speed
determined by the speed at which the blocking agent is separated. For example,
15 minutes at 150 °C is a common period for the curing of these compositions.
However, these periods are much too extended for applications in which the
speed is critical.
Thus, the disadvantages of the prior art isocyanate compositions may be
summarized as follows: the known compositions are two-component or moisture-
curing compositions or contain disturbing cleavage products with too slow a
curing speed irrespective of the chosen curing method.
There already exist single-component epoxy resin compositions with latent
curing agents that have found widespread use as adhesives or casting
compositions in technology, in particular in the electronics industry. The latent
curing agents used in these compositions consist of nitrogen-containing
compounds such as dicyandiamide, aromatic amines or imidazoles, which are
present in the adhesive in an undissolved state at room temperature, melting only
at elevated temperatures to be available for the curing of the epoxy resins.
Although these compositions are characterized by a very high storage stability,
their curing time at temperatures of up to 150 °C is usually in the range of
minutes.
It is one object of the invention to provide thermosetting solvent-free single-
component compositions based on (iso)cyanates and latent curing agents and to
propose methods for their use, which, despite their high storage stability, can be
cured much faster that the known isocyanate compositions, thus presenting
interesting alternatives to the prior art for many applications, in particular for
applications in the electronics industry where large numbers of parts have to be
bonded, cast or coated within a very short period of time.

According to the present invention this object is solved by thermosetting
solvent-free single-component compositions having a storage stability at room
temperature of at least 2 weeks, consisting of
5-90 parts by weight of one at least difunctional (iso)cyanate component
selected from the group consisting of difunctional cyanates, difunctional
isocyanates and mixtures thereof,
5-50 parts by weight of a latent curing agent being solid up to a temperature
of at least 40 °C based on nitrogen compounds suitable for addition crosslinking,
0-50 parts by weight of an epoxy-containing compound,
0-50 parts by weight of modifiers selected from at least one of the groups of
fillers, colorants, pigments, stabilizing agents, moisture-binding agents,
accelerators, flow agents, wetting agents, thixotropifying agents, diluents and
polymeric thickening agents,
with the sum of all parts by weight being 100.
The solvent-free compositions according to the present invention are present
in the form of a single-component mixture with a high storage stability, which, for
curing, requires no addition of a second component, but must be subjected to
heating, which causes the latent curing agent solid up to a temperature of at least
40 °C to melt and subsequently react, in a molten phase, with the (iso)cyanate
component by addition crosslinking.
Preferably, possible (iso)cyanates (component (A)) are compounds of the
formulae Q(OCN)n and Q(NCO)n,
wherein independently n = 2 to 5, preferably 2 or 3, and
Q is an aliphatic hydrocarbon residue having 2 to 18, preferably 6 to 10 C
atoms, a cycloaliphatic hydrocarbon residue having 4 to 15, preferably 5 to 10 C
atoms or an aromatic hydrocarbon residue having 6 to 15, preferably 6 to 13 C
atoms.
Exemplary polycyanates are 4,4'-ethylidene diphenyl dicyanate, also referred
to as „bisphenol-E cyanate ester", bisphenol-A cyanate ester, hexafluoro-
bisphenol-A cyanate ester, tetramethyl bisphenol-F cyanate ester, bisphenol-M

cyanate ester, phenol novolak cyanate ester, bisphenol-C cyanate ester and
dicyclopentadienylphenol cyanate ester. Oligomeric cyanate esters such as oligo-
(3-methylene-1,5-phenylenecyanate) may also be used.
Exemplary polyisocyanates are hexamethylene diisocyanate, 1,12-didecane
diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3- and -1,4-diisocya-
nate and any mixture of these isomers, 1-isocyanato-3,3,5-trimethyl-5-
isocyanatomethylcyclohexane, hexahydro-1,3- and/or -1,4-phenylene diisocya-
nate, perhydro-2,4'- and/or -4,4'-diphenylmethane diisocyanate, 1,3- and 1,4-
phenylene diisocyanate, 2,4- and 2,6-toluylene diisocyanate and any mixture of
these isomers, diphenylmethane-2,4'- and/or -4,4'-diisocyanate, naphthylene-1,5-
diisocyanate, triphenylmethane-4,4',4"-triisocyanate or polyphenyl polymethylene
polyisocyanates as obtained by aniline-formaldehyde condensation and subse-
quent phosgenation.
Suitable higher molecular polyisocyanates are modification products of such
simple polyisocyanates, i.e. polyisocyanates with, for example, isocyanurate,
carbodiimide, allophanate, biuret or uretdione structural units as may be
produced according to methods per se known in the prior art from the exemplary
simple polyisocyanates of the above-mentioned general formula. Among the
modified higher molecular polyisocyanates, the prepolymers having terminal
isocyanate groups having a molecular weight ranging from 400 to 10.000,
preferably 600 to 8.000 and most preferably 800 to 5.000 known from
polyurethane chemistry are of particular interest. These compounds are formed in
a manner known per se by reacting excess amounts of simple polyisocyanates of
the exemplary types mentioned above with organic compounds having at least
two groups that may react with isocyanate groups, in particular organic
polyhydroxyl compounds. Blocked isocyanates may also be used, provided that
the protective group is separated at the curing temperatures used. Although this
may extend the storage stability, curing times are increased.
By using isocyanates having additional reactive groups, e.g. acrylate groups,
it is possible to introduce additional crosslinking in the form of an interpenetrating
network. For example, a hard acrylate network may be combined with a flexible
polyurea network.
Mixtures of isocyanates and cyanates may also be used in any mixing ratio.

Component (B) suitably comprises all latent curing agents that correspond to
the initial definition and are known to one skilled in the art of single-component
epoxy resins, e.g. dicyan diamide, guanidine derivatives, triazine derivatives,
guanamine derivatives, aliphatic amines, cycloaliphatic amines, aromatic amines,
polyamidoamines and imidazoles. Suitable latent curing agents also comprise all
polymeric nitrogen-containing compounds, provided that they correspond to the
above definition and allow an addition reaction. Adducts of epoxy resins and
various amines are examples of the prior art. Mixtures of various latent curing
agents are also provided to vary the speed of the curing agent or adjust the
melting point according to the requirements.
In the embodiment of the compositions according to the present invention,
latent curing agents with a melting point of less than 150 °C, in particular latent
curing agents with a melting point of less than 110 °C are preferred.
The proportion of the curing agent contained in the composition depends on
the equivalents of the curing agents and (iso)cyanates used, with the curing
agent used either in equal equivalents or in excess. The latent curing agents are
available from the manufacturers with various particle sizes. Especially preferred
are curing agents having a particle size of less than 10 µm.
Surprisingly, it was found that the latent curing agents used in epoxy resins
have an excellent suitability for the manufacture of very fast-curing single-
component polyurea adhesives, overcoming the slow curing disadvantage of
single-component polyurethane adhesives. In addition, no cleavage products are
released. Moreover, moisture is no longer necessary for curing. As compared to
the known single-component isocyanate compositions and the single-component
epoxy resins provided with latent curing agents these new compositions are
much faster and provide a more user-friendly storage stability.
The compositions according to the present invention are characterized by the
following advantages:
The compositions have an extremely high curing speed. A composition is
considered as cured if the residual enthalpy determined by a DSC measurement
(differential scanning calorimetry) is less than 5% of the total enthalpy. At 150 °C
curing times of less than 30 seconds are possible; in preferred embodiments of

the compositions of the present invention curing times of less than 15 seconds
may be realized. At 120 °C curing times are within 60 seconds, in preferred
embodiments of the compositions of the present invention curing times are within
30 seconds. Even at 80 °C curing times of less than 10 minutes are possible.
The above-mentioned curing times relate to curing in convection ovens. By
using alternative curing methods such as IR radiators or thermode curing
(thermocompression) curing times may again be reduced significantly. Curing by
means of thermocompression is of particular interest: two heated thermodes are
pressed against the part from above and below. Thus, heating times for the part
are significantly reduced by this direct contact. This method is also used
whenever as many parts as possible are to be cured within a very short period of
time, for example when bonding flip chips on the respective substrate. Using the
prior art epoxy resin systems curing times of 8 seconds at temperatures of more
than 180 °C had to be used to achieve a complete curing. However, these high
temperatures are already detrimental to many substrates. In addition, with curing
times of more than 5 seconds curing becomes the speed-determining step for the
whole facility. Using the compositions according to the present invention curing
times of 5 seconds at 150 °C may be obtained in these facilities. When
subtracting the short heating-up time of the parts of 1 to 2 seconds, the actual
curing takes only 3-4 seconds.
Despite this extraordinary reaction speed the compositions exhibit an
excellent storage stability or processing time of at least 2 weeks at room
temperature or preferably at least 3 months at 8 °C. Storage stabilities of 4 to 6
weeks at room temperature (20 °C to 25 °C) or 6 months at 4 °C to 8 °C are
possible according to the present invention; even a storage temperature of 40 °C
for 48 hours is possible. Compositions that at most double their viscosity in the
given temperature range during the storage period are considered as storage
stable.
According to the present invention, epoxy resins may be used as component
(C). Since the curing agents mentioned as component (B) were initially used for
epoxy resins, it is possible to combine two different resin systems, (iso)cyanates
and epoxides, in one composition by means of the curing agents. Therefore, the
properties of the compositions according to the present invention may be varied

almost at random with regard to strength, adhesion, absorption of water and
media resistance. Surprisingly, the curing speed is still determined by the
reaction of the (iso)cyanates with the curing agents; thus, the reaction of the
epoxy resins with the curing agents is significantly accelerated.
The epoxy resins may be aliphatic, cycloaliphatic or aromatic epoxy resins.
Aliphatic epoxy resins contain components carrying both an aliphatic group and
at least 2 epoxy resin groups. Examples of aliphatic epoxy resins may be
butanediol diglycidylether, hexanediol diglycidylether, dimethylpentanedioxide,
butadienedioxide and diethylene glycoldiglycidylether.
Cycloaliphatic epoxy resins are well known in the prior art and contain
substances carrying both a cycloaliphatic group and at least 2 oxirane rings.
Exemplary representatives are 3-cyclohexenylmethyl-3-cyclohexylcarboxylate-
diepoxide, 3,4-epoxycyclohexylalkyl-3',4'-epoxycyclohexanecarboxylate, 3,4-
epoxy-6-methylcyclohexylmethyl-3',4'-epoxy-6-methylcyclohexanecarboxylate,
vinylcyclohexanedioxide, bis(3,4-epoxycyclohexylmethyl)adipate, dicyclopenta-
dienedioxide and 1,2-epoxy-6-(2,3-epoxypropoxy)hexahydro-4,7-methaneindane.
3,4-epoxycyclohexylmethyl-3',4'-epoxycylohexylcarboxylate is preferably used.
Aromatic epoxy resins may also be used. Examples are bisphenol-A epoxy
resins, bisphenol-F epoxy resins, phenol novolak epoxy resins, cresol novolak
epoxy resins, biphenyl epoxy resins, biphenol epoxy resins, 4,4'-biphenyl epoxy
resins, divinylbenzenedioxide and 2-glycidylphenylglycidylether. Polyfunctional
epoxy resins of all three resin groups, viscoplastic epoxy resins and mixtures of
various resins may also be used.
As modifiers (component (D)) fillers such as quartz powder, silicates, glass
powder, teflon powder, ceramic powder, metal powder as well as colorants and
pigments such as soots, metal oxides or organic colorants and pigments may be
used. Stabilizing agents may be used to increase the storage stability (e.g.
slightly acidic compounds such as toluenesulfonylisocyanate) and protect the
cured composition from decomposition by heat or UV radiation (e.g. sterically
hindered phenols or amines). Moisture-binding agents are also important
modifiers to increase the storage stability and avoid the formation of carbon
dioxide. Suitable accelerators are imidazoles or urea derivatives such as
monuron or diuron, but also accelerators known to one skilled in the art of

isocyanates, for example organo-tin compounds. The flow agents, wetting
agents, diluents, thickening agents and thixotropifying agents known to one
skilled in the art may be used to adjust the flow behavior. Combinations with each
other or with the other modifiers according to the application requirements are
possible.
The compositions according to the present invention exhibit an excellent
suitability as adhesives, casting compositions and for the sealing or coating of
substrates. The compositions are particularly suitable for production processes in
which high numbers of parts have to be produced within a short period of time.
This applies in particular to electronic parts, for example to the bonding of so-
called flip chips on substrates as used in the smart cards and smart labels field.
Thus, a subject of the present invention also is the use of the compositions
according to the present invention for bonding, casting, sealing and coating of
substrates, preferably exhibiting the additional features of claims 10 to 12.
The compositions described are characterized by a very high storage stability
of, for example, several months at a temperature of 4 °C to 8 °C or of several
weeks at room temperature. At the same time, the compositions according to the
present invention exhibit low curing temperatures and short curing times, for
example 15 seconds at 150 °C, or 5 seconds at 150 °C when using thermocom-
pression. As compared to the known compositions of the prior art the difference
between storage temperature and curing temperature could be reduced. This
facilitates the use of the compositions of the present invention in technical
processes in which a low-temperature storage of the compositions is undesirable,
but short curing times and low curing temperatures are required. According to the
present invention, both the energy consumption and the time required for the
joining process are more favorable.
The invention will be explained by means of the following examples, which
are not considered as limiting, in conjunction with the accompanying drawings.

Fig. 1 is a DSC (differential scanning calorimetry) graph showing the turnover
of the epoxy/polyamine reaction of a comparative example (example 1)
depending on the curing temperature;

Fig. 2 is a DSC graph showing the turnover of the polyisocyanate/polyamine
reaction of example 2 (according to the present invention) depending on the
curing temperature;
Fig. 3 represents two graphs showing the changes in viscosity of the
comparative composition (right-hand graph) and the composition of the present
invention (left-hand graph), each depending on the curing time at a constant
temperature.
Example 1 (comparative example)
A prior art composition consisting of an epoxy resin and a latent curing agent
is deemed to form a comparative example. It is composed of:
67% of a mixture of bisphenol-A and bisphenol-F epoxy resins (EPR166
available from Bakelite),
27% of a latent amine curing agent (Ancamine 2014AS available from Air
Products),
3.5% of an accelerator (dicyan diamide Dyhard SF 100 available from
Degussa) and
2.5% of a thixotropifying agent (Cab-O-Sil M5 available from Cabot).
The following properties of the examples are determined:
1. Curing peak
A DSC822 type DSC device available from Mettler-Toledo (DSC = differential
scanning calorimetry) is used to measure the reaction peak of the comparative
composition. As can be seen from the DSC graph shown in Fig. 1, said peak is
located at about 125°C.
2. Curing speed
A rheometer obtained by Bohlin Instruments (device: Gemini) is used to
determine the curing speed in the oscillation mode at a constant temperature.
During curing the viscosity is significantly increased. A composition is considered
as cured, if the viscosity no longer changes (plateau of the graph, Fig. 3, right-

hand graph). At 150 °C the comparative example is cured within 60 seconds, at
120 °C within 8 minutes and at 80 °C within 4 hours.
3. Storage stability or processing time
A rheometer is used to determine the viscosity of storage samples at regular
intervals. The composition is considered as processible or storage stable until its
viscosity has doubled. Table 1 sets forth a list of storage stabilities or processing
times.
Example 2
The composition of the present invention comprises the following
components:
73.5% of a MDI-based polyisocyanate (Desmodur VL R20, Bayer),
24.5% of a latent amine curing agent (Ancamine 2014AS, Air Products),
1.5% of a thixotropifying agent (Cab-O-Sil M5, Cabot) and
0.5% of an adhesion promoter (Dynasilan Glymo, Degussa).
The DSC graph (Fig. 2) of this composition shows a temperature of the
reaction peak of 74 °C, which is approx. 50 °C lower than in the comparative
example. This lower reaction temperature clearly results in a substantially higher
reaction speed than in the comparative example. The rheometer graphs of Fig. 3
show a curing time of approx. 60 seconds at 150 °C for the comparative example
(right-hand graph) and a curing time of only 10 seconds for the composition of the
present invention (left-hand graph in Fig. 3). At 120 °C this composition of the
present invention requires approx. 60 seconds for curing, at 80 °C 8 minutes. The
storage stabilities or processing times are similar to those of the comparative
example (Table 1).
Example 3
The composition of the present invention comprises the following
components:
65% of an IPDI-based polyisocyanate (Desmodur VL LS 2371, Bayer),

33% of a latent amine curing agent (Adeka Hardener EH4337, Asahi Denka),
1.5% of a thixotropifying agent (Cab-O-Sil M5, Cabot) and
0.5% of an adhesion promoter (Dynasilan Glymo, Degussa).
Table 1 summarizes the most important properties of this composition.
Example 4
The composition of the present invention comprises the following
components:
15% of a mixture of bisphenol-A and bisphenol-F epoxy resins (EPR166,
Bakelite),
51% of a MDI-based polyisocyanate (Desmodur VL R20, Bayer),
30% of a latent amine curing agent (Ancamine 2014AS, Air Products),
1.5% of a thixotropifying agent (Cab-O-Sil M5, Cabot),
0.5% of an adhesion promoter (Dynasilan Glymo, Degussa) and
2% of a viscoplastic epoxy resin (Albipox 2000, Hanse Chemie).
This example shows that both isocyanate and epoxy resin react with the
latent curing agent without causing the reaction speed to drop significantly. Table
1 summarizes the most important properties of this composition.
Example 5
68% of a novolak cyanate ester (Primaset PT-90, Ciba Speciality Chemicals),
30% of a latent amine curing agent (Ancamine 2014AS, Air Products,
modified aliphatic polyamine adduct),
1.5% of a thixotropifying agent (Cab-O-Sil M5, Cabot) and
0.5% of an adhesion promoter (Dynasilan Glymo, Degussa).

This example shows that cyanates can also react with the latent curing agent,
with the reaction speed even slightly higher than with isocyanates. The storage
stability is also slightly better than with isocyanates. Table 1 sets forth the most
important properties of this system.
Example 6
The composition of the present invention is made from the following
components:
30% of a novolak cyanate ester (Primaset PT-90, Ciba Speciality Chemicals),
38% of a MDI-based polyisocyanate (Desmodur VL R20, Bayer),
30% of a latent amine curing agent (Ancamine 2014AS, Air Products,
modified aliphatic polyamine adduct),
1.5% of a thixotropifying agent (Cab-O-Sil M5, Cabot) and
0.5% of an adhesion promoter (Dynasilan Glymo, Degussa).
This example shows that both isocyanates and cyanates react with the latent
curing agent. Table 1 sets forth the most important properties of this system.


WE CLAIM:
1. A thermosetting solvent-free single-component composition having
a storage stability at room temperature of at least 2 weeks, consisting of
(A) 5-90 parts by weight of an at least difunctional (iso)cyanate
component selected from the group consisting of at least difunctional
cyanates, at least difunctional isocyanates and mixtures thereof,
(B) 5-50 parts by weight of a latent curing agent solid up to a
temperature of at least 40 °C based on nitrogen compounds suitable for
addition crosslinking,
(C) 0-50 parts by weight of an epoxy-containing compound and
(D) 0-50 parts by weight of modifiers selected from at least one of the
groups of fillers, colorants, pigments, stabilizing agents, moisture-
binding agents, accelerators, flow agents, wetting agents, thixotropifying
agents, diluents and polymeric thickening agents,
with the sum of all parts by weight being 100.
2. The composition as claimed in claim 1, wherein the composition
has curing time of less than 30 seconds at 150 °C and of less than 60
seconds at 120 °C.
3. The composition as claimed in claim 2, wherein the curing time is
less than 15 seconds at 150 °C and less than 30 seconds at 120 °C.
4. The composition as claimed in any one of claims 1 to 3, wherein
the composition has a storage stability of at least 3 months at 8 °C.
5. The composition as claimed in any one of claims 1 to 4, wherein
the isocyanate consists of prepolymers having terminal isocyanate
groups with a molecular weight ranging from 400 to 10.000, preferably
600 to 8.000 and most preferably 800 to 5.000.

6. The composition as claimed in any one of claims 1 to 5, wherein
the cyanate consists of prepolymers having terminal cyanate groups with
a molecular weight ranging from 400 to 10.000, preferably 600 to 8.000
and most preferably 800 to 5.000.
7. The composition as claimed in any one of claims 1 to 6, wherein
the cyanate or isocyanate contains additional reactive groups.
8. The composition as claimed in claim 7, wherein the additional
reactive groups are (meth)acrylate groups.
9. The composition as claimed in any one of claims 1 to 8, wherein
the latent curing agent has a melting point of less than 150 °C,
preferably less than 110 °C.
10. The composition as claimed in any one of claims 1 to 9, wherein
the latent curing agent has a particle size of less than 10 µm.
11. A process for the bonding, casting, sealing or coating of substrates
characterized by using as a bonding, casting, sealing or coating material
the composition as claimed in claim 1.
12. The process as claimed in claim 11 for bonding, casting, sealing or
coating electronic parts.
13. The process as claimed in claim 11, wherein the composition is
cured in a convection oven at a temperature of, at maximum, 150 °C.
14. The process as claimed in claim 12 for the bonding of flip chips for
smart cards and smart labels, wherein the composition is cured at a
temperature of, at maximum, 150 °C by means of thermocompression.


We propose a thermosetting solvent-free single-component composition
having a storage stability at room temperature of at least 2 weeks, consisting of
(A) 5-90 parts by weight of one at least difunctional (iso)cyanate component,
(B) 5-50 parts by weight of a latent curing agent solid up to a temperature of
at least 40 °C based on nitrogen compounds suitable for addition crosslinking,
(C) 0-50 parts by weight of an epoxy-containing compound and
(D) 0-50 parts by weight of modifiers,
with the sum of all parts by weight being 100, and its use for bonding, casting,
sealing and coating of substrates, in particular electronic parts. The composition
is cured at 120 °C to 150 °C within seconds.

Documents:

00488-kolnp-2008-abstract.pdf

00488-kolnp-2008-claims.pdf

00488-kolnp-2008-correspondence others.pdf

00488-kolnp-2008-description complete.pdf

00488-kolnp-2008-drawings.pdf

00488-kolnp-2008-form 1.pdf

00488-kolnp-2008-form 2.pdf

00488-kolnp-2008-form 3.pdf

00488-kolnp-2008-form 5.pdf

00488-kolnp-2008-international publication.pdf

00488-kolnp-2008-international search report.pdf

00488-kolnp-2008-pct priority document notification.pdf

00488-kolnp-2008-pct request form.pdf

488-KOLNP-2008-ABSTRACT.pdf

488-KOLNP-2008-AMANDED CLAIMS.pdf

488-KOLNP-2008-CORRESPONDENCE OTHERS 1.1.pdf

488-KOLNP-2008-CORRESPONDENCE OTHERS-1.2.pdf

488-KOLNP-2008-CORRESPONDENCE-1.1.pdf

488-KOLNP-2008-CORRESPONDENCE.pdf

488-KOLNP-2008-DESCRIPTION (COMPLETE).pdf

488-KOLNP-2008-DRAWINGS.pdf

488-KOLNP-2008-EXAMINATION REPORT.pdf

488-KOLNP-2008-FORM 1.pdf

488-KOLNP-2008-FORM 18 1.1.pdf

488-kolnp-2008-form 18.pdf

488-KOLNP-2008-FORM 2.pdf

488-KOLNP-2008-FORM 26 1.1.pdf

488-KOLNP-2008-FORM 26.pdf

488-KOLNP-2008-FORM 3 1.1.pdf

488-KOLNP-2008-FORM 3.pdf

488-KOLNP-2008-FORM 5.pdf

488-KOLNP-2008-FORM-27-1.pdf

488-KOLNP-2008-FORM-27.pdf

488-KOLNP-2008-GRANTED-ABSTRACT.pdf

488-KOLNP-2008-GRANTED-CLAIMS.pdf

488-KOLNP-2008-GRANTED-DESCRIPTION (COMPLETE).pdf

488-KOLNP-2008-GRANTED-DRAWINGS.pdf

488-KOLNP-2008-GRANTED-FORM 1.pdf

488-KOLNP-2008-GRANTED-FORM 2.pdf

488-KOLNP-2008-GRANTED-SPECIFICATION.pdf

488-KOLNP-2008-INTERNATIONAL EXM REPORT.pdf

488-KOLNP-2008-INTERNATIONAL SEARCH REPORT 1.1.pdf

488-KOLNP-2008-OTHERS 1.1.pdf

488-KOLNP-2008-OTHERS.pdf

488-KOLNP-2008-PETITION UNDER SECTION 8(1).pdf

488-KOLNP-2008-PRIORITY DOCUMENT.pdf

488-KOLNP-2008-REPLY TO EXAMINATION REPORT 1.1.pdf

488-KOLNP-2008-REPLY TO EXAMINATION REPORT.pdf


Patent Number 249847
Indian Patent Application Number 488/KOLNP/2008
PG Journal Number 46/2011
Publication Date 18-Nov-2011
Grant Date 16-Nov-2011
Date of Filing 04-Feb-2008
Name of Patentee DELO INDUSTRIEKLEBSTOFFE GMBH & CO. KG
Applicant Address DELO-ALLEEL, 86949 WINDBACH
Inventors:
# Inventor's Name Inventor's Address
1 MICHAEL STUMBECK OBERSCHLESIENSTRASSE 33, 83024 ROSENHEIM
2 JUERGEN KOEBLER URANUSSTRASSE 1, 82205 GILCHING
PCT International Classification Number C09J 175/02
PCT International Application Number PCT/EP2006/006447
PCT International Filing date 2006-07-03
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10 2005 031 381.7 2005-07-05 Germany