Title of Invention

A 3,7-DIHYDRO-PURINE-2,6-DIONE COMPOUND

Abstract The present invention provides compounds and pharmaceutical compositions that are selective antagonists of A2B adenosine receptors (ARS). These compounds and compositions are useful as pharmaceutical agents.
Full Text

SUBSTITUTED 8-HETEROARYL XANTHINES
Field of the Invention
The present invention relates to compounds and pharmaceutical compositions that are selective antagonists of A2B adenosine receptors (ARs). These compounds and compositions are useful as pharmaceutical agents.
Background of the Invention The alkylxanthine theophylline (compound A) a weak non-selective

adenosine antagonist (See Linden, J., et al9 Cardiovascular Biology ofPurines, eds. G. Burnstock, et aL,1998, pp 1-20) is useful therapeutically for the treatment of asthma. However, its use is associated with unpleasant side effects, such as insomnia and diuresis. In recent years, the use of theophylline as a bronchodilator, for relief of asthma, has been supplanted by drugs of other classes, i.e., selective β2-adrenergic agonists, corticosteroids, and recently leukotriene antagonists. These compounds also have limitations, thus, the development of a theophylline-like drug with reduced side effects is still desirable.
It has been recognized that theophylline and its closely related analogue caffeine block endogenous adenosine acting as a local modulator of adenosine receptors in the brain and other organs at therapeutically useful doses. Adenosine activates four subtypes of G protein-coupled adenosine receptors (ARs), A1/A2A/A2B/A3. Enprofylline, (compound B), is another example of a xanthine


that has been reported to block A2B adenosine receptors and is used to treat asthma. However, this compound only weakly blocks A1, A2A and A3 adenosine receptors. It has also been shown by LaNoue et al (U,S, Patent No. 6,060,481) that selective adenosine A2B antagonists are useful for improving insulin sensitivity in a patient.
It has been reported that therapeutic concentrations of theophylline or enprofylline block human A2B receptors, and it has been proposed that antagonists selective for this subtype may have potential use as antiasthmatic agents. (See Feoktistov, I., et al, Pharmacol Rev. 1997, 49, 381-402; and Robeva, A.S., et al, DrugDev. Res . 1996, 39,243-252). Enprofylline has a reported K, value of 7 µM and is somewhat selective in binding to human A2B ARs. (See Robeva, A.S., et al, DrugDev. Res . 1996, 39,243-252 and Linden, J., et al, Mol Pharmacol 1999, 56, 705-713). A2B ARs are expressed in some mast cells, such as the BR line of canine mastocytoma cells, which appear to be responsible for triggering acute Ca mobilization and degranulation. (See Auchampach, J.A., et al, Mol Pharmacol 1997,52, 846-860 and Forsyth, P., et al, Inflamm. Res. 1999, 48, 301-307). A2B ARs also trigger Ca2+ mobilization, and participate in a delayed IL8 release from human HMC-1 mast cells. Other functions associated with the A2B AR are the control of cell growth and gene expression, (See Neary, J., et al, Trends Neurosci 1996,19,13-18) endothelial-dependent vasodilation (See Martin, P.L., etal, J. Pharmacol Exp. Ther. 1993,265,248-253), and fluid secretion from intestinal epithelia. (See Strohmeier, G.R., et al, J. Biol Chem. 1995,270,2387-2394). Adenosine acting through A2B ARs has also been reported to stimulate chloride permeability in cells expressing the cystic fibrosis transport regulator. (See Clancy, IP., etal.,Am. J. Physiol 1999, 276, C361-C369.)
Recently Linden et al (U.S. Patent No. 6,545,002) have described a new group of compounds and pharmaceutical compositions that are selective antagonists of A2B adenosine receptors (ARs).
Although adenosine receptor subtype-selective probes are available for the A1, A2A,and A3 ARs, only few selective antagonists and no selective agonists are known for the A2B receptor. Therefore, a continuing need exists for compounds that are selective A2B receptor antagonists.
Summary of the Invention
The present invention provides compounds that act as antagonists of A2B adenosine receptors. Accordingly, the present invention provides a compound of formula I:





with the nitrogen to which they are attached, form a pyrrolidyl, piperidyl, piperazinyl,
azepinyl, diazepinyl, morpholinyl, or thiomorpholinyl ring;
where n is 0,1, 2, 3,4, 5, 6, 7, or 8; m is 1, or 2; and q is 1,2, 3, or 4; or a
pharmaceutically acceptable salt thereof.
The invention also provides pharmaceutically acceptable salts of a compound of formula (I). The invention also provides a pharmaceutical composition comprising a compound of formula I, or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable diluent or carrier.
Additionally, the invention provides a therapeutic method for preventing or treating a pathological condition or symptom in a mammal, such as a human, wherein the activity, i.e.9 over-activity, of adenosine A2B receptors is implicated in one or more symptoms of the pathology and antagonism (i.e.9 blocking) of their activity is desired to ameliorate said symptoms. Such diseases or conditions include, but are not limited to, asthma, allergies, allergic diseases (e.g. allergic rhinitis and sinusitis), autoimmune diseases (e.g. lupus), diarrheal diseases, insulin resistance, diabetes, prevention of mast cell degranulation associated with ischemia/reperfusion injuries, heart attack, inhibition of angiogenesis in neoplastic tissues, and inhibition of angiogenesis in diabetic retinopathy or hyperbaric oxygen-induced retinopathy. The invention also includes a method for treating asthma, diarrheal diseases, insulin resistance, diabetes, inhibition of angiogenesis in neoplastic tissues, and inhibition of angiogenesis in diabetic retinopathy or hyperbaric oxygen-induced retinopathy in a mammal, {e.g., a human) comprising administering to the mammal in need of such therapy, an effective amount of at least one compound of formula I or pharmaceutically acceptable salt(s) thereof.
The invention provides a compound of formula I for use in medical therapy, preferably for use in treating diseases or conditions associated with deleterious A2B receptor activation or activity, including asthma, diarrheal diseases, insulin resistance, diabetes, ischemic/reperfusion injury, inhibition of angiogenesis in neoplastic tissues, and inhibition of angiogenesis in diabetic retinopathy or hyperbaric oxygen-induced retinopathy.
The invention also provides the use of a compound of formula I for the manufacture of a medicament for the treatment of a pathological condition or symptom in a mammal, such as a human, which is associated with deleterious A2B receptor activation or activity, including the above-referenced diseases or pathologies.
The invention also includes a method comprising contacting a compound of formula I, optionally having a radioactive isotope (radionuclide), such as, for example, tritium, radioactive

iodine (for example, I for binding assays or I for Spectral Imaging) and the like, with target AZB adenosine receptor sites comprising said receptors, in vivo or in vitro, so as to bind to said receptors. Cell membranes comprising bound A2B adenosine receptor sites can be used to measure the selectivity of test compounds for adenosine receptor subtypes or can be used as a tool to identify potential therapeutic agents for the treatment of diseases or conditions associated with A2B-receptor mediation, by contacting said agents with said radioligands and receptors, and measuring the extent of displacement of the radioligand and/or binding of the agent.
Detailed Description of the Invention
Applicants have discovered that compounds of the invention having formula I, can be useful for the treatment diseases or conditions associated with deleterious A2B receptor activation or activity.
The following definitions are used, unless otherwise described: halo is fluoro, chloro, bromo, or iodo. Alkyl, alkoxy, alkenyl, alkynyl, etc. denote both straight and branched groups; but reference to an individual radical such as "propyl" embraces only the straight chain radical, a branched chain isomer such as "isopropyl" being specifically referred to. When alkyl can be partially unsaturated, the alkyl chain may comprise one or more (e.g. 1,2, 3, or 4) double or triple bonds in the chain.
"Aryl" denotes a phenyl radical or an ortho-fused bicyclic carbocyclic radical having about nine to ten ring atoms in which at least one ring is aromatic.
"Arylalkyr or "(C6-Ci0)aryl(Ci-C8)alkyl-" refer to a group of the formula aryl(Ci_C8)alkyl-, where aryl and (Ci-Cg)alkyl are as defined herein.
"Heterocycle" encompasses a cyclic radical attached or linked via a nitrogen or carbon ring atom of a monocyclic, fased-bicyclic, or bridged-bicyclic, saturated or unsaturated, ring system containing 5-10 ring atoms and preferably from 5-6 ring atoms, consisting of carbon and one, two, three or four heteroatoms each selected from the group consisting of non-peroxide oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (-S(O)r), amine -N(R9)-, or -N= groups, wherein R9 is as defined herein, and optionally containing 1-3 double bonds (e.g., -CH=CH- or-CH=N-). Heterocycle includes, for example, tetrahydrofuryl, dihydrofuryl, tetrahydroimidazolyl, azanorbornyl, pyrrolidyl, piperidyl, piperizyl, morpholinyl, azepinyl, 1,3-diazepinyl, 1,3-benzodiazepinyl, 1,4-diazepinyl, 1,4-benzodiazepinyl, 1,5-diazepinyl, 1,5-benzodiazepinoand the like.

"Heteroaryl" encompasses a radical attached via a ring atom of a monocyclic aromatic ring containing 5-10 ring atoms, and preferably from 5-6 ring atoms, consisting of carbon and one, two, three or four heteroatoms each selected from the group consisting of non-peroxide oxy (-O-), thio (-S-), sulfmyl (-SO-), sulfonyl (-S(O)2-) or amine (-N(R9)-) groups, wherein R9 is as defined herein. Preferred heteroaryl groups include imidazolyl, triazolyl, triazinyl, oxazoyl, isoxazoyl, thiazolyl, isothiazoyl, thiodiazolyl, pyrrolyl, pyrazinyl, tetrazolyl, pyridinyl, pyrimidinyl, indolyl, isoquinolyl, quinolyl and the like.
As is recognized by one of ordinary skill in the art, the imidazole ring of the compounds of the present invention may exist in tautomeric forms or as tautomers, and thus are also included within the scope of the invention. The tautomeric isomers are represented as the structures (la) and (Ib):
By naming or referring to one compound (I), for example, it is understood for the purposes of the present application that the tautomers (la) and (Ib) are also intended. Similarly, by referring to compound (la), it is understood for the purposes of the present application that the tautomers (I) and (Ib) are also intended. The same holds true for references to tautomer (Ib).
"Optional" or "optionally" mean that the subsequently described event or condition may but need not occur, and that the description includes instances where the event or condition occurs and instances in which it does not. For example, "optionally substituted" means that the named substituent may be present but need not be present, and the description includes situations where the named substituent is included and situations where the named substituent is not included.
The terms "include", "for example", "such as", and the like are used illustratively and are not intended to limit the present invention.
The indefinite articles "a" and "an" mean "at least one" or "one or more" when used in this application, including the claims, unless specifically indicated otherwise.
It will be appreciated by those skilled in the art that compounds of the invention having a chiral center may exist in and be isolated in optically active, and racemic forms. Some compounds may exhibit polymorphism. It is to be understood that the present invention










































In one aspect of the invention, there is provided a pharmaceutical composition comprising: (a) a therapeutically effective amount of a compound described above; and (b) a pharmaceutically acceptable excipient. In another aspect, there is provided a pharmaceutical composition comprising: (a) a therapeutically effective amount of a compound of the above; and (b) a pharmaceutically acceptable excipient.
In one aspect of the invention, there is provided a therapeutic method for preventing or treating a pathological condition or symptom in a mammal, wherein the activity of adenosine A2B receptors is implicated and antagonism of its action is desired comprising administering to the mammal an effective amount of a compound of the present invention. In another aspect of the invention, there is provided a method for treating asthma, allergies, allergic diseases or an autoimmune disease comprising administering an effective amount of a compound of the present invention to a mammal in need of such treatment.
In yet another aspect of the invention, there is provided a method for treating diarrheal diseases, insulin resistance, diabetes, cancer, ischemia/reprefusion injuries, diabetic retinopathy or hyperbaric oxygen-induced retinopathy, comprising administering an effective amount of a

compound of the present invention or a pharmaceutically acceptable salt thereof to a mammal in need of such treatment. In yet another aspect, there is provided a therapeutic method for preventing or treating a pathological condition or symptom in a mammal, wherein the activity of adenosine A2B receptors is implicated and antagonism of its action is desired comprising administering to the mammal an effective amount of a compound of the present invention.
In another aspect of the invention, there is provided the compound of the present invention for use in medical therapy. In another aspect, there is provided a vise of a compound of the invention, for the manufacture of a medicament useful for the treatment of a disease in a mammal, such as a human.
It is understood that any aspect or feature of the present invention whether characterized as preferred or not characterized as preferred may be combined with any other aspect or feature of the invention, whether such other feature is characterized as preferred or not characterized as preferred. For example, an aspect or feature described as preferred, for example a particular R group, or a specific R1 group for a particular compound of the formula I (for example, where R1 is hydrogen, (C1-Cs)alkyl, halo(Ci-C8)alkyl, (C3-C5)alkenyl, or (C3-C5)alkynyl) may be combined with any other groups such as R , X, Z, Z etc ... to form a compound of the invention having a different combination of substituents without deviating from the present invention.
Additional compounds useful to practice the invention are depicted in the table below:




























Note: +: Ki The compounds of Formula IA can be prepared by the methods described in P. J, Scammells, et ah, J. Med. Chem. 37,2704-2712 (1994). A diamino-l,3-disubstituted uracil is acylated with 6-chloronicotinoyl chloride in pyridine at 5 °C to provide the compounds of Formula (5a). The resulting amide (5a) is cyclized by refluxing in an aqueous sodium hydroxide solution to provide the compound IA. 6-Chloronicotinoyl chloride is prepared by refluxing 6-hydroxynicotinic acid in thionyl chloride using DMF as the catalyst as shown in Reaction Scheme 1.
Compound IA can be alkylated with alkyl bromide or iodide to provide compounds of Formula IB. Compounds IA or IB reacts with substituted amine at 150-160 °C in a pressure tube to give compounds of Formula IC. Compounds of Formula IC where R4 is hydroden can react with isocyanate or acyl chloride to afford compounds of Formula I where R is -C(O)NHR (ID) or -C(O)R6 (IE), respectively.





The following abbreviations have been used herein:
[125I]ABA [125I]N-(4-aminobenzyl)-adenosine
125I-ABOPX 125I-3-(4-amino-3-iodobenzyl)-8-oxyacetate-l-propyl-xanthine
AR adenosine receptor
CGS 21680 2-[4-[(2-arboxyethyl)phenyl]ethyl-amino]-5N-iV-ethylcarbamoyl
adenosine
CPX 8-cyclopentyl-l ,3-dipropylxanthine
DMEM Dulbecco modified eagle medium
DMF N,N-dimethylformamide
DMSO dimethylsulfoxide
EDTA ethylenediaminetetraacetate
HEK cells human embryonic kidney cells
Kj equilibrium inhibition constant
NEC A 5 '-(N-ethylcarbamoyl)adenosine
if-PIA R-N6-phenylisopropyladenosine
TEA triethylamine
TLC Thin layer chromatography
ZM 241385 4-(2-[7-amino-2-{furyl}{l,2,4}triazolo{2,3-a}{l,3,5}triazin-5-
ylaminoethyl)phenol
In cases where compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compounds as salts may be appropriate. Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, a-ketoglutarate, and a-glycerophosphate. Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made.
It will be appreciated by those skilled in the art that compounds of the invention having a chiral center may exist in and be isolated in optically active and racemic forms. Some

compounds may exhibit polymorphism. It is to be understood that the present invention encompasses any racemic, optically-active, polymorphic or stereoisomeric form or mixtures thereof, of a compound of the invention, which possess the useful properties described herein, it being well known in the art how to prepare optically active forms (for example, by resolution of the racemic form by recrystallization techniques, by synthesis from optically-active starting materials, by chiral synthesis or by chromatographic separation using a chiral stationary phase). It is also conventional to determine A2B adenosine antagonist activity using the standard tests described herein or using other similar tests which are well known in the art.
The compounds of formula I can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient in a variety of forms adapted to the chosen route of administration, i.e., orally or parenterally, by intravenous, intramuscular, topical, inhalation or subcutaneous routes. Exemplary pharmaceutical compositions are disclosed in "Remington: The Science and Practice of Pharmacy", A. Gennaro, ed., 20th edition, Lippincott, Williams & Wilkins, Philadelphia, PA.
Thus, the present compounds may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form. The amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.
The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycoL Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage

form. For instance, tablets, pills or capsules may be coated with gelatin, wax, shellac or sugar
tr
and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and devices.
The active compound may also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the active compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
The pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the ultimate dosage form should be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum

drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
For topical administration, the present compounds may be applied in pure form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like. Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings or sprayed onto the affected area using pump-type or aerosol sprayers.
Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
Examples of useful dermatological compositions which can be used to deliver the compounds of formula I to the skin are known to the art; for example, see Jacquet et aL (U.S. Pat. No. 4,608,392), Geria (U.S. Pat. No. 4,992,478), Smith et aL (U.S. Pat No. 4,559,157) and Wortzman (U.S. Pat. No, 4,820,508). Useful dosages of the compounds of formula I can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949.
Generally, the concentration of the compound(s) of formula I in a liquid composition, such as a lotion, will be from about 0.1-25 wt-%, preferably from about 0.5-10 wt-%. The concentration in a semi-solid or solid composition such as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 wt-%.
The amount of the compound or an active salt or derivative thereof, required for use in treatment will vary not only with the particular salt selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or clinician.

In general, however, a suitable dose will be in the range of from about 1.0 to about 100 nag/kg, preferably from about 10 to about 75 mg/kg of body weight per day, more preferably 5 to about 20 mg per kilogram body weight of the recipient per day.
The compound can be conveniently administered in unit dosage form; for example, tablets, caplets, etc., containing 4 to 400 mg, preferably 10 to 200 mg, most preferably, 20 to 100 mg of active ingredient per unit dosage form.
Ideally, the active ingredient should be administered to achieve peak plasma concentrations of the active compound of from about 0.02 to about 20 µM, preferably, about 0.1 to 10 µM, most preferably, about 0.5 to about 5 µM. These concentrations may be achieved, for example, by the intravenous injection of a 0.005 to 0.5% solution of the active ingredient, or orally administered as a bolus containing about 4 to 400 mg of the active ingredient.
The compounds of the invention can be administered by inhalation from an inhaler, insufflator, atomizer or pressurized pack or other means of delivering an aerosol spray. Pressurized packs may comprise a suitable propellant such as carbon dioxide or other suitable gas. In case of a pressurized aerosol, the dosage unit may be determined by providing a value to deliver a metered amount. The inhalers, insufflators, atomizers are fully described in pharmaceutical reference books such as Remington's Pharmaceutical Sciences Volumes 16 (1980) or 18 (1990) Mack Publishing Co.
The desired dose may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four or more sub-doses per day. The sub-dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations; such as multiple inhalations from an insufflator or by application of a plurality of drops into the eye.
All patents, patent applications, books and literature cited in the specification are hereby incorporated by reference in their entirety. In the case of any inconsistencies, the present disclosure, including any definitions therein will prevail. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.
The invention will now be illustrated by the following non-limiting Examples.
EXAMPLES Pharmacology.

The ability of compounds of the invention to act as an A2B adenosine receptor antagonists may be determined using pharmacological models which are well known to the art or using test procedures described below.
The rat A2B receptor cDNA was subcloned into the expression plasmid pDoubleTrouble using techniques described in Robeva, A. et ah, Biochem. Pharmacol., 51, 545-555 (1996). The plasmid was amplified in competent JM109 cells and plasmid DNA isolated using Wizard Megaprep columns (Promega Corporation, Madison, WI). A2B adenosine receptors were introduced into HEK-293 cells by means of Lipofectin as described in Feigner, P. L. et al., Proc. NatL Acad. Sci. USA, 84, 7413-7417 (1987).
Cell culture
Transfected HEK cells were grown under 5% C(V95% O2 humidified atmosphere at a temperature of 37 °C. Colonies were selected by growth of cells in 0.6 mg/mL G418. Transfected cells were maintained in DMEM supplemented with Hams F12 nutrient mixture (1/1), 10% newborn calf serum, 2 mM glutamine and containing 50 IU/mL penicillin, 50 mg/mL streptomycin, and 0.2 mg/mL Geneticin (G418, Boehringer Mannheim). Cells were cultured in 10 cm diameter round plates and subcultured when grown confluent (approximately after 72 hours).
Radioligand binding studies.
AtA2B receptors: Confluent monolayers of HEK-A2B cells were washed with PBS followed by ice cold Buffer A (10 mM HEPES, 10 mM EDTA, pH 7.4) with protease inhibitors (10 ng/mL benzamidine, 100 µM phenylmethanesulfonyl fluoride, and 2 p.g/mL of each aprotinin, pepstatin and leupeptin). The cells were homogenized in a Polytron (Brinkmann) for 20 s, centrifuged at 30,000 x g, and the pellets washed twice with buffer HE (10 mM HEPES, 1 mM EDTA, pH 7.4 with protease inhibitors). The final pellet was resuspended in buffer HE, supplemented with 10% sucrose and frozen in aliquots at -80 °C. For binding assays membranes were thawed and diluted 5-10 fold with HE to a final protein concentration of approximately 1 mg/mL. To determine protein concentrations, membranes, and bovine serum albumin standards were dissolved in 0.2% NaOH/0.01% SDS and protein determined using fluorescamine fluorescence. Stowell, C. P. et a/., Anal. Biochem.. 85, 572-580 (1978).
Saturation binding assays for rat A2B adenosine receptors were performed with [3H]ZM214,385 (17 Ci/mmol, Tocris Cookson, Bristol UK) (Ji, X. et al, Drug Design Discov.. 16, 216-226 (1999)) or 125I-ABOPX (2200 Ci/mmol). To prepare I25I-ABOPX, 10 µL of 1 mM

ABOPX in methanol/1 M NaOH (20:1) was added to 50 µL of 100 mM phosphate buffer, pH 7.3- One or 2 mCi of Na125I was added, followed by 10 µL of 1 mg/mL chloramine-T in water. After incubation, 20 minutes at room temperature, 50µL of 10 mg/mL Na-metabisulfite in water was added to quench the reaction. The reaction mixture was applied to a C18 HPLC column, eluting with a mixture of methanol and 5 mM phosphate, pH 6.0. After 5 min at 35% methanol, the methanol concentration was ramped to 100% over 15 min. Unreacted ABOPX eluted in 11-12 minutes; 125I-ABOPX eluted at 18-19 min in a yield of 50-60% with respect to the initial 125I.
In equilibrium binding assays the ratio of 127I/125I-ABOPX was 10-20/1. Radioligand binding experiments were performed in triplicate with 20-25 |ig membrane protein in a total volume of 0.1 mL HE buffer supplemented with 1 U/mL adenosine deaminase and 5 mM MgCl2. The inclbation time was 3 h at 21 °C. Nonspecific binding was measured in the presence of 100 µM NECA. Competition experiments were carried out using 0.6 nM 125I-ABOPX. Membranes were filtered on Whatman GF/C filters using a Brandel cell harvester (Gaithersburg, MD) and washed 3 times over 15-20 seconds with ice cold buffer (10 mM Tris, 1 mM MgCl2, pH 7.4). Bmax and KD values were calculated by Marquardt's nonlinear least squares interpolation for single a site binding models. Marquardt, D. M., J. Soc. Indust. Appl. Math., 11,431-441.21 (1963). Kj values for different compounds were derived from IC50 values as described. Linden, J., J. Cvcl. Nucl. Res.. 8. 163-172 (1982V Data from replicate experiments are tabulated as means ± SEM.
At other Adenosine Receptors: [ H]CPX. Bruns, R. F. et al.9 Naunvn-Schmiedeberg's Arch. Pharmacol., 335, 59-63 (1987). 125I-ZM241385 and 125I-ABA were utilized in radioligand binding assays to membranes derived from HEK-293 cells expressing recombinant rat A1? A2A and A3 ARs, respectively. Binding of [3H]R-N6-phenylisopropyladenosine, Schwabe, U. et aL, Naunvn-Schmiedeberg's Arch. Pharmacol.. 313,179-187 (1980). ([3H]J?-PIA, Amersham, Chicago, IL) to A1 receptors from rat cerebral cortical membranes and of [ H]CGS 21680. Jarvis, M.F. et al,,J. Pharmacol. Exp. Therap.. 251. 888-893 (1989), (Dupont NEN, Boston, MA) to A2A receptors from rat striatal membranes was performed as described. Adenosine deaminase (3 units/mL) was present during the preparation of the brain membranes, in a pre-incubation of 30 min at 30 °C, and during the incubation with the radioligands. All non-radioactive compounds were initially dissolved in DMSO, and diluted with buffer to the final concentration, where the amount of DMSO never exceeded 2%. Incubations were terminated by rapid filtration over Whatman GF/B filters, using a Brandell cell harvester (Brandell, Gaithersburg, MD). The tubes were rinsed three times with 3 mL buffer each.

At least six different concentrations of competitor, spanning 3 orders of magnitude adjusted appropriately for the IC50 of each compound, were used. IC50 values, calculated with the nonlinear regression method implemented in (Graph-Pad Prism, San Diego, CA), were converted to apparent Kj values as described. Linden, J., J. Cvcl. NucL Res., 8:163-172 (1982). Hill coefficients of the tested compounds were in the range of 0.8 to 1.1.
Functional assay:
HEK-A2B cells from one confluent T75 flask were rinsed with Ca2+ and Mg2"1" -free Dulbecco's phosphate buffered saline (PBS) and then incubated in Ca2+ and Mg2+ - free HBSS with 0.05% trypsin and 0.53 mM EDTA until the cells detached. The cells were rinsed twice by centrifugation at 250 x g in PBS and resuspended in 10 mL of HBSS composed of 137 mM NaCl, 5 mM KC1, 0.9 mM MgSO4,1.4 mM CaCl2, 3 mMNaHC03,0.6 mM Na2HPO4,0.4 mM KH3PO4, 5.6 mM glucose, and 10 mM HEPES, pH 7.4 and the Ca -sensitive fluorescent dye indo-1-AM (5 JJM) 37 °C for 60 min. The cells were rinsed once and resuspended in 25 mL dye-free HBSS supplemented with 1 U/ml adenosine deaminase and held at room temperature. Adenosine receptor antagonists prepared as 100X stocks in DMSO or vehicle was added and the cells and transferred to a 37 °C bath for 2 minutes. Then the cells (1 million in 2 ml) were transferred to a stirred cuvette maintained at 37 °C within an Aminco SLM 8000 spectrofluorometer (SML instruments, Urbana IL). The ratios of indo-1 fluorescence obtained at 400 and 485 nm (excitation, 332 nm) was recorded using a slit width of 4 nm. NECA was added after a 100 s equilibration period.
Cyclic AMP accumulation
Cyclic AMP generation was performed in DMEM/HEPES buffer (DMEM containing 50 mM HEPES, pH 7.4, 37 °C). Each well of cells was washed twice with DMEM/HEPES buffer, and then 100 µL adenosine deaminase (final concentration 10 IU/mL) and 100 µL of solutions of rolipram and cilostamide (each at a final concentration of 10 µM) were added, followed by 50 \xL of the test compound (appropriate concentration) or buffer. After 15 minutes, incubation at 37 °C was terminated by removing the medium and adding 200 µL of 0.1 M HCL Acid extracts were stored at -20 °C until assay. The amounts of cyclic AMP were determined following a protocol which utilized a cAMP binding protein (PKA) [van der Wenden et al., 1995], with the following minor modifications. The assay buffer consisted of 150 mM K2HPO4/IO mM EDTA/ 0.2% BSA FV at pH 7.5. Samples (20 mL) were incubated for 90 minutes at 0 °C. Incubates were filtered over GF/C glass microfiber filters in a Brandel M-24 Cell Harvester. The filters

were additionally rinsed with 4 times 2 mL 150 mM K2HPO4/10 mM EDTA (pH 7.5,4 °C). Punched filters were counted in Packard Emulsifier Safe scintillation fluid after 2 hours of extraction.
Available data from the affinity testing for the compounds of the invention are reported in Table 1. The data reported for the A2B term is the level of displacement of specific [125I]ABOPX binding at rat A2B receptors (rA2B) expressed in HEK-293 cells.
Synthesis and Characterization
Proton nuclear magnetic resonance spectroscopy was performed on a Varian-300 MHz spectrometer and spectra were taken in DMSO-d6 or CDCI3. Unless noted, chemical shifts are expressed as ppm downfield from tetramethylsilane or relative ppm from DMSO (2.5 ppm). Electro-spray-ionization (ESI) mass spectrometry was performed with a ThermoFinnigan LCQ mass spectrometer.
All xanthine derivatives were homogeneous as judged using TLC (Silica gel 60 F254, 0.25 mm, aluminium backed, EM Science, Gibbstown, NJ) and HPLC (Shimadzu) using Varian C18 5 micron analytical column (4.6 mm x 150 mm) in linear gradient or isocratic solvent system, at a flow rate of 1 ml / min. The solvent system used was MeOH (0.1% formic acid) : H2O (0.1% formic acid). Peaks were detected by UV absorption at 232 nm and 254 nm. NMR and mass spectra were shown to be consistent with the assigned structure.
Example 1. General procedure
Preparation of 6-chIoronicotinoyl chloride:
6-Hydroxynicotinic acid (1.444 g, 10.4 mmol) was suspended in thionyl chloride (8 ml). DMF (0.50 ml) was added. The mixture was refluxed for 2h. After allowing the reaction to cool, thionyl chloride was removed by nitrogen stream and the residue was dried under vacuum overnight and used directly in the next step.
Preparation of l,3-dipropyl-8-(6-chloro-3-pyridyl)xanthine (1):
6-Chloronicotinoyl chloride, prepared from 6-hydroxynicotinic acid (1.44 g, 10.4 mmol), in CH2CI2 (20 ml) was added dropwise to a solution of 5,6-diamino-l,3-dipropyluracil (1.81 g, 8 mmol) in dry pyridine (8.2 ml) maintained at 5 °C. The reaction was warmed to room temperature and stirred for an additional 3 hours. Water (50 ml) was added to quench the reaction. The solvent was evaporated to afford a dark colored oil. The oil was refluxed for 2 h in 2N NaOH (20 ml). After cooling, the pH was carefully adjusted to 7 with concentrated HC1. A solid formed and was collected and washed with water (20 ml), ether (20 ml) and chloroform

(20 ml) to provide an off-white solid (1.9 g). The product was used in the next step without further purification.
General procedures for the reaction of l,3-dipropyl-8-(6-chloro-3-pyridyl)xanthine (1) with substituted amines.
Compound 1 (40 mg, 0.115 mmol) and the corresponding substituted amine (0.5 ml or 0.5 g) were put in a pressure tube. (Ethanol, 4 ml, was added as the solvent if the melting point of the amine is above 80 °C.) The pressure tube was flushed with argon, sealed and stirred at 160 °C for 48-60 h. After cooling, ether (10 ml) was added. The resulting solid was collected and purified by silica gel column or preparative TLC (Solvent A: CH2CI2 : MeOH =20 : 1 to 10 : 1 or Solvent B: CH2C12 : MeOH : TEA = 20: 1 : 0.1 to 4 : 1 : 0.1).
General procedures for the preparation of urea compounds:
The amino substituted pyridyl compound (IC) ( 10 mg) was suspended in dry THF (5 ml) in a pressure tube. The isocyanate (0.25 ml) was added. The mixture was stirred at 90 °C for 48 h. After cooling, the solvent was evaporated. The residue was purified by preparative TLC (CH2C12: MeOH =11
General procedures for the preparation of amide compounds:
The amino substituted pyridyl compound (15 mg) and the desired acid chloride (4-6 equivalents) were suspended in dry DMF (2 ml). Pyridine (0.1-0.15 ml) was added to the mixture. The mixture was stirred at room temperature for 24 h. The solvent was removed and the residue was purified by silica gel column or preparative TLC (CH2CI2: MeOH =11:1 or Ethyl Acetate: Hexane: MeOH = 15:85:5).
Preparation of l,3-Diethyl-8-[6-hydrazino-3-pyridyl]xanthine (138):
Compound 1 (500 mg, 1.44 mmol) and hydrazine (4 ml ) were put in a pressure tube. Ethanol (30 ml) was added. The pressure tube was flushed with argon, sealed and stirred at 100 -160 °C for 10 -16 h. After cooling, the resulting solid was collected and washed with methanol and ether to give compound 138 ( 40 mg). The product was used in the next step without further purification.
General procedures for the preparation of compounds of Formula IL: Compound 138 (31.5 mg, 0.1 mmol) was suspended in acetic acid (5 ml) in a pressure tube. The aldehyde or ketone (0.12 mmol) was added. The pressure tube was flushed with

argon, sealed and stirred at 100 -160 °C for 2 -10 h. After cooling, the resulting solid was collected and purified by silica gel column or preparative TLC (CH2C12: MeOH =20 :1 to 10 : 1) to give compound of Formula IL.
Examples
The following compounds of the invention were prepared using the procedures described herein-above.
Compound 1: l,3-Dipropyl-8-(6-chloro-3-pyridyl)xanthine
]H NMR (DMSO, de): 6 0.89(m, 6H), 1.59(m, 2H), 1.73(m, 2H), 3.88(t, 2H, J=7.2Hz), 4.00(t, 2H, J=7.2Hz), 7.68(d, 1H, J=8.4Hz), 8.50(dd, 1H, Ji=2.4 Hz, J2=8.4Hz), 9.07(d, 1H, J=2.4Hz).
MS: m/z 348 (M+H)+.
Compound 2: l-Propyl-3-propargyl-8-(6-chloro-3-pyridyl)xanthine
MS:m/z316(M+H)+.
Compound 3: l,3-DipropyI-8-(6-ethyIamino-3-pyridyl)xanthine
*HNMR (DMSO, d6): 8 0.89(m, 6H), 1.14(t, 3H, J=7.2Hz), 1.56(m, 2H), 1.72(m, 2H), 3.33(m, 2H), 3.84(t, 2H, J=7.2Hz), 3.99(t, 2H, J=7.2Hz), 6.52(d, 1H, J=8.7Hz), 7.09 (t, 1H), 8.00(dd, 1H, Ji=2.4 Hz, J2=8.7Hz), 8.72(d, 1H, J=2.4Hz).
MS: m/z 357 (M+H)+.
Compound 4:13-Dipropyl-8-(6-(2-hydroxyethyl)amino-3-pyridyl)xanthine
'H NMR (DMSO, d6): 8 0.88(m, 6H), 1.57(m, 2H), 1.71(m, 2H), 3.36(m, 2H), 3.53(m, 2H), 3.85(t, 2H, J=7.2Hz), 3.99(t, 2H, J=7.2Hz), 4.73(t, 1H, J=5.4Hz), 6.57(d, 1H, J=8.7Hz), 7.11(t, 1H), 7.99(dd, 1H, Jj=2.4 Hz, J2=8.7Hz), 8.70(d, 1H, J=2.4Hz).
MS: m/z 373 (M+H)+.
Compound 5: l,3-Dipropyl-8-[6-(4-acetyIpiperazinyl)-3-pyridyl]xanthine
*H NMR (DMSO, d6): 8 0.84(m, 6H), 1.52(m, 2H), 1.68(m, 2H), 2.00(s, 3H), 3.52(m, 8H), 3.81(t, 2H, J=7.2Hz), 3.96(t, 2H, J=7.2Hz), 6.92(d, 1H, J=8.7Hz), 8.14(dd, 1H, Ji=2.4 Hz, J2=8.7Hz), 8.79(d, 1H, J=2.4Hz).
MS:m/z440(M+H)+.
Compound 6 : l,3-Dipropyl-8-[6-(benzylamino)-3-pyridyl]xanthme
]HNMR(DMSO, dg): 8 0.87(m, 6H), 1.54(m, 2H), 1.71(m, 2H), 3.84(t, 2H, J=7.2Hz), 3.98(t, 2H, J=7.2Hz), 4.54(d, 2H, J=6.5Hz), 6.61(d, 1H, J=8.7Hz), 7.22(m, 1H), 7.31(m, 4H), 7.66(t, 1H, J=6.0Hz), 8.02(dd, 1H, Ji=2.4 Hz, J2=8.7Hz), 8.71(d, 1H, J=2.4Hz).

MS:m/z419(M+H)+.
Compound 7: l,3-Dipropyl-8-[6-(l-piperidinyl)-3-pyridyI]xanthme
*H NMR (DMSO, d6): 5 0.88(m, 6H), 1.63(m, 10H), 3.6 l(t, 4H, J=5.7Hz), 3.85(t, 2H, J=7.2Hz), 4.00(t, 2H, J=7.2Hz), 6.91(d, IH, J=9.0Hz), 8.12(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.79(d, IH, J=2.4Hz).
MS:m/z397(M+H)+.
Compound 8: l,3-Dipropyl-8-(6-pyrro!idinylpyrid-3-yl)xanthine
!H NMR (DMSO, de): 8 0.88(m, 6H), 1.55(m, 2H), 1.73(m, 2H), 1.95(m, 4H), 3.43(m, 4H), 3.85(t, 2H, J=7.5Hz), 4.00(t, 2H, J=7.5Hz), 6.54(d, IH, J=9.0Hz), 8.12(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.79(d, IH, J=2.4Hz).
MS: m/z 383 (M+H)+.
Compound 9: l,3-Dipropyl-8-{6-[4-methyl(perhydro-l,4-diazaepin-l-yl)]-3 pyridyljxanthine
]H NMR (DMSO, de): 5 0.88(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 1.88(m, 2H), 2.47(m, 5H), 2.60(m, 2H), 3.64(t, 2H. J=6.0Hz), 3.77(m, 2H), 3.85(t, 2H, J=7.2Hz), 3.99(t, 2H, J=7.2Hz), 6.73(d, IH, J=9.0Hz), 8.12(dd, IH, Ji=2.4 Hz, J2=9.0Hz), 8.78(d, IH, J=2.4Hz).
MS: m/z 426 (M+2).
Compound 10: l^-Dipropyl-8-(6-methylamino-3-pyridyl)xanthine
JH NMR (DMSO, d6): 5 0.88(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 2.81(d, 3H, J=4.5Hz), 3.85(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 6.52(d, IH, J=8.7Hz), 7.08(q, IH, J=4.5 Hz), 8.01 (dd, IH, Jx=2.4 Hz, J2=8.7Hz), 8.73(d, IH, J=2.4Hz).
MS: m/z 343 (M+H)+.
Compound 11: l^-Dipropyl-8-[6-(4-methoxybenzyIamino)-3-pyridyl]xanthine
'H NMR (DMSO, d6): 5 0.87(m, 6H), 1.59(m, 2H), 1.71(m, 2H), 3.71(s, 3H), 3.87(t, 2H, J=7.2Hz), 3.98(t, 2H, J=7.2Hz), 4.45(d, 2H, J=6.3Hz), 6.58(d, IH, J=9.0Hz), 6.87(d, 2H, J=8.7Hz), 7.25(d, 2H, J=8.7Hz), 7.60(t, IH), 8.01(dd, IH, Ji=2.4 Hz, J2=9.0Hz), 8.71(d, IH, J=2.4Hz).
MS: m/z 449 (M+H)+.
Compound 12: l^-Dipropyl-8-[6-(3-methylpiperidino)-3-pyridyl]xanthme
JH NMR (DMSO, d6): 5 0.88(m, 9H), 1.14(m, IH), 1.40-1.80(m, 8H), 2.55(dt, IH, Ji=2.1Hz, J2=10.5Hz), 2.86(dt, IH, Ji=2.1Hz, J2=10.5Hz), 3.85(t, 2H, J=7.5Hz), 4.00(t, 2H, J=7.5Hz), 4.30(d, 2H, J=13.5Hz), 6.92(d, IH, J=9.0Hz), 8.10(dd, IH, Jj=2.4 Hz, J2=9.0Hz), 8.79(d, IH, J=2.4Hz).

MS:m/z411(M+H)+.
Compound 13: l,3-Dipropyl-8-[6-(2-hydroxypropyl)amino-3-pyridyl]xanthine
JH NMR (DMSO, d6): 8 0.87(m, 6H), 1.08(d, 3H, J=6.0Hz), 1.56(01,2H), 1.72(m, 2H), 3.26(m, 2H), 3.77(m, 1H), 3.85(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 4.76(d, 1H, J=4.5Hz), 6.60(d, 1H, J=9.0Hz), 7.10(t, 1H, J=6.0Hz), 7.99(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.69(d, 1H, J=2.4Hz).
MS: m/z 387 (M+H)+.
Compound 14: l,3-Dipropyl-8-[6-(2,2-dimethoxyethyl)amino-3-pyridyl]xanthine
*H NMR (DMSO, d6): 5 0.88(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 3.29(s, 6H), 3.45(t, 2H, J=5.7Hz), 3.85(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 4.49(t, 1H, J=5.4Hz), 6.62(d, 1H, J=9.0Hz), 7.19(t, 1H5 J=5.7Hz), 8.00(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.71(d, 1H, J=2.4Hz).
MS: m/z 417 (M+H)+.
Compound 15: l,3-Dipropyl-8-[6-(l-hydroxy-2-propyl)amino-3-pyridyl]xanthine
'H NMR (DMSO, d6): 8 0.88(m, 6H), 1.12(d, 3H, J=6.6Hz), 1.56(m, 2H), 1.74(m, 2H), 3.27(m, 2H), 3.46(m, 1H), 3.85(t, 2H, J=7.2Hz), 3.98(t, 2H, J=7.2Hz), 4.74(t, 1H, J=5.4Hz), 6.56(d, 1H, J=9.0Hz), 6.90(d, 1H, J=7.5 Hz), 7.98(dd, 1H, J,=2.4 Hz, J2=9.0Hz), 8.69(d, 1H, J=2.4Hz).
MS: m/z 387 (M+H)+.
Compound 16: l,3-DipropyI-8-(6-morpholino-3-pyridyI)xanthine
lU NMR (DMSO, d6): 8 0.87(m, 6H), 1.57(m, 2H), 1.73(m, 2H), 3.55(m, 4H), 3.69(m, 4H), 3.85(t, 2H, J=7.2Hz), 3.99(t, 2H, J=7.2Hz), 6.94(d, 1H, J=9.0Hz), 8.17(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.83(d, 1H, J=2.4Hz).
MS:m/z399(M+H)+.
Compound 17: l,3-Dipropyl-8-(6-dimethyIamino-3-pyridyl)xanthine
!H NMR (DMSO, d6): 5 0.88(m, 6H), 1.55(m, 2H), 1.75(m, 2H), 3.09(s, 6H), 3.85(t, 2H, J=7.2Hz), 3.99(t, 2H, J=7.2Hz), 6.73(d, 1H, J=9.0Hz), 8.13(dd, 1H, Ji=2.4 Hz, J2=9.OHz), 8.80(d, 1H, J=2.4Hz).
MS: m/z 357 (M+H)+.
Compound 18: l,3-Dipropyl-8-[[6-(2-hydroxyethoxy)ethylamino]-3-pyridy] xanthine
lB NMR (DMSO, d6): 8 0.88(m, 6H), 1.57(m, 2H), 1.72(m, 2H), 3.49(m, 8H), 3.85(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 4.59(t, 1H, J=5.4Hz), 6.58(d, 1H, J=9.0Hz), 7.15(t, 8.00(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.71(d, 1H, J=2.4Hz), 13.42(s,
MS:m/z417(M+H)+.

Compound 19: l,3-Dipropyl-8-(6-piperazino-3-pyridyl)xanthine
JH NMR (DMSO, d6): 8 0.87(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 2.78(m, 4H), 3.52(m, 4H), 3.85(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 6.88(d, 1H, J=9.0Hz), 8.13(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.80(d, 1H, J=2.4Hz).
MS: m/z 398 (M+H)+.
Compound 20: l,3-Dipropyl-8-[6-(2-hydroxy-2-phenylethyl)amino-3-pyridyl]xanthine
!H NMR (DMSO, de): 8 0.87(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 3.32(m, 1H), 3.55(m, 4H), 3.85(t, 2H, J=7.2Hz), 3.99(t, 2H, J=7.2Hz), 4.76(m, 1H), 5.55(d, 1H, J=4.5Hz), 6.63(d, 1H, J=8.7Hz), 7.20-7.40(m, 6H), 8.00(dd, 1H, Ji=2.4 Hz, J2=8.7Hz), 8.72(d, 1H, J=2.4Hz), 13.42(s, 1H).
MS: m/z 449 (M+H)+.
Compound 21: l,3-Dipropyl-8-[6-(4-aminomethy]benzylammo)-3-pyridyl]xanthine
JH NMR (DMSO, d6): 8 0.86(m, 6H), 1.55(m, 2H), 1.71(m, 2H), 3.72(s, 2H), 3.84(t, 2H, J-7.2Hz), 3.97(t, 2H, J=7.2Hz), 4.50(d, 1H, J=6.0 Hz), 6.57(d, 1H, J=9.0Hz), 7.27(s, 4H), 7.54(t, 1H, J=6.0Hz), 8.00(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.68(d, 1H, J=2.4Hz).
MS:m/z448(M+H)+.
Compound 22: l,3-Dipropyl-8-(6-phenylamino-3-pyridyl]xanthine
*H NMR (DMSO, de): 8 0.88(m, 6H), 1.55(m, 2H), 1.76(m, 2H), 3.86(t, 2H, J=7.5Hz), 4.01(t, 2H, J=7.5Hz), 6.93(m, 2H), 7.29(t, 2H, J=7.8Hz), 7.68(d, 2H, J=7.8Hz), 8.19(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.87(d, 1H, J=2.4Hz), 9.45(s, 1H).
MS:m/z405(M+H)+.
Compound 23: l^-Dipropyl-8-(6-cyclopropylamino-3-pyridyl]xanthine
JH NMR (DMSO, d6): 8 0.44(m, 2H), 0.72(m, 2H), 0.87(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 2.58(m, 1H), 3.85(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 6.66(d, 1H, J=9.0Hz), 7.36(d, J=2.7Hz), 8.10(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.74(d, 1H, J=2.4Hz).
MS:m/z369(M+H)+.
Compound 24: l,3-Dipropyl-8-[6-(6-pyridylmethylamino)-3-pyridyl]xanthine
'H NMR (DMSO, de): 8 0.88(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 3.84(t, 2H, J=7.2Hz), 3.98(t, 2H, J=7.2Hz), 4.62(d,2H, J=6.0Hz), 6.67(d, 1H, J=8.7Hz), 7.25(m, 2H), 7.73(m, 2H0, 8.04(dd, 1H, Ji=2.4 Hz, J2=8.7Hz), 8.51(d, 1H, J=4.8Hz), 8.69(d, 1H, J=2.4Hz).
MS: m/z 420 (M+H)+.
Compound 25: l,3-Dipropyl-8-(6-(4-methyIpiperazino)-3-pyridyl)xanthine

*H NMR (DMSO, d«): 5 0.87(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 2.21(s, 3H), 2.38(t, 4H, J= 4.8Hz), 3.59(t, 4H, J=4.8Hz), 3.85(t, 2H, J=7.5Hz), 4.00(t, 2H, J=7.5Hz), 6.93(d, 1H, J=9.0Hz), 8.15(dd, 1H, Jj=2.4 Hz, J2=9.0Hz), 8.81(d, 1H, J=2.4Hz).
MS:m/z412(M+H)+.
Compound 26: l^-Dipropyl-8-[6-(3-pyridylmethylamino)-3-pyridyI]xanthme
*H NMR (DMSO, d6): 8 0.87(m, 6H), 1.56(m, 2H), 1.71(m, 2H), 3.84(t, 2H, J=7.5Hz), 3.98(t, 2H, J=7.5Hz), 4.56(d, 2H, J=5.7 Hz), 6.63(d, 1H, J=8.7Hz), 7.33(dd, 1H, Ji=4.5 Hz, J2= 7.8Hz), 7.71(m, 2H), 8.04(dd, 1H, Ji=2.4 Hz, J2=8.7Hz), 8.43(dd, 1H, J!=1.8Hz, J2=4.5Hz), 8.55(d, 1H, J=1.8Hz), 8.71(d, 1H, J=2.4Hz).
MS:m/z420(M+H)+.
Compound 27: l,3-Dipropyl-8-[6-(2-methylbenzylamino)-3-pyridyl]xanthine
JH NMR (DMSO, de): 8 0.87(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 2.3 l(s, 3H), 3.85(t, 2H, J=7.2Hz), 3.99(t, 2H, J=7.2Hz), 4.50(d, 2H, J=5.4 Hz), 6.62(d, 1H, J=8.7Hz), 7.10-7.25(m, 4H) 7.51(t, 1H, J=5.4Hz), 8.01(dd, 1H, Ji=2.4Hz, J2=8.7Hz), 8.72(d, 1H, J=2.4Hz).
MS: m/z 433 (M+H)+. Compound 28: l,3-DipropyI-8-[6-[2-(3,4-dimethoxyphenyl)ethylamino]-3-
pyridyljxanthine
lH NMR (DMSO, d6): 8 0.87(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 2.77(t, 2H, J=7.5Hz), 3.49(m, 2H), 3.70(s, 3H), 3.73(s, 3H), 3.85(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 6.55(d, J=9.0Hz), 6.74(dd, 1H, J!=1.8Hz, J2=8.4Hz), 6.85 (m, 2H), 7.17(t, 1H, J=5.4Hz). 8.01(dd, Ji=2.4 Hz, J2=9.0Hz), 8.73(d, 1H, J=2.4Hz).
MS: m/z 493 (M+H)+.
Compound 29: l,3-Dipropyl-8-[6-[(N-propylcarbamoyl), methylamino]-3-pyridyl)xanthine
JH NMR (DMSO, d6): 8 0.88(m, 9H), 1.54(m, 4H), 1.72(m, 2H), 3.17(m, 2H), 3.30(d, 3H, J=5.4Hz), 3.86(t, 2H, J=7.5Hz), 4.01(t, 2H, J=7.5Hz), 7.43(d, 1H, J=9.0Hz), 8.01(dd, 1H, Jj=2.4 Hz, J2=9.0Hz), 8.99(d, 1H, J=2.4Hz), 9.29(t, 1H, 5.4Hz).
MS:m/z428(M+H)+.
Compound 30: l,3-DipropyI-8-[6-(3-penfylamino)-3-pyridyI]xanthine
*H NMR (DMSO, d6): 8 0.88(m, 12H), 1.37-1.65(m, 6H), 1.72(m, 2H), 3.84(m, 3H), 3.98(t, 2H, J=7.2Hz), 6.54(d, 1H, J=8.7Hz), 6.90(d, 1H, J=8.4Hz), 7.96(dd, 1H, Jj=2.4 Hz, J2=8.7Hz), 8.67(d, 1H, J=2.4Hz). , MS: m/z 399 (M+H)+.

Compound 31: l,3-DipropyI-8-[6-(2,2-diphenylethylamino)-3-pyridyI]xanthine
!HNMR (DMSO, d6): 5 0.86(m, 6H), 1.54(m, 2H), 1.72(m, 2H), 3.82-4.00(m, 6H), 4.36(t, 1H, J=7.5Hz), 6.53(d, 1H, J=9.0Hz), 7.15-7.34(m, 11H), 7.97(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.75(d51H, J=2.4Hz).
MS: m/z 509 (M+H)+.
Compound 32: l,3-Dipropyl-8-[6-[2-(l-ethylpyrrolidmomethylamino)]-3-pyridyljxanthine
'HNMR (DMSO, d6): 5 0.88(m, 6H), 1.04(t, 2H, J=7.2Hz), 1.50-1.86(m, 8H), 2.12(m, 1H), 2.25(m, 1H), 2.58(m, 1H), 2.86(m, 1H), 3.09(m, 2H), 3.51(m, 1H), 3.84(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 6.60(d, 1H, J=9.0Hz), 6.98(br, 1H), 7.99(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.70(d, 1H, J=2.4Hz).
MS: m/z 440 (M+H)+.
Compound 33: ly3-Dipropyl-8-[6-(3-methoxybenzylamino)-3-pyridyl]xanthine
'HNMR (DMSO, d6): 8 0.87(m, 6H), 1.54(m, 2H), 1.72(m, 2H), 3.71(s, 3H), 3.85(t, 2H, J=7.8Hz), 3.99(t, 2H, J=7.8Hz), 4.51(d, 2H3 J=6.0Hz), 6.61(d, 1H, J=9.0Hz), 6.70-6.91(m, 3H), 7.22(t, 1H, J=7.5Hz), 7.64(t, 1H, J=6.0Hz), 8.02(dd, 1H, Jj=2.4Hz, J2=9.0Hz), 8.71(d, J=2.4Hz).
MS: m/z 449 (M+H)+.
Compound 34: l,3-Dipropyl-8-[6-[(N-phenyIcarbamoyl)methylamino]-3-pyridyl)xan thine
'H NMR (DMSO, d6): 8 0.88(m, 6H), 1.57(m,2H), 1.75(m,2H), 3.44(s, 3H), 3.86(t, 2H, J=7.5Hz), 4.02(t, 2H, J=7.5Hz), 7.04(t, 1H, J=7.2Hz), 7.32(t, 2H, J=7.5Hz), 7.48(d, 1H, J=9.0Hz), 7.60(m, 3H), 8.47(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 9.12(d, 1H, J=2.4Hz).
MS:m/z462(M+H)+.
Compound 35: l,3-Dipropyl-8-[6-(furfurylamino)-3-pyridyI]xanthine
!H NMR (DMSO, d6): 8 0.88(m, 6H), 1.57(m, 2H), 1.73(m, 2H), 3.87(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 4.52(d, 2H, J=5.7 Hz), 6.27(d, 1H, J=3.0 Hz), 6.38(m, 1H), 6.3(d, 1H, J=9.0 Hz), 7.56 (m, 2H), 8.03(dd, 1H, Ji=2.4 Hz, J2=9.0Hz), 8.73(d, 1H, J=2.4Hz).
MS: m/z 409 (M+H)+.
Compound 36: l,3-Dipropyl-8-[6-[2-(4-methoxyphenyI)ethylamino]-3-pyridyljxanthine
!H NMR (DMSO, d6): 8 0.88(m, 6H), 1.56(m5 2H), 1.72(m, 2H), 2.77(t, 2H, J=7.5 Hz), 3.47( q, 2H, t=7.5 Hz), 3.71(s, 3M), 3.85(t, 2H, J=7.2Hz), 3.99(t, 2H, J=7.2Hz), 6.55(d,

J=9.0Hz), 6.85(d, 2H, J=8.4 Hz), 7.16(d, 2H, J=8.4 Hz), 8.00(dd, 1H, h=2A Hz, J2=9.0Hz),
8.73(d, 1H, J=2.4Hz).
MS: m/z 463 (M+H)+.
Compound 37: 13-Dipropyl-8-[6-(2-methoxybenzylamino)-3-pyridyl]xanthine
1H NMR (DMSO, d6): 8 0.86(m, 6H), 1.56(m, 2H), 1.71(m, 2H), 3.82(s, 3H), 3.87(t,
2H, J=7.2Hz), 3.98(t, 2H, J=7.2Hz), 4.48(d, 2H, J=6.0Hz), 6.62(d, 1H, J=9.0Hz), 6.87 (t, 1H,
J=7.2Hz), 6.98(d, 1H, J=7.5Hz), 7.20(m, 2H0,7.46(t, 1H, J=6.0Hz), 8 (dd, 1H, Jl=2.4 Hz,
J2=9.0Hz), 8.70(d, 1H, J=2.4Hz). MS:m/z449(M+H)+.
Compound 38:1,3-Dipropyl-8-[6-(propylamino)-3-pyridyl]xanthine 1H NMR (DMSO, d6): 8 0.88(m, 9H), 1.53(m, 4H), 1.72(m, 2H), 3.24 (q, 2H, J=6.3Hz),
3.85(t, 2H, J=7.5Hz), 3.98(t, 2H, J=7.5Hz), 6.53(d, 1H, J=8.7Hz), 7.13(t, 1H, J=5.7 Hz), 7.99(dd,
1H, J1=2.4 Hz, J2=8.7Hz), 8.70(d, 1H, J=2.4Hz). MS: m/z 371 (M+H)+.
Compound 39: l,3-Dipropyl-8-[6-(cyclopentylamino)-3-pyridyI]xanthine 1H NMR (DMSO, d6): 8 0.88(m, 6H), 1.40-1.75(m, 10H), 1.72(m, 2H), 3.84(t, 2H,
J=7.2Hz), 3.99(t, 2H, J=7.2Hz), 4.17(m, 1H), 6.52(d, 1H, J=8.7Hz), 7.10(d, 1H, J=6.6 Hz),
7.99(dd, 1H, J1=2.4 Hz, J2=8.7Hz), 8.70(d, 1H, J=2.4Hz). MS: m/z 397 (M+H)+.
Compound 40: l,3-Dipropyl-8-[6-(cyclohexylamino)-3-pyridyl]xanthine 1H NMR (DMSO, d6): 8 0.88(m, 6H), 1.13-1.91(m, 14H), 1.72(m, 2H), 3.76(m, 1H),
3.84(t, 2H, J=7.5Hz), 3.98(t, 2H, J=7.5Hz), 6.52(d, 1H, J=9.0Hz), 7.00(d, 1H, J=7.8 Hz),
7.97(dd, 1H, J1=2A Hz, J2=9.0Hz), 8.69(d, 1H, J=2.4Hz). MS:m/z411(M+H)+.
Compound 41: l^-Dipropyl-7-ethyl-8-(6-chloro-3-pyridyl)xanthine 1H NMR (DMSO, d6): 8 0.88(m, 6H), 1.33(t, 3h, J=7.2 Hz), 1.59(m, 2H), 1.73(m, 2H),
3.87(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 7.74(d, 1H, J=8.4Hz), 8.19(dd, 1H, Ji=2.4 Hz,
J2=8.4Hz), 8.74(d, 1H, J=2.4Hz). MS:m/z376(M+H)+.
Compound 42: l,3-Dipropyl-7-(3-fluoropropyl-8-(6-chloro-3-pyridyl)xanthine 1H NMR (DMSO, d6): 8 0.88(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 2.09(m, 1H), 2.18(m, , 3.89(t, 2H, J=7.5Hz), 3.98(t, 2H, J=7.5Hz), 4.29(t, 1H, J=5.4Hz), 4.43(m, 3H), 7.75(dd, , Jl=0.6Hz, J2=8.4Hz), 8.19(dd, 1H, J1=2.4 Hz, J2=8.4Hz), 8.74(dd, 1H, Ji=0.6Hz, J2=2.4Hz).

MS: m/z 408 (M+H)+.
Compound 43: l,3-D»propyl-7-methyl-8-(6-chloro-3-pyridyl)xanthine
1HNMR (DMSO, d6): 8 0.87(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 3.86(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 4.01 (s, 3H), 7.74(d, 1H, J=8.4Hz), 8.26(dd, 1H, J1=2.4 Hz, J2=8.4Hz), 8.82(d, 1H, J=2.4Hz).
MS: m/z 362 (M+H)+.
Compound 44: l,3-Dipropyl-7(2-bromoethyl)-8-(6-chloro-3-pyridyl)xanthine
1HNMR (DMSO, d6): 8 0.88(m, 6H), 1.59(m, 2H), 1.72(m, 2H), 3.85(m, 4H), 3.99(t, 2H, J=7.5Hz), 4.66(t, 2H, J=6.0Hz), 7.76(d, 1H, J=8.1Hz), 8.21(dd, 1H, J1=2.7 Hz, J2=8.1Hz), 8.76(d, 1H, J=2.7Hz).
MS:m/z456(M+H)+.
Compound 45: l,3-Dipropyl-8-[6-(2-thiophenemethylamino)-3-pyridyl]xanthine
1H NMR (DMSO, d6): 8 0.88(m, 6H), 1.56(m, 2H), 1.72(m, 2H), 3.85(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 4.70(d, 2H, 3=6.0 Hz), 6.60(d, 1H, J=8.7 Hz), 6.94-7.03(m, 2H), 7.35(dd, 1H, J1=1.5Hz, J2=5.1 Hz), 7.70(t, 1H, J=6.0Hz), 8.04(dd, 1H, J1=2.4 Hz, J2=8.7Hz), 8.75(d, 1H, J=2.4Hz).
MS:m/z425(M+H)+.
Compound 46: l,3-Dipropyl-8-[6-[(N-(4-methoxyphenylcarbamoyl)methylamino]-3-pyridyl)xanthine
1H NMR (DMSO, d6): 8 0.89(m, 6H), 1.56(m, 2H), 1.73(m, 2H), 3.43(s, 3H), 3.73(s, 3H), 3.87(t, 2H, J=7.2Hz), 4.02(t, 2H, J=7.2Hz), 6.89(dd, 2H, J=6.9Hz), 7.48 (m, 3H), 8.47(dd, 1H, J1=2.4 Hz, J2=9.0Hz), 9.1 l(d, 1H, J=2.4Hz).
MS: m/z 492 (M+H)+.
Compound 47: l,3-Dipropyl-8-[6-[N-nicotinoyImethylamino]-3-pyridyl)xanthine
1H NMR (DMSO, d6): 8 0.87(m, 6H), 1.57(m, 2H), 1.73(m, 2H), 3.49(s, 3H), 3.86(t, 2H, J=7.2Hz), 3.99(t, 2H, J=7.2Hz), 7.35(dd, 1H, J1=7.8Hz, J2=7.8 Hz), 7.41(d, 1H, J=8.4Hz), 7.71(dt, 1H, J1=1.5 Hz, J2=8.4Hz,), 8.32(dd, 1H, J1=2.4 Hz, J2=8.4Hz), 8.46(d, 1H, J=2.1), 8.54(dd, 1H, J1=2.1 Hz, J2=4.8Hz), 8.98(d, 1H, J=2.4 Hz).
MS: m/z 448 (M+H)+.
Compound 48: l,3-Dipropyl-8-[6-[(N-(4-fluorophenyIcarbamoyl)methylamino]-3-pyridyl)xanthine

1H NMR (DMSO, d6): 8 O.88(m, 6H), 1.57(m, 2H), 1.75(m, 2H), 3.44(s, 3H), 3.88(t, 2H, J=7.5Hz), 4.03(t, 2H, J=7.5Hz), 7.15(t, 2H, J=8.7Hz), 7.49(d, 1H, J=9.0Hz), 7.62(m, 2H), 8.47(d6, 1H, J1=2.4 Hz, J2=9.0Hz), 9.12(d, 1H, J=2.4Hz).
MS: m/z 480 (M+H)+.
Compound 49: l,3-Dipropyl-8-[6-[N-isonicotinoyImethylamino]-3-pyridyl)xanthine
]H NMR (DMSO, d6): 8 0.88(m, 6H), 1.57(m, 2H), 1.75(m, 2H), 3.47(s, 3H), 3.85(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 7.26(d, 2H, J=5.4Hz), 7.46(d, 1H, J=8.7Hz), 8.34(d6, 1H, J1=2.4 Hz, J2=8.7Hz), 8.54(d, 2H, J=5.4Hz), 8.96(d, 1H, J=2.4Hz).
MS: m/z 448 (M+H)+.
Compound 50: l,3-Dipropyl-8-[6-[N-methoxycarbonylmethyIamino]-3-pyridyl)xanthine
MS: m/z 401 (M+H)+.
Compound 51: l,3-Dipropyl-8-[6-[N-phenylcarbamoyl, N-(2 phenylcarbamoyloxyethyl)amino]-3-pyridyl)xanthine
1H NMR (DMSO, d6): 8 0.88(m, 6H), 1.57(m, 2H), 1.75(m, 2H), 3.87(t, 2H, J=7.5Hz), 4.03(t, 2H, J=7.5Hz), 4.34(m, 4H), 6.92-7.57(m, 11H), 8.44(d6, 1H, J1=2.4 Hz, J2=8.7Hz), 9.12(d, 1H, J=2.4Hz), 9.58(s (br), 1H).
MS:m/z 611(M+H)+.
Compound 52: l,3-Dipropyl-8-{6-[4-(N-phenylcarbamoyl)]piperazino-3-pyridyljxanthine
1H NMR (DMSO, d6): 8 0.88(m, 6H), 1.56(m, 2H), 1.73(m, 2H), 3.57(m, 4H), 3.67(m, 4H), 3.86(t, 2H, J=7.2Hz), 4.01(t, 2H, J=7.2Hz), 6.93(t, 1H, J=7.8 Hz), 6.99(d, 1H, J=9.0 Hz), 7.23(t, 2H, J=7.8Hz), 7.46(d, 2H, J=7.8Hz), 8.19(d6, 1H, J1=2.4 Hz, J2=9.0Hz), 8.61(s, 1H), 8.85(d, 1H, J=2.4Hz).
MS:m/z 517(M+H)+.
Compound 53: l,3-Dipropyl-8-{6-[4-(N-isonicotinoyl)]piperazino-3-pyridyl}xanthine
1H NMR (DMSO, d6): 8 0.88(m, 6H), 1.56(m, 2H), 1.73(m, 2H), 3.38(m, 2H), 3.64(m, 2H), 3.75(m, 4H), 3.86(t, 2H, J=7.2Hz), 4.00(t, 2H, J=7.2Hz), 6.96(d, 1H, J=9.0 Hz), 7.44(d, 2H, J=5.1 Hz), 8.19(d6, 1H, J1=2.4 Hz, J2=9.0Hz), 8.69(d, 2H, J=5.1 Hz), 8.84(d, 1H, J=2.4Hz).
MS: m/z 503 (M+H)+.
Compound 54: l-propyl-3-(4-methoxyphenyl)methyl-8-(6-chloro-3-pyridyl)xanthine

1HNMR (DMSO, d6): 8 0.84(t, 3H, J=7.2Hz), 1.53(m, 2H), 2.93(t, 2H, J=7.2Hz) 3.67(s, 3H), 3.83(t, 2H, J=7.2Hz), 4.20(t, 2H, J=7.2Hz), 6.81(d, 2H, J=8.1Hz), 7.12(d, 2H, J=8.1Hz), 7.68(d, 1H, J=8.4Hz), 8.44(d6, 1H, J1=2.4 Hz, J2=8.4Hz), 8.98(d, 1H, J=2.4 Hz
MS:m/z 440(M+H)+.
Compound 55: l-Propyl-3-(methoxyphenylethyl)-8-(6-piperazino-3-pyridyl)xanthine
1H NMR (DMSO, d6): 8 0.84(m, 3H), 1.52(m, 2H), 3.38(m, 2H), 2.77(m, 4H), 2.94(t, 2H, J-7.5Hz), 3.51(m, 4H), 3.69(s, 1H), 3.83(t, 2H, J=7.5Hz), 4.20(t, 2H, J=7.5Hz), 6.83(d, 2H, J=8.4 Hz), 6.89(d, 1H, J=9.0Hz), 7.14(d, 2H, J=8.4 Hz), 8.14(d6, 1H, J1=2.4 Hz, J2=9.0Hz), 8.82(d, 1H, J=2.4Hz).
MS: m/z 490 (M+H)+.
Compound 56: l,3-DipropyI-8-[6-(4-pyridylamino)-3-pyridyl]xanthine
1H NMR (DMSO, de): 8 0.87(m, 6H), 1.56(m, 2H), 1.74(m, 2H), 3.87(t, 2H, J=7.5Hz), 4.03(t, 2H, J=7.5Hz), 6.30(d, 2H, J=7.8Hz), 7.94(d, 1H, J=8.7Hz), 8.53(d, 1H, J=7.8Hz), 8.60(d6, 1H, J1=2.4 Hz, J2=8.7Hz ), 9.17(d, 1H, J=2.4 Hz).
MS:m/z407(M+2)+.
Compound 57: l,3-DipropyI-8-{6-[4-(N-nicotinoyl)]piperazino-3-pyridyl}xanthine
1H NMR (DMSO, d6): 5 0.88(m, 6H), 1.56(m, 2H), 1.74(m, 2H)S 3.46-3.83(m, 8H), 3.88(t, 2H, J=7.5Hz), 4.00(t, 2H, J=7.5Hz), 6.96(d, 1H, J=9.0Hz), 7.50(d6, 1H, J,=7.8 Hz, J2=7.8Hz), 7.89(d, J=7.5Hz), 8.19(d6, 1H, J1=2.4 Hz, J2=9.0Hz), 8.66(m, 2H), 8.84(d, 1H, J=2.4 Hz).
MS: m/z 503 (M+H)+.
Compound 58: l,3-Dipropyl-8-[6-(hexahydro-l,4-diazaepin-l-yl)-3-pyridyl]xanthine
1H NMR (DMSO, d6): 8 0.87(m, 6H), 1.56(m, 2H), 1.74(m, 4H), 2.66(t, 2H, J=5.4Hz), 2.86(t, 2H, J=5.4Hz), 3.68(m, 4H), 3.85(t, 2H, J=7.5Hz), 3.99(t, 2H, J=7.5Hz), 6.72(d, 1H, J=9.0Hz), 8.10(dd, 1H, J1=2.4 Hz, J2=9.0Hz), 8.77(d, 1H, J=2.4 Hz).
MS:m/z412(M+H)+.
Compound 59: l,3-DiethyI-8-(6-chloro-3-pyridyl)xanthine
1H NMR (DMSO, d6): 8 1.14(t, 3H, J=6.9Hz), 1.26(t, 3H, J=6.9Hz), 3.94(q, 2H, J=6.9Hz), 4.09(q, 2H, J=6.9Hz), 7.68(d, 1H, J=8.4Hz), 8.46(d6, 1H, J1=2.4 Hz, J2=8.4Hz), 9.07(d, 1H, J=2.4 Hz).
MS:m/z320(M+H)+.
Compound 60: l,3-Diethyl-8-(6-piperazino-3-pyridyl)xanthine





which they are attached, form a pyrrolidyl, piperidyl, piperazinyl, azepinyl, diazepinyl, morpholinyl, or thiomorpholinyl ring; and
where n is 0,1,2,3,4, 5, 6,7, or 8; m is 1, or 2; and q is 1? 2, 3, or 4; or
a phannaceutically acceptable salt thereof,
2. The compound of Claim 1, wherein R is hydrogen, methyl, ethyl, allyl, propargyl,
i-propyl, n-propyl, n-butyl, i-butyl or halo(Ci-C4)alkyl.
3. The compound of Claim 1, wherein R is hydrogen, methyl, ethyl, -CH2-CH2-C1,
-CH2-CH2-Br, or -CH2-CH2-CH2-F.
4. The compound of Claim 1, wherein R is hydrogen.
5. The compound of Claim 1 or Claim 2, wherein R1 is hydrogen, (Ci-C4)alkyl,
(C3-C4)alkenyl, (C3-C4)alkynyl, phenyl, or phenyl(C1-C4)alkyl.
6. The compound of Claim 1, wherein R1 is (C3-C6)cycloalkyl and
(C3-C6)cycloalkyl(C1-C4)alkyl-.
7. The compound of Claim 1, wherein R1 is cyclopropyl or cyclopropylmethyl.
8. The compound of Claim 1, wherein R1 is hydrogen, methyl, ethyl, allyl, propargyl,
i-propyl, n-propyl, n-butyl, i-butyl, phenyl, phenethyl, benzyl, or (methoxyphenyl)ethyl.
9. The compound of Claim 1, wherein R1 is ethyl, n-propyl or allyl.
10. The compound of Claim 1, wherein R2 is hydrogen, (C1-C4)alkyl, (C3-C4)alkenyl,
(C3-C4>alkynyl, phenyl, phenyl(Ci-C4)alkyl, or (methoxyphenyl)ethyl.
11. The compound of Claim 1, wherein R is (C3-C6)cycloalkyl or
(C3-C6)cycloalkyl(C1-C4)alkyl-.
12. The compound of Claim 1, wherein R2 is cyclopropyl or cyclopropylmethyl.




























52. A pharmaceutical composition comprising:
(a) a therapeutically effective amount of a compound of Claim 1; and
(b) a phannaceutically acceptable excipient.
53. A pharmaceutical composition comprising:
(a) a therapeutically effective amount of a compound of Claim 51; and
(b) a phannaceutically acceptable excipient.
54. A therapeutic method for preventing or treating a pathological condition or symptom in a
mammal, wherein the activity of adenosine A2B receptors is implicated and antagonism of its
action is desired comprising administering to the mammal an effective amount of a compound of
Claim 1.
55. A method for treating asthma, allergies, allergic diseases or an autoimmune disease
comprising administering an effective amount of a compound of Claim 1 to a mammal in need of
such treatment.
56. A method for treating diarheal diseases, insulin resistance, diabetes, cancer,
ischemia/reprefusion injuries, diabetic retinopathy or hyperbaric oxygen-induced retinopathy,

comprising administering an effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof to a mammal in need of such treatment
57. A therapeutic method for preventing or treating a pathological condition or symptom in a
mammal, wherein the activity of adenosine A2B receptors is implicated and antagonism of its
action is desired comprising administering to the mammal an effective amount of a compound of
Claim 1.
58. The compound of Claim 1, for use in medical therapy.
59. The use of a compound of Claim 1, for the manufacture of a medicament useful for the
treatment of a disease in a mammal, such as a human.

Documents:

1014-chenp-2006 correspondance others.pdf

1014-chenp-2006 correspondence others 06-08-2009.pdf

1014-chenp-2006-abstract.pdf

1014-chenp-2006-assignement.pdf

1014-chenp-2006-claims.pdf

1014-chenp-2006-correspondnece-others.pdf

1014-chenp-2006-description(complete).pdf

1014-chenp-2006-form 1.pdf

1014-chenp-2006-form 3.pdf

1014-chenp-2006-form 5.pdf

1014-chenp-2006-pct.pdf


Patent Number 245968
Indian Patent Application Number 1014/CHENP/2006
PG Journal Number 06/2011
Publication Date 11-Feb-2011
Grant Date 08-Feb-2011
Date of Filing 24-Mar-2006
Name of Patentee ADENOSINE THERAPEUTICS, LLC
Applicant Address PO Box 4632, Charlottesville, VA 22905
Inventors:
# Inventor's Name Inventor's Address
1 WANG, Guoquan 3137 Turnberry Circle, Charlottesville, VA 22911
2 THOMPSON, Robert, D. 824 Filly Run, Charllotesville, VA 22903
3 RIEGER, Jayson, M. 3388 Turberry Circle, Charlottesville, VA 22911
PCT International Classification Number C07D 473/07, 519/00,
PCT International Application Number PCT/US2004/027133
PCT International Filing date 2004-08-20
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/497,875 2003-08-25 U.S.A.