Title of Invention

"METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING DATA USING PARTIAL CHASE COMBINING"

Abstract A method of transmitting data in a communications system comprising a plurality of communication channels, the method comprising the steps of: transmitting the data over a first set of communication channels, wherein the first set of communication channels comprises a first number of communication channels; and retransmitting at least a portion of the data over a second set of communication channels, wherein the second set of communication channels comprises a second number of communication channels less than the first number of communication channels, and wherein when the second set of communication channels is full, any remaining data that was transmitted over the first set of communication channels is not retransmitted.
Full Text The present invention relates to method and device for transmitting and receiving data using partial chase combining.
Field of the Invention The present invention relates generally to communication systems and in particular to performing partial Chase encoding and combining with unequal sized transmissions.
Background of the Invention Hybrid ARQ (HARQ) has been shown to provide advantages in communication system throughput, and has been shown to make the system "robust to modulation and coding scheme (MCS) selection errors. Full Chase combining is the simplest form of HARQ. In the.full Chase combining scheme, retransmissions of information are simply repetitions of the initial transmission. A Chase HARQ decoder is easier to implement than a full incremental redundancy (IR) HARQ decoder because the joint transmission decoder for Chase combining consists of a single soft storage buffer and soft combiner followed by the decoder that was used for the first transmission. For IR, soft storage must be provided for each transmission (i.e., no combining is performed), and the joint decoder must process all received data.
Full Chase HARQ has been implemented in a transmitter/receiver chain of a communications device such as that shown in FIG. 1. The channel encoder and decoder blocks may include functions such as cyclic redundancy check (CRC) coding and rate-matching as well as forward error correction (FEC) coding with a turbo, convolutiOhal, Bose-Chaudhuri-Hocquenghem (BCH), or other code (including adding tail bits, if any). The block interleaver and deinterleaver reorder the bits/values received to help the channel, encoder and decoder provide a diversity benefit The modulator and demodulator block may include QPSK, 8PSK, MQAM, or other modulatiion,
as well as Walsh code demultiplexing and spreading. The full Chase combining function can occur before or after the block de-interteaver as known in the art.
A potential drawback of full Chase HARQ is that every retransmission of information must be the same size as the original transmission. With certain combinations of traffic, such as voice and supplemental channel data, the available channel resources, such as code space, time slots, frequency channels, or streams, may change causing current HARQ transmissions to abort because of insufficient code space for further retransmissions. Similarly, changes in the code space may provide additional code resources that a current user cannot take advantage of because in full Chase HARQ, retransmissions are the same size as the initial transmission.
Thus, there is a need for an apparatus and method for transmitting and receiving data, wherein retransmissions of information can be a different size from the initial transmission.
Accordingly, there is provided a method of transmitting data in a communications system comprising a plurality of communication channels, the method comprising the steps of:
transmitting the data over a first set of communication channels, wherein the first set of communication channels comprises a first number of communication channels wherein the method is characterized by:
retransmitting at least a portion of the data over a second set of communication channels, wherein the second set of communication channels comprises a second number of communication channels less than the first number of communication channels, and wherein when the second set of communication channels is full, any remaining data that was transmitted over the first set of communication channels is not retransmitted.
Accordingly, there is also provided a device for transmitting data over a plurality of communication channels using a partial chase combining comprising a processor and characterized by:
a transmitter operatively coupled to the processor, wherein the transmitter transmits the data over a first set of communication channels, wherein the first set of communication channels comprises a first number of communication channels, and retransmits at least a portion of the data over a second set of communication channels, wherein the second set of communication channels comprises a second number of communication channels less than the first number of communication channels, and wherein when the second set of communication channels is full, any remaining data that was transmitted over the first set of communication channels is not retransmitted.
Brief Description of the Drawings FIG. 1 is a.portion'of a transmitter/receiver chain of a communications device that is used with the full Chase HARQ scheme of the prior art.
FIG. 2 is a preferred embodiment of a communications device that can implement the partial Chase HARQ scheme in accordance with the present invention.
FIG. 3 is a portion of a transmitter/ receiver chain that can be implemented in an apparatus in accordance with the preferred embodiment of the present invention.
FIG. 4 is an example of partial Chase encoding with less code resources available, for retransmission of. information due to changes in the available Walsh code space and with no change in the MCS.
FIG. 5 is an example of partial Chase encoding'with less code resources available for retransmission of information and an MCS change from QPSK for the data on the initial transmission to 16 QAM for The data on the retransmission.
FIG. 6 is an example of partial Chase encoding with more code resources available for retransmission of information and an MCS change
from 16 QAM for the data on the initial transmission to QPSK for the data on the retransmission.
FIG. 7 is an example of partial Chase combining of a portion of the LLRs from an initial transmission with the LLRs from a retransmission where the initial transmission used more resources than the retransmission and where there was no change in the MCS.
FIG. 8 is an example of partial Chase combining of a portion of the LLRs from an initial transmission with the LLRs from a retransmission where the initial transmission used more resources than the retransmission and where the MCS changed from QPSK to 16 QAM.
FIG. 9 is an example of partial Chase combining of the LLRs from an initial transmission with the LLRs from a retransmission where the initial transmission used less resources than the retransmission and where the MCS changed from 16 QAM to QPSK.
Detailed Description of the Presently Preferred Embodiment The partial Chase HARQ technique used in the preferred embodiment of the present invention seeks to obtain the benefit of variable size transmissions with minimal impact on current communication systems. In the preferred embodiment of the present invention, the partial chase HARQ techniques can be implemented in a communications device, such as a mobile station (MS). FIG. 2 is a block diagram showing some components of a typical MS 200. As shown, the MS 200 can include an antenna 202, a transmitter 204, a receiver 206, a microprocessor 208 including a memory (not shown), a power supply IC 210, a microphone 212, a speaker 214, a keypad 216 and a display 218. The antenna 202 receives signals from the receiver 206 and transmits signals to the transmitter 204. These signals are processed by the microprocessor 208. The microprocessor 208 also processes inputs from the keypad 216 and sends outputs to the display 218. The power supply IC 210 is coupled to the microphone 212 and speaker 214 to control the power supplied thereto. In alternate embodiments of the present invention, the partial Chase HARQ technique can be implemented in
other communications devices such as a pager, a personal digital assistant (PDA), and the like.
A portion of the transmitter 204 and receiver 206 of FIG. 2 is shown in FIG. 3. The partial Chase HARQ technique utilizes a partial Chase encoder 306 coupled between the block interleaver 304 and modulator 308, and a partial Chase combiner 314 coupled to the demodulator 312 and block de-interleaver 316. Because the channel encoder 302, block interleaver 304, modulator 308, demodulator 312, block deinterleaver 316 and channel decoder operate as commonly known in the art, no further details are provided herein. The partial Chase encoder 306 and partial Chase combiner
314 can be implemented in hardware (e.g., using configurable logic and RAM
...--,..-"> r\s£ CJCOJL.
memory on the VIrtex XCV2000E from Xilinx )or software (e.g., in code
running on the MSC8102 DSP from Motorola).
The partial Chase encoder 306 truncates or expands the interleaved
data received from the block interleaver 304 depending on the availability of
channel resources for retransmission. In the preferred embodiment, the
invention is implemented in the; 1XTREME EV-DV, (proposal to evolve
cdma2000 to provide both data and voice (1X EV-DV) code division multiple
access (CDMA) system in which the channel resources are orthogonal codes,
such as Walsh codes. However, in an alternate embodiment, the invention
can be implemented in a 3GPP W-CDMA system in which the channel
resources are Orthogonal Variable Spreading Factor (OVSF) codes. In other
alternate embodiments, the channel resources could be time slots in a time
division multiple access (TDMA) system or frequencies in a frequency division
multiple access (FDMA) or OFDM system. In the preferred embodiment, the
partial Chase combiner 314 processes the received data based solely on the
number of codes and modulation received (i.e., predetermined, with no
additional signaling required). If the received retransmission is smaller than
the first transmission, only a portion of the soft bits are combined. If the
retransmission is larger than the first transmission, some values of the stored
first transmission are combined with more than one received soft bit in the
retransmission. After combining, the deinterleaver 316 and channel decoder
318 can then operate on a buffer the same size as used on the first transmission.
Details of the operation of the partial chase encoder will now be described with reference to FIG. 4. FIG. 4 shows an example of partial Chase encoding with less code resources available for the current transmission (retransmission) of information due to changes in the available Walsh code space. Specifically, the number of resources available for the first transmission (Nresl) is eight (8), and five (5) code resources (Nres=5) are available for the retransmission. The desired modulation order m (m=log2 M bits per symbol in an M signal constellation like MQAM) is unchanged (m=m1) for the retransmission. It should be noted that the modulation order may change for the retransmission due to changes in channel conditions. It should also be noted that the code numbers are logical labels and do not necessarily correspond to a particular code resource. Further, on the receive side, data to be combined could have been transmitted using the same or different physical Walsh sequences.
As shown in FIG. 4, the partial chase encoder 306 receives four (4) inputs - the modulation order of thejvlCSjjsed to modulate the data in the first transmission (ml), the modulation order of the MCS used to modulate the data in the retransmission (m), Nresl and Nres. The partial Chase encoder 306, receiving input that the MCS for the retransmission is the same as that for the initial transmission and receiving input that only 5 resources are available for the retransmission, will cause information, preferably interleaved encoded bits, on only 5 codes to be retransmitted. Interleaved encoded bits on three (3) of the eight (8) codes originally transmitted will not be transmitted. In the preferred embodiment, interleaved encoded bits on the first five (5) codes will be retransmitted. However, it will be recognized by one of ordinary skill in the art that interleaved encoded bits on any 5 codes could be retransmitted.
In a more detailed explanation of the partial Chase encoding function shown in FIG. 4, if the initial transmission had 80 encoded interleaved data bits (10 bits per code, bits 1-10 on the first code resource, bits 11-20 on the
second code resource, etc), the retransmission repeats 50 bits on the five available codes (bits 1-10 on the first code resource, etc). On a second retransmission with 5 available codes, bits 1 to 50 can be sent again, but it is desirable to send the bits that have not yet been resent to ensure performance comparable to a full Chase encoder. In the case of 5 available codes on the second retransmission, 50 bits are sent on the five available codes (bits 51-60 on the first code resource, bits 61-70 on the second code resource, bits 71-80 on the third code resource, bits 1-10 on the fourth code resource, and bits 11-20 on the fifth code resource).
The partial Chase encoder 306 can also be used when more code resources are available for retransmission of interleaved encoded bits due to changes in the available Walsh code space. For example, if in FIG. 4, Nresl = 5 and Nres=8, the encoder 306 will cause interleaved encoded bits on all 5 codes to be retransmitted at least once (bits 1-50 on the first 5 codes, and bits 1-30 on the last 3 codes).
The partial Chase encoder 306 can also be used when the MCS
changes for the retransmission. FIG. 5 shows an example where the MCS
changed from quadrature phase shift keying (QPSK) for the data on the initial
transmission to 16 quadrature amplitude modulation (QAM) for the data on
the retransmission. Since 16 QAM is twice as spectrally efficient as QPSK
(represented as m=2*m1 in FIG. 5), a single 16 QAM code can carry the
same information as 2 QPSK codes. In the example of FIG. 5, the available
code space changed from Nresl =8 for the initial transmission to Nres = 3 for
the retransmission. Thus, the interleaved encoded bits carried on codes 1
and 2 in the initial transmission will be carried on code 1 in the
retransmission. The interleaved encoded bits carried on codes 3 and 4 in the
initial transmission will be carried on code 2 in the retransmission. The
interleaved encoded bits carried on codes 5 and 6 in the initial transmission
will be carried on code 3 in the retransmission. Since there are no more
resources available for the retransmission, the interleaved encoded bits
carried on codes 7 and 8 in the initial transmission will not be transmitted.
11 While all combinations of modulation order change and code resource
change can be handled with the partial Chase encoder 306, combinations where Nres1*m1/m is an integer value are most efficient.
In a more detailed explanation of the partial chase encoding function shown in FIG. 5, if the initial transmission had 80 encoded interleaved data bits (10 bits per code, bits 1-10 on the first code resource, bits 11-20 on the second code resource, etc), the retransmission repeats 60 bits on the three available codes (bits 1-20 on the first code resource, bits 21-40 on the second code resource, and bits 41-60 on the third code resource).
The partial Chase encoder 306 can also be used in the example of FIG. 5 when more code resources are available for the retransmission of interleaved encoded bits due to changes in the available Walsh code space. For example, if in FIG. 5, Nresl = 3 and Nres=8, the interleaved encoded bits! carried on QPSK codes 1 and 2 in the initial transmission will be carried on 16 QAM code 1 in the retransmission. The interleaved encoded bits carried on QPSK code 3 in the initial transmission will be carried on the first half of 16 QAM code 2 in the retransmission. Preferably, any unused code space in the retransmission will be filled with repetitions of the interleaved encoded bits carried on QPSK codes 1, 2 and 3 in the initial transmission. For example, the second half of 16 QAM code 2 in the retransmission will repeat the interleaved encoded bits carried on QPSK code 1 in the initial transmission, the first half of 16 QAM code 3 in the retransmission will repeat the interleaved encoded bits carried on QPSK code 2 in the initial transmission, and so on.
As noted in the previous paragraph, if the available Walsh space increases, it may be desirable to increase the code resource usage on the retransmission. This may happen in conjunction with a desired change in the modulation order for the retransmission, e.g., 16 QAM to QPSK. Figure 6 shows an example where the available code space increased from 3 codes (Nresl =3) for the initial transmission to 8 codes (Nres=8) for the retransmission, with a change in modulation from 16 QAM to QPSK (m=0.5*m1). Because QPSK is half as spectrally efficient as 16 QAM, 2 QPSK codes are required to carry the same information as a single 16 QAM
code. Thus, the interleaved encoded bits carried on 16 QAM code 1 in the initial transmission will be carried on QPSK codes 1 and 2 in the retransmission. The interleaved encoded bits carried on 16 QAM code 2 in the initial transmission will be carried on QPSK codes 3 and 4 in the retransmission. The interleaved encoded bits carried on 16 QAM code 3 in the initial transmission will be carried on QPSK codes 5 and 6 in the retransmission. The final two QPSK codes 7 and 8 in the retransmission are a repeat of interleaved encoded bits on the first 16 QAM code of the initial transmission.
In a more detailed explanation of the partial chase encoding function shown in FIG. 6, if the initial transmission had 60 encoded interleaved data bits (20 bits per code, bits 1-20 on the first code resource, bits 21-40 on the second code resource, etc), the retransmission repeats 80 bits on the eight available codes (bits 1-10 on the first code resource, bits 11-20 on the second code resource, bits 21-30 on the third code resource, bits 31-40 on the fourth code resource, bits 41-50 on the fifth code resource, bits 51-60 on the sixth code resource, bits 1-10 on the seventh code resource, and bits 11-20 on the eight code resource).
The partial Chase encoder 306 can also be used in the example of FIG. 6 when less code resources are available for retransmission of interleaved encoded bits due to changes in the ayailableiA/alsh code space. For example, if in FIG. 6; Nresl = 8 and Nres=3, the interleaved encoded bits carried on the first half of 16 QAM code 1 in the initial transmission will be carried on QPSK code 1 in the retransmission. The interleaved encoded bits carried on the second half of 16 QAM code 1 in the initial transmission will be carried on QPSK code 2 in the retransmission. The interleaved encoded bits carried on the first half of 16 QAM code 2 in the initial transmission will be carried on QPSK code 3 in the retransmission. Because there are no further resources available for the retransmission the second half of 16 QAM code 2 through the second half of 16 QAM code 8 will not be transmitted.
It should be noted that the pre-determined selection of interleaved encoded bits to repeat in the partial Chase encoder 306 can vary as a
function of retransmission. For example, if an initial transmission (8 codes available) uses codes 1 to 8, a first retransmission (2 codes available) can repeat the interleaved encoded bits carried on codes 1 and 2 of the initial transmission, and a second retransmission (7 codes available) can repeat the interleaved encoded bits carried on codes 3-8 and 1 of the initial transmission. In this manner, the partial Chase combining can achieve the residual frame error rate performance of full Chase combining when the same total number of codes has been sent and the same modulation is used.
The three examples in FIGs. 4-6 for the partial Chase encoder 306 in the transmitter chain of FIG. 3 are continued in FIGs. 7-9 for the partial Chase combiner 314 in the receiver chain of FIG. 3. In FIGs. 7-9, the information carried on the codes in the initial transmission and retransmission are demodulated soft values, e.g., bit log likelihood ratios (LLRs) in the preferred embodiment, instead of interleaved encoded bits. The combiner 314 combines the LLRs from the initial transmission and retransmissions in a combined bit LLR buffer he size of the buffer is determined by the initial transmission. The LLRs from the initial transmission can be stored in receiver memory until being transferred to the cbuf. Alternatively, the LLRs from the initial transmission can be stored directly in the In the example of FIG. 7, the partial Chase combiner 314 combines a portion of the LLRs from the initial transmission on 8 codes (Nresl =8) with LLRs from the retransmission on 5 codes (Nres=5). (The modulation order did not change.) The contents of the cbuf are shown after the first retransmission. Specifically, FIG. 7 shows that the LLRs from the initial transmission on code 1 are combined with the LLRs from the retransmission on code 1. Likewise, the LLRs from the initial transmission on code 2 are combined with the LLRs from the retransmission on code 2, and so on. As shown in FIG. 7, the LLRs from initial transmissions on codes 6, 7 and 8 are not combined since no resources were available to retransmit interleaved encoded bits on codes 6, 7 and 8. In the preferred embodiment, the '+' notation shown in the combined bit LLR buffer denotes simple addition since bit LLRs are provided as part of the demodulation process. In an alternate embodiment, the "+" notation may
denote max-ratio combining (averaging for equal gain) of demodulated soft values provided as part of the demodulation process.
In a more detailed explanation of the partial chase combining function shown in FIG. 7, if the initial transmission had 80 encoded interleaved data bits, the cbuf will contain 80 bit LLRs. The rbuf contains 50 bit LLRs. The partial Chase combiner 314 will combine the first 50 bit LLRs in cbuf with the contents of rbuf. In the case of 5 available codes on the second retransmission, the rbuf will again contain 50 bit LLRs. Bit LLRs 1 to 30 in rbuf are added to the combined bit LLRs 51 to 80 in cbuf, and bit LLRs 31 to 50 in rbuf are added to combined bit LLRs 1 to 20 in cbuf.
The partial Chase combiner 314 can also be used when more code resources were available for retransmission of interleaved encoded bits due to changes in the available Walsh code space. For example, if in FIG. 7, Nresl = 5 and Nres=8, the cbuf would reflect the following:
(Table Removed) In the example of FIG. 8, the partial Chase combiner 314 combines a portion of the LLRs from the initial transmission on 8 codes (Nresl =8) with LLRs from the retransmission on 3 codes (Nres=3). In this example, the modulation order changed from QPSK to 16 QAM (m=2*m1). The contents of the combined bit LLR buffer is shown after the first retransmission. The '1/2' notation is used to indicate using the first or second half portion of the currently received bits on a code that has a higher modulation order. Specifically, FIG. 8 shows that the LLRs from the initial transmission on code 1 are combined with the LLRs from the retransmission on the first half of code 1. The LLRs from the initial transmission on code 2 are combined with the LLRs from the retransmission on the second half of code 1. The LLRs from
the initial transmission on code 3 are combined with the LLRs from the retransmission on the first half of code 2. The LLRs from the initial transmission on code 4 are combined with the LLRs from the retransmission on the second half of code 2, and so on. As shown in FIG. 8, the LLRs from initial transmissions on codes 7 and 8 are not combined since no resources were available to retransmit interleaved encoded bits on codes 7 and 8.
The partial Chase combiner 314 can also be used in the example of FIG. 8 when more code resources were available for retransmission of interleaved encoded bits due to changes in the available Walsh code space. For example, if in FIG. 8, Nresl = 3 and Nres=8, the cbuf would reflect the following:
(Table Removed)
In the example of FIG. 9, the partial Chase combiner 314 combines the LLRs from the initial transmission on 3 codes (Nresl =3) with a portion of the LLRs from the retransmission on 8 codes (Nres=8). In this example, the modulation order changed from 16 QAM to QPSK (m=0.5*m1). The contents of the combined bit LLR buffer is shown after the first retransmission. Specifically, FIG. 9 shows that the LLRs from the initial transmission on code
1 are combined with the LLRs from the retransmission on codes 1 and 2.
The LLRs from the initial transmission on code 2 are combined with the LLRs
from the retransmission on codes 3 and 4. The LLRs from the initial
transmission on code 3 are combined with the LLRs from the retransmission
on codes 5 and 6. Finally, the combination of the LLRs from the initial
transmission on code 1 and the LLRs from the retransmission on codes 1 and
2 is combined with the retransmission on codes 7 and 8.
The partial Chase combiner 314 can also be used in the example of FIG. 9 when less code resources were available for retransmission of interleaved encoded bits due to changes in the available Walsh code space.
For example, if in FIG. 9, Nresl = 8 and Nres=3, the combined bit LLR buffer would reflect the following:
(Table Removed)
Those skilled in the art will recognize that various modifications and variations can be made in the apparatus and method of the present invention and in construction of this apparatus without departing from the scope or spirit of this invention. For example, the interleaved encoded data can be stored after the first transmission for a potential retransmission, or regenerated at the time of retransmission. As another example, the partial Chase combiner 314 can be separated into a partial Chase pre-combiner and a Chase combiner. This may be useful if the current Chase combining is performed after the deinterleaver 316. In this case, the partial Chase pre-combiner creates a soft block the same size as the block deinterleaver 316 operates on in a full Chase encoding/combining scenario. If the retransmission is smaller, null (soft zero) symbols are filled, and if the retransmission is larger, some of the soft received values are pre combined. Both operations happen in a predetermined manner given the received modulation (MCS) and number of codes.
As another example, in systems with higher order modulations, partial Chase combining can be performed on a symbol (not bit LLR) basis, just like full Chase combining. However, in such a case, the modulation must not change between retransmissions. As a further example, in systems with higher order modulations, partial Chase encoding can be performed on the
interleaved encoded symbols after QPSK, QAM, etc modulation, just like Chase encoding. However, in such a case, the modulation must be restricted not to change between retransmissions.
As another example, if the actual codes (as opposed to logical code numbers of the code resources) used for retransmission are the same as the codes used for the first transmission (e.g., first transmission of 8 codes used codes 7 to 14, and retransmission of 5 codes uses codes 7 to 11) the spread encoded data can be used by the partial Chase encoder. However, this requires more storage.
As yet another example, the receiver has the option of separately decoding the received data before combining and jointly decoding, if necessary. This can only be successful if the received data is self-decodable; with partial Chase combining, a self-decodable block is only guaranteed if Nres*m >= Nres1*m1.







We Claim:
1. A method of transmitting data in a communications system using a partial chase
combining comprising a plurality of communication channels, the method comprising the
steps of:
transmitting the data over a first set of communication channels, wherein the first set of communication channels comprises a first number of communication channels wherein the method is characterized by:
retransmitting at least a portion of the data over a second set of communication channels, wherein the second set of communication channels comprises a second number of communication channels less than the first number of communication channels, and wherein when the second set of communication channels is full, any remaining data that was transmitted over the first set of communication channels is not retransmitted.
2. The method as claimed in claim 1 wherein the step of retransmitting comprises selecting a predetermined portion of the data to retransmit over the second set of communication channels.
3. A method of transmitting data in a communications system as claimed in claim 1 comprising a plurality of communication channels, the method comprising the steps of:
retransmitting at least a portion of the data over a second set of communication channels, wherein the second set of communication channels comprises a second number of communication channels greater than the first number of communication channels, and wherein the data transmitted over the first set of channels repeatedly fills the second set of communication channels until the second set of communication channels is filled.
4. The method as claimed in claim 3 wherein the step of retransmitting comprises selecting all of the data to retransmit over the second set of communication channels.
5. The method as claimed in claim 1 wherein the data transmitted over the first set of communication channels is modulated using a first MCS (Modulation and Coding Scheme), wherein the at least a portion of the data retransmitted over the second set of communication channels is modulated using a second MCS, and wherein the second MCS is more efficient than the first MCS allowing the data transmitted over two or more communication channels
of the first set of communication channels to be transmitted over a smaller number of channels of the second set of communication channels.
6. The method as claimed in claim 1 wherein the data transmitted over the first set of communication channels is modulated using a first MCS, wherein the at least a portion of the data retransmitted over the second set of communication channels is modulated using a second MCS, and wherein the first MCS is more efficient than the second MCS resulting in data transmitted over one communication channel of the first set of communication channels to be transmitted over two or more channels of the second set of communication channels.
7. A device for transmitting data over a plurality of communication channels using a partial chase combining by a method as claimed in claim 1 comprising a processor and characterized by:
a transmitter operatively coupled to the processor, wherein the transmitter transmits the data over a first set of communication channels, wherein the first set of communication channels comprises a first number of communication channels, and retransmits at least a portion of the data over a second set of communication channels, wherein the second set of communication channels comprises a second number of communication channels less than the first number of communication channels, and wherein when the second set of communication channels is full, any remaining data that was transmitted over the first set of communication channels is not retransmitted.
8. A device for transmitting data over a plurality of communication channels by a
method as claimed in any of the preceding claims, comprising a processor and wherein the
second set of communication channels comprises a second number of communication
channels greater than the first number of communication channels, and wherein the data
transmitted over the first set of channels repeatedly fills the second set of communication
channels until the second set of communication channels is filled.


Documents:

1687-DELNP-2003-Abstract-(04-08-2011).pdf

1687-delnp-2003-abstract.pdf

1687-delnp-2003-Assignment-(23-12-2011).pdf

1687-delnp-2003-assignment.pdf

1687-DELNP-2003-Claims-(04-08-2011).pdf

1687-delnp-2003-claims.pdf

1687-delnp-2003-Complete Specification Granted.pdf

1687-delnp-2003-Correspondence Others-(02-04-2012).pdf

1687-DELNP-2003-Correspondence Others-(04-08-2011).pdf

1687-delnp-2003-Correspondence Others-(23-12-2011).pdf

1687-delnp-2003-correspondence-others.pdf

1687-delnp-2003-correspondence-po.pdf

1687-delnp-2003-description (complete).pdf

1687-delnp-2003-drawings.pdf

1687-DELNP-2003-Form-1-(04-08-2011).pdf

1687-delnp-2003-form-1.pdf

1687-delnp-2003-form-13.pdf

1687-delnp-2003-Form-16-(23-12-2011).pdf

1687-delnp-2003-form-19.pdf

1687-DELNP-2003-Form-2-(04-08-2011).pdf

1687-delnp-2003-form-2.pdf

1687-delnp-2003-form-3.pdf

1687-delnp-2003-form-5.pdf

1687-delnp-2003-GPA-(02-04-2012).pdf

1687-delnp-2003-GPA-(23-12-2011).pdf

1687-delnp-2003-gpa.pdf

1687-delnp-2003-petition-137.pdf

1687-delnp-2003-petition-138.pdf


Patent Number 249014
Indian Patent Application Number 1687/DELNP/2003
PG Journal Number 39/2011
Publication Date 30-Sep-2011
Grant Date 21-Sep-2011
Date of Filing 16-Oct-2003
Name of Patentee MOTOROLA, INC.
Applicant Address 1303 EAST ALGONQUIN ROAD, SCHAUMBURG, ILLINOIS 60196, U.S.A
Inventors:
# Inventor's Name Inventor's Address
1 BRIAN K. CLASSON 756 W. BLOOMFIELD COURT, PALATINE, IL 60067, U.S.A
2 AMITAVA GHOSH 3240 INDIAN CREEK DRIVE, BUFFALO GROVE, IL 60089, U.S.A
PCT International Classification Number H04L 1/18
PCT International Application Number PCT/US2002/10603
PCT International Filing date 2002-04-05
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/287,437 2001-04-30 U.S.A.
2 10/108,881 2002-03-28 U.S.A.