Title of Invention

A SYNERGISITC COMPOSITION

Abstract The present invention relates to the filed of prebiotics. Provided are uses for compositions comprising synergistically effective amounts of polyfructose and galactooligosaccharides (GOS).
Full Text FORM 2
THE PATENTS ACT, 1970
(39 of 1970)
&
THE PATENTS RULES, 2003
COMPLETE SPECIFICATION
(See section 10, rule 13)
'SYNERGISM OF GOS AND POLYFRUCTOSE'
N.V. NUTRICIA, Eerste Stationsstraat 186, 2712 HM Zoetermeer, The Netherlands
The following specification particularly describes the invention and the manner in which it is to be performed.

WO 2005/110121

PCT/NL2005/000372

Synergism of GOS and polyfruetosc
Field of the invention
The present invention relates to the field of human health and nutrition. It provides
5 novel synergistic mixtures of prebiotic carbohydrates, especially mixtures of gaiacto-oligosaccharides (GOS, for example TOS) and polyfructose (for example inulin), as well as nutritional compositions comprising these. The nutritional compositions have beneficial effects when fed to bottle fed or partially bottle fed infants and also have health improving effects when ingested by adults having intestinal problems, such as
10 Inflammatory Bowel Disease (IBD) or Irritable Bowel Syndrome (IBS).
Background of the invention
The microflora of the human large intestine (typically divided into caecum, colon and
rectum) plays a crucial role in bom human nutrition and health. The bacterial
IS composition is influenced and can be modulated by dietary intake. Carbohydrates which have passed through the stomach and small intestine are metabolised by the bacteria and as a major end-product of metabolism short-chain fatty acids (SCFA), such as acetate, propionate, butyrate and valerate, are formed, which are subsequently released into the blood. Other end products of bacterial fermentation include for
20 example lactate and succinate. The total amounts and compositions (relative amounts) of these end products in turn have a profound effect on bacterial growth, pH, exclusion of pathogenic species, etc. A method to beneficially influence the microbial flora and human health is the administration of prebiotics. "Prebiotics" were defined as "non-digestible food ingredients that beneficially affect the host by selectively stimulating
25 the growth and/or activity of one or a limited number of bacteria in the colon, and thus improve the hosts health (Gibson and Roberfroid 1995, J. Nutr. 125, 1401-1412). The criteria which a compound must fulfil in order to be classified as a prebiotic are: 1) it must not be hydrolysed or absorbed in the upper part of the gastrointestinal tract (stomach, small intestine), 2) it must be selectively fermented by one or more
30 potentially beneficial bacteria in the colon, 3) it must alter the colonic microbiota towards a healthier composition and 4) it must preferably induce effects which are beneficial to the health of the subject. Commonly used prebiotics are so-called non-digestible carbohydrates (or "soluble dietary fibres"), which pass undigested through

WO 2005/110121

PCT/NL2005/000372

the upper part of the gastrointestinal tract into the large intestine. These include for example fructooligosaccharides (FOS), oligofructose, inulin and transgalacto-oligosaccharides (TOS). it should be noted that in the literature, there is often inconsistency between the use of various terms, such as fructooligosaccharide, inulin,
5 oligofructose and inulo-oligosaccharides, and the same term may be used for different compounds or compositions.
Well known beneficial bacteria, which are stimulated by the uptake of prebiotics, are lactic acid bacteria, such as Lactobacilli and Bifidobacteria^ and health benefits have
10 been ascribed to be due to this stimulatory effect. For example, beneficial effects of inulin and inulin-type fructans, such as oligofructose, on intestinal function have been described (Jenkins et al 1999, J. Nutrition 129,1431S-1433S) and this effect is thought to be due to a bifidogenic effect, which refers to a selective growth stimulating effect on total bifidobacteria, measured either in vivo through bifidobacteria! counts of the
15 faeces or in vitro (see e.g. Roberfroid, Am J Clin Nutr 2001, 73(suppl), 406S-409S).
Human milk appears also to have a bifidogenic effect, as the dominant bacteria which become established in breast-fed infants are bifidobacteria. In contrast, bacterial colonisation of milk formula fed infants is not dominated by bifidobacteria and is more
20 diverse in bacterial species (Harmsen et al. 2000, J. Pedtatr. Gastroenterol. Nutr. 30, 61-67). It is thought that oligosaccharides found in the human milk are responsible for the bifidogenic or prebiotic effect and efforts have been made to modify infant formula in such a way that it resembles human milk as closely as possible and especially that it has the same or a very similar prebiotic effect as human milk. This has been done by
25 adding prebiotics to infant milk formula (Boehm et al. Acta Paediatr. Suppl. 2003,441, 64-67 and Moro et al. 2002, J Pediatr Gastroenterol Nutr 34, 291-295). For example, supplementation of bovine milk formula with an oligosaccharide mixture comprising trans-galactooligosaccharides (TOS) and inulinHP has been described to increase the faecal count of bifidobacteria in bottle fed infants (Boehm et al. 2002, Arch Dis Child
30 86.F178-F181).
Also, supplementation of infant milk formula with TOS and inulin has been described to have a bifidogenic effect, and to decrease faecal pH (Boehm et al. 2003 supra; Moro

WO 2005/110121

PCT/NL2005/000372

et al. 2003, Acta Paediatr. Suppl. 441:77-79; Marini et al. 2003, Acta Paediatr. Suppl. 441:80-81; Boehm et al. 2002, Arch. Dis. Child Fetal. Neonata. Ed. 86:F178-F181; Moro et al. 2002, J. Pediatr. Gastroenterol. Nutr. 34:291-295; Schmelzle et al. 2003, J Pediatr. Gastroenterol. Nutr. 36:343-51).
5
Upon fermentation of prebiotics by lactic acid bacteria organic acids are produced and the pH is lowered. Lactobacilli produce either lactate or lactate and acetate (a Short Chain Fatty Acid; SCFA). The lactate can be in the L- or D- form. Bifidobacteria, on the other hand, produce L-lactate and acetate, but no D-lactate. Bifidobacteria (and
10 other lactic acid bacteria) usually do not lead to the production of gases, such as H2 and CH4. They also do not produce other SCFA, such as propionate, butyrate, isobutyrate, valerate and isovalerate. The presence of SCFA, such as isobutyrate and isovalerate, are indicative of the fermentation of carbohydrates by other bacterial species, such as Clostridia and Bacteroides or Enterobacteriaceae, or are indicative for the
15 fermentation of proteins (of which the Bifidobacteria have a poor capability). Also, other intestinal bacteria ace capable of producing acetate or lactate, such as Propionibacteria, Enterococci and Pediococci.
Previously it has been reported that the intake of certain prebiotic carbohydrates
20 increase the (relative) amounts of Bifidobacteria and/or Lactobacilli. Concomitantly an increased formation of SCFA and decrease of pH has been observed. But also the formation of gases, which results in unwanted symptoms such as flatulence and abdominal pain, has been reported when introducing prebiotics, such as inulin or GOS, into the diet. Furthermore, not only acetate but also increases in, for example, butyrate
25 have been reported, which is undesirable. A range of undesirable effects have therefore been described, resulting from the consumption of nutrition supplemented with certain prebiotics.
In the colon and faeces of breast fed infants the predominant SCFA found is acetate.
30 Furthermore high concentrations of lactate are found. These (relative) amounts are
higher than those observed in adults (where concentrations of lactate are generally negligible) or in standard milk formula fed infants. Subsequently, concentrations of propionate and especially butyrate are much lower in the colon and faeces of breast fed

WO 2005/110121

PCT/NL2005/000372


infants than in adults and even lower than in infants fed with standard infant milk formula. The pH of the faeces is lowest in breast fed children. As mentioned above, it is desirable to provide nutrient compositions, especially milk formula compositions, which, when consumed, result in an intestinal microflora closely resembling that of
5 breast fed infants.
Many health effects of SCFA and lactate and a low colon pH have been described. The lowered pH and the presence of organic acids have been described to have an anti-pathogenic effect, and provide an advantage to acid tolerant bacteria such as the lactic
10 acid bacteria (including Bifidobacteria). Also effects of SCFA on the intestinal wall have been described. SCFA are an energy source of colonocytes and thereby aid to the intestinal barrier integrity. SCFA are also involved in effects on peristalsis, bile acid metabolism, water absorption and cell differentiation (see e.g. EP1105002). SCFA are known to stimulate die production of mucus and are involved in mineral absorption and
1S mucus production.
Detailed description of the invention
The present inventors surprisingly found that GOS (especially TOS) and polyfructose
(especially inulin), when administered together, provide a number of beneficial effects
20 which cannot be explained by an increase in the number of intestinal bifidobacteria and which are, therefore, not due to the bifidogenic effect described for TOS or inulinHP in the prior art (e.g. in Boehm et al. 2002, supra). In particular, it was unexpectedly found that, following administration of GOS and polyfructose mixtures, there was an increase in the total amounts of SCFA formed, an increase in the relative amounts of acetate and
25 lactate and a decrease in faecal pH of infants, whereby these effects were not correlated with an increased (relative) amount of Bifidobacteria. Beside a beneficial SCFA amount and profile and an increased amount of lactate, a decrease in gas formation was observed. Further, lactate itself was found to have a hiuSerto unknown beneficial effect on the colon, as it was found to increase the secretion of prostaglandin El and
30 prostaglandin E2. This effect was previously only reported for SCFA, especially acetate (Willemsen et al. 2003, Gut 52, 1442-1447). Compositions comprising lactate, and compositions comprising prebiotics which stimulate lactate production, may therefore be used to stimulate mucin production and support the mucosal barrier integrity

WU ZU03/1101Z1

PCT/NL2005/0O0372

(mucoprotection). Lactate was further found to decrease spontaneous contractions and tension in colonic muscles, resulting in relief of cramp and pain.
The prebiotic compositions are therefore novel, in that they do not, or do not
5 significantly, increase the number of Bifidobacteria, while they do result in an increase
in total SCFA amounts, beneficial changes in SCFA profile (increases in acetate,
decreases in butyrate and propionate), increase in lactic acid (and resulting beneficial
contraction and tension reducing effects and muco-stimulatory effect), a decrease in
faecal pH, a decrease in formation of gases, and more gradual formation of SCFA
10 (including formation in the distal part of the colon), i.e. overall an optimal pattern of
fermentation products (more L-lactate, less butyrate etc.). All these changes make the
colonic environment more resemble that of breast fed babies. In one embodiment of the
invention the use of mixtures of GOS and polyfructose in effective amounts for the
preparation of compositions which lead to a colonic environment essentially similar to
15 that of breast fed infants is, therefore, provided herein.
The beneficial effects found were significantly more pronounced upon coadministration than when either GOS or polyfructose (e.g. TOS or inulin) alone was administered, indicating that GOS and polyfructose act synergisticaily. In the prior art
20 no studies were carried out wherein the individual effects of TOS and inulin administration were directly compared to the co-administration of these two types of compounds and clearly such independent individual studies cannot be compared to one another and are unsuitable to identify synergistic effects.
25 This novel synergistic interaction of GOS and polyfructose (e.g. TOS and inulin), and the in vivo effects of co-administration thereof, leads to new uses of compositions comprising both GOS and polyfructose in suitable (synergistic) amounts, such as treatment or prevention of colic and/or abdominal cramps, abdominal bloating, flatulence, abdominal pain, constipation, IBS, IBD, allergy and/or increased muco-
30 protection of the intestine. In addition, a composition comprising lactate (D-lactate and/or L-lactate, preferably L-lactate) may be used to treat or prevent one or more of these symptoms or disorders.

WO 2005/110121

PCT/NL2005/000372

Thus, unexpectedly, fermentation of the specific mixtures of prebiotics (GOS and polyfructose) by the intestinal flora results in an enhanced and kinetically advantageous formation of SCFA and lactate and an improved pattern of metabolic end products. As a consequence many beneficial effects result, such as effects on mucus production,
5 anti-inflammatory effects, effects on pain perception and effects on abdominal cramps/colic (both via relaxation of the colon and decrease of spontaneous contractions). The nutrition compositions comprising these prebiotic mixtures can also be used for adults having intestinal problems such as IBD or IBS or a decreased intestinal barrier integrity due to malnutrition.
10
Definitions
"Polysaccharides" refers to carbohydrate chains of monosaccharide units with a chain length of at least 10 units. In contrast, 'oligosaccharides' have a chain length of less than 10 units.
15 "Degree of polymerisation" or "DP" refers to the total number of saccharide units in an oligo- or polysaccharide chain. The "average DP" refers to the average DP of oligosaccharides or polysaccharide chains in a composition, without taking possible mono- or disaccharides into account (which are preferably removed if present). The average DP of a composition is used to distinguish between compositions. In addition
20 the % saccharide units, such as the % glucose and % fructose units, in a composition are distinguishing.
"Polyfructose" or "polyfructan" or "fructopolysaccharide" refers to a polysaccharide carbohydrate comprising a chain of P linked fructose units with a degree of polymerisation of 10 or more and comprises, for example, inulin (e.g. inulin HP), levan
25 and/or a "mixed type of polyfructan" (see below).
"Inulin" or "non-hydrolysed inulin" or "inulin HP" is used herein to refer to glucose-terminated fructose chains with the majority of chains (at least 90%, preferably at least 95%) having a degree of polymerisation (DP) of 10 or more. Inulin can thus be described as GFn, wherein G represents a glucosyl unit, F represents a fructosyl unit
30 and n is the number of fructosyl units linked to each other, n being 9 or more. The G/F ratio is about 0.1 to 0. A small part of the inulin molecules, however, may have no terminal glucose unit. The average DP is preferably at least 15, more preferably 20 or more, such as 20, 21, 22, 23, 25, 30, 40, 60, 70, 100, 150 or more herein. In inulin the


WO 2005/110121

PCT/NL2005/000372

fructose units are linked with a 0(2—>1) linkage. A suitable inulin is for example the commercially available as Raftiline®HP (Orafti) with an average DP > 23.
"Hydrolised inulin" or "oligofructose" refers to mixtures of glucose- and fructose-
5 terminated fructose chains, with a DP below 10. Thus, hydrolysed inulin can be described as a mixture of GF„ chains and Fn chains (wherein G is a glucosyl unit, F is fructosyl unit and n = 1-8). Hydrolysed inulin is an (enzymatic or acidic) hydrolysis product or partial hydrolysis product of inulin, resulting from cleavage of p\l-2) fhictosyl-fructose linkages. The term hydrolysed inulin also encompasses synthetically
10 made or recombinantly made inulin which have the same structural makeup.
"Levan" or "levulan" or "Ievulin" or "levulosan" refers to a polysaccharide consisting of polyfructose in which the fructose units are linked with P(2—>6) linkages. A starting glucose moiety can be present, but this is not necessary. The degree of polymerisation
15 is above 10.
In "mixed type polyfructans" the fructose units are linked with f3(2—>1)and p(2—>6) linkages. Mixed type polyfructans are branched and have a DP > 10.
20 "GOS" or "galactooligosaccharides", or "trans-galactooligosaccharides" or "TOS" refers to oligosaccharides composed of galactose units, with a DP of 10 or less and an average DP of 2, 3, 4, 5 or 6. A glucose unit may be present at the reducing end of the chain. Preferably the GOS contains at least 2/3 galactose units. Most preferred are trans-galactooligosaccharides (TOS) with P-(l-4) glycosidic bonds. Such a GOS is for
25 example that found in Vivinal®GOS (commercially available from Borculo Domo Ingredients, Zwolle, Netherlands), comprising trans-galactooligosaccharides with P-(l-4) glycosidic bonds and P~( 1 -6) glycosidic bonds.
"SCFA" or "short chain fatty acids" refers to fatty acids, with a carbon chain lengths of
30 up to C6, produced as an end-product of bacterial intestinal fermentation, such as acetate (C2), propionate (C3), butyrate and isobutyrate (C4), valerate and isovalerate (C5) and others The expression "iC4-5" refers to the sum of isobutyrate, valerate and isovalerate.

WO 2005/110121

PCTYNL2005/000372

A "synergistically effective amount" refers to an amount of GOS and polyfructose (for example TOS and inulin) which, when co-administered, confers one (or more) specific physiological effects (as described elsewhere herein), whereby the total effect of co-
5 administration is significantly larger than the sum of the effect of individual administration of GOS or polyfructose. For example, if the effect of administration of GOS alone is X and the effect of administration of polyfructose alone is Y, then the effect of co-administration of GOS and polyfructose is larger than X+Y and for example the effect of co-administration of Vi the concentration of GOS plus Vi the
10 concentration of polyfructose has an effect larger than Vi X + 'A Y, etc.
"Co-administration" of two or more substances refers to the administration of these substances to one individual, either in one composition or in separate compositions (kit of parts; as a combined composition) which are administered at the same time
15 (simultaneously) or within a short time-span (separate or sequential use, e.g. within minutes or hours).
"Enteral" refers herein to the delivery directly into the gastrointestinal tract of a subject (e.g. orally or via a tube, catheter or stoma).
20
The term "comprising" is to be interpreted as specifying the presence of the stated parts, steps or components, but does not exclude the presence of one or more additional parts, steps or components.
25 "Infant" refers herein to humans aged 0-36 months, preferably 0-18 months, or more preferably 0-12 months.
"Breast fed infants" refers to infants exclusively fed with human breast milk. "Non- or partially breast fed infants" are infants not exclusively fed on human breast milk. This
30 includes infants fed with at least one bottle (about 80ml) of formula milk per day.
"Percentage" or "average" generally refers to percentages of averages by weight, unless otherwise specified or unless it is clear that another basis is meant.



WO 2005/110121 PCT/NL2005/000372
In one embodiment the present invention provides a number of novel uses of compositions comprising both GOS and polyfructose in suitable (synergistically effective) amounts.
5
Uses and methods according to the invention
In the various uses described herein, a subject is preferably a human subject, more preferably an infant, such as a new born infant up to a 12 months old infant. Especially bottle fed or partially bottle fed infants are referred to. Alternatively, a subject may also
10 be a child, teenager or adult. In particular intestinal problems, such as but not limited to Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS), flatulence, abdominal cramps, colic, abdominal bloating, abdominal pain, etc., which may also result in fatigue, depression or moodiness, may be prevented and/or treated using compositions according to the invention. Also, mucosal production may be enhanced
15 and allergies resulting from a suboptimal functioning of the intestine may be prevented or treated. Also the intestinal barrier function may be improved in patients with an impaired barrier function as a result from malnutrition, surgery, chemotherapy etc.
Compositions comprising both GOS and polyfructose, such as compositions
20 comprising TOS and inulin, may in one embodiment be used to induce the production
of SCFA in the large intestine of a subject and to significantly increase the (intestinal
and/or faecal) total amount of SCFA produced following administration and/or to
significantly modify the relative amounts of (intestinal and/or faecal) SCFA produced,
in particular to increase the (intestinal and/or faecal) relative amount of acetate out of
25 total SCFA, and/or to significantly increase the amount (absolute and relative) of
intestinal lactate produced, and/or to significantly reduce or prevent intestinal gas
formation, and/or to extend the SCFA production to the distal part of the colon, and/or
to significantly reduce the pH in the large intestine and faecal pH. Also, the sum of
intestinal and/or faecal butyrate, isobutyrate, valerate and/or isovalerate relative to the
30 total SCFA may be decreased. These effects are achieved following administration,
without having a significant effect on the total and/or relative number of intestinal
bifidobacteria. Compositions for the treatment or prophylaxis of any diseases or


WO 2005/110121

PCT/NL2005/000372


disorders or discomforts associated with or caused by one or more of these intestinal effects are provided herein.
The present invention provides the use of galacto-oligsaccharides and polyfructose for
5 the manufacture of a composition for the treatment or prevention of abdominal bloating, gas formation, abdominal pain and/or flatulence. In a further embodiment the present invention provides the use of galactooligosaccharides and polyfructose for the manufacture of a composition for the treatment or prevention of allergy, eczema or atopic diseases. In a further embodiment the present invention provides the use of
10 galacto-oligosaccharides and polyfructose for the manufacture of a composition for the treatment and/or prevention of colics and/or for the relaxation of contractions of the colon, preferably the tonic and/or phasic contraction. In another embodiment the present invention provides the use galacto-oligosaccharides and polyfructose for the manufacture of a composition for the treatment or prevention of irritable bowel
15 syndrome or inflammatory bowel disease. In an even further embodiment the present invention provides the use of galacto-oligosaccharides and polyfructose for the manufacture of a composition for the increase of intestinal barrier functioning and/or mucus production in die large intestine.
20 Unless specified otherwise, a "significant increase" (of for example SCFA, acetate or lactate) refers herein to an increase of at least 5%, preferably at least 10%, more preferably at least 20%, or more, compared to the amount produced when either GOS or polyfructose (e.g. inulin) alone are administered. Similarly, unless specified otherwise a "significant reduction" (of for example gas formation) refers to a reduction
25 of at least 5%, preferably at least 10%, more preferably at least 20%, 25%, 50% or more (e.g. 70%, 80%, 90%, 100%) compared to the amount produced when polyfructose (e.g. inulin) alone is administered.
An increase in the total amount of SCFA produced as fermentation product of GOS and
30 polyfructose compositions can also be measured as a significant decrease in pH of faecal samples of subjects, reflecting an in vivo decrease in pH in the large intestine. In infants it was found that faecal pH decreased to about pH 5.8 or less, such as pH 5.6, 5.5 or 5.4 or 5.2 following co-administration of TOS and polyfructose (e.g. inulin),

WO 2005/110121

PCT/NL2005/000372

while the pH of standard formula fed infants was around or above pH 6, such as about pH 5.9, 6.8 or even 7.0. A significant decrease in pH refers therefore to a decrease in pH by at least 15% or 0.9 unit compared to infants fed a standard formula.
5 Another beneficial effect of co-administration of GOS and polyfructose in suitable amounts is that the composition of SCFA is significantly different than when either GOS or polyfructose are administered. Especially the relative amount of butyrate is significantly reduced, while the relative amount of acetate is significantly increased. The compositions may, thus, be used to alter not only total SCFA quantities, but also
10 relative SCFA proportions. In infants co-administered with TOS and polyfructose (e.g. inulin), the relative SCFA levels resembled more the levels found in breast fed infants, with acetate : propionate : butyrate ratios generally about 80-85% : 10-15% : 1-5%, while in infants fed on standard milk formula ratios were generally around 69-74% : 16-19% : 5-6% ( as shown in the examples). Thus, especially relative amounts of
15 acetate are increased and relative amounts of propionate and butyrate are decreased by the compositions according to the invention. The co-administration of GOS and polyfructose results in acetate : propionate : butyrate proportions resembling that of breast-fed infants much more closely than that of formula fed infants (which produce high levels of butyrate and propionate and relatively low levels of acetate). The effect
20 on relative SCFA proportions can be measured by methods known in the art, such as gas chromatography of faecal samples at various time points after administration, either using in vivo studies or an in vitro fermentation systems as e.g. described in the Examples. A "significantly modified SCFA composition" or a "significantly increased amount of acetate" refers to the amount of acetate (% of total SCFA) being at least
25 about 4%, 5%, 10%, 15%, or more, higher than when no GOS or polyfructose are administered or when GOS or polyfructose are administered individually. Preferably the relative amounts of propionate and/or butyrate are lower than when no GOS or polyfructose are administered or when GOS or polyfructose are administered individually. In one embodiment, the composition according to the invention is suitable
30 for increasing intestinal and/or faecal acetate to above about 85%, such as 86%, 87%, 88%, 90% or more, of the total SCFA.

WO 2005/110121

PCTYNL2005/000372

Yet a further beneficial effect observed when co-administering GOS and polyfructose is a significant decrease in branched SCFA, compared to the proportion of branched SCFA found when only GOS or only polyfructose are administered. A "significant decrease in branched SCFA", as used herein, refers to a decrease at least 70%
5 compared to the concentration found in infants not fed prebiotics or resulting in a faecal proportion of less than 1.5% of total SCFA. The proportion of branched SCFA relative to the total SCFA can be measured by dividing the sum of branched SCFAs, i.e. isobutyrate, plus isovalerate plus valerate, by the sum of total SCFA, i.e. acetate, plus propionate, plus butyrate, plus isobutyrate, plus isovalerate, plus valerate, etc..
10 Reducing the proportion of branched SCFA is beneficial to the health of the subject, as branches SCFA are damaging. This indicates less protein degradation, which is unwanted because protein fermentation results in an increase of pH and in the formation of damaging agents such as H2S. A significant decrease of butyrate relates to a decrease by at least 50% compared to the
15 concentration found in infants not fed prebiotics or resulting in a faecal proportion of less than 4% of total SCFA. In one embodiment the composition according to the invention is suitable for decreasing the sum of intestinal (and/or faecal) butyrate, isobutyrate, valerate and isovalerate is below 7% of total SCFA, such as 6.5%, 6%, 5%, 4% or less of total SCFA.
20
In another embodiment, compositions comprising GOS and polyfructose are suitable to increase the length of fermentation within the colon. In particular, bacterial fermentation will still be active in the most distal parts of the colon following coadministration, as indicated by SCFA production in the distal part of the colon. No or
25 only very little SCFA is produced in the distal part of the colon following administration of compositions comprising only GOS or only polyfructose. In addition, fast fermentation at the beginning of the colon is seen following co-administration, which is especially important for anti-pathogenic effects and is also observed in breast fed infants. Overall, this indicates the compositions are suitable for establishing and/or
30 maintaining a relatively even fermentation pattern throughout the colon of a subject and to extend fermentation and SCFA production to the distal end of the colon. SCFA, and most likely also other fermentation products, especially lactate, are therefore produced throughout the colon, in the beginning, middle and end of the colon.

WO 2005/110121

PCT/NL2005/000372

In a further embodiment, co-administration of GOS and polyfructose in synergistic amounts may be used for significantly increasing lactate production, as can be determined again by analysing faecal samples of test subjects and control subjects,
5 which received compositions comprising either GOS alone or polyfructose alone or equivalent base compositions without prebiotics. A "significant increase in lactate" refers to at least 5%, 10%, 20% or even 50% or more lactate being produced in subjects being co-administered compositions comprising GOS and polyfructose, compared to subjects not administered GOS or polyfructose. For example, infants fed on standard
10 milk formula supplemented with 6 g/1 of TOS/inulin mixtures (90% : 10%) produced at 16 weeks about 16% lactate (as % of total acids), while standard formula fed infants produced about 0.6% and breast fed infants produced about 35% lactate. Although not matching the amount of lactate produced by breast fed infants, the supplementation of the standard milk formula with TOS and inulin mixtures led to a significant increase in
15 lactate production. As shown in the Examples, lactate was found to have unexpected beneficial effects. Similarly to acetate it increased the prostaglandin El and prostaglandin E2 production and resulted in enhanced epithelial mucin expression. The intestinal mucosa plays an important role in human health, as it serves as a barrier to infectious pathogens, allergens and carcinogens. Compositions which positively
20 influence the development and/or integrity of the mucosa may therefore be used to aid the build up of a healthy mucosa in new bom infants and to aid the establishment of a healthy mucosa in bottle-fed or partially bottle-fed infants and in subjects suffering from symptoms or diseases resulting from or being associated with a not properly functioning intestinal mucosa. For example, intestinal problems, such as Inflammatory
25 Bowel Disease (IBD, for example colitis or Crohn's disease) or Irritable Bowel Syndrome (IBS) may be treated or prevented, or pathogen attachment and/or entry through the mucosa may be reduced or other immunological problems, such as the development of asthma, may be prevented or reduced. Also the loss of intestinal barrier integrity as a result from malnutrition, surgery, chemotherapy etc. can be prevented or
30 reduced.
Furthermore, spontaneous contractions and abdominal tension was significantly reduced in a dose dependent manner following D- or L-lactate administration. The

WO 2005/110121

PCT/NL2005/0O0372

compositions according to the invention may thus be used to increase intestinal lactate levels and thereby treat or prevent symptoms such as abdominal pain, colic, abdominal contractions, abdominal tension and the like.
5 As lactate itself was found to have previously unknown effects, it is also an object of the invention to provide compositions comprising lactate in suitable amounts, which may be used to treat or prevent the above described symptoms and disorders. In one embodiment compositions comprises only lactate in suitable amounts, while in another embodiment the GOS an polyfructose compositions described herein further comprises
10 lactate to further increase intestinal lactate levels. One such composition according to the invention comprises TOS and inulin in synergistically effective amounts and further comprises lactate in suitable amounts. In one embodiment compositions are provided which are suitable for increasing intestinal and/or faecal lactate to above about 10 mmol/kg faeces.
15
It is understood that when referring to the analysis of faecal samples this is an indirect measure of the actual in vivo effect. Likewise, in vitro assays may be carried out, whereby bacterial populations are grown in vitro and suitable amounts of compositions are added to the cultures. In particular, the in vitro fermentation system described in the
20 Examples may be used.
Co-administration of compositions comprising GOS and polyfructose can therefore be used to achieve one or more of the following physiological effects:
- a significant increase in total SCFA 25 - a significant decrease in pH
- a significantly modified SCFA composition
- a significant decrease in branched SCFA
- a significant decrease in gas production per mol SCFA produced
- a longer and more even fermentation, including fermentation even in the most distal 30 parts of the colon, and/or

- a high initial formation of SCFA and /or lactic acid formation in the most proximal part of the colon
- promoting the production of SCFA at the beginning, middle and end of the colon

WO 2005/110121

PCT/NL2005/000372

- a significant increase in lactic acid (absolute and/or relative) and/or
- an increase in the relative amount of L-lactate as a ratio of total lactic acid formed.
In a preferred embodiment at least 2, 3, 4, 5, 6, 7, 8, 9 or all these effects are S significantly modified when using compositions comprising both GOS and polyfructose, compared to when administering compositions comprising only GOS or polyfructose, or neither GOS or polyfructose. In particular, at least 2, 3, 4, 5, 6, 7, 8, 9 or all these effects are significantly larger following co-administration of a (synergistically effective amount) of GOS and polyfructose than the sum of the
10 effect(s) of administration of GOS and polyfructose individually.
The synergistic compositions according to the invention are, therefore, particularly suited to build up and/or maintain a healthy microflora within an infant's large intestine following administration of a synergistically effective amount. In a preferred
15 embodiment an infant is fed solely on a base composition, such as milk formula, supplemented with a synergistically effective amount of GOS and polyfructose within the first weeks after birth. A preferred composition is, therefore, a dietary composition for infants. In another embodiment an infant is only partly fed on a composition according to the invention. In one embodiment the composition is used to treat or
20 prevent symptoms selected from one or more of: gas formation, flatulence, colitis, abdominal bloating, abdominal cramps, abdominal pain, IBS, IBD, allergy and/or as a mucoprotectant. GOS and polyfructose may, thus, be used for the preparation of a composition or a combined composition for simultaneous, separate or sequential use in treatment of flatulence, excessive gas formation, colitis, abdominal bloating, abdominal
25 cramps, abdominal pain, IBS, IBD, allergy, decreased intestinal barrier functioning and/or as a mucoprotectant. The subject may in this case be any subject, ranging from infant, child, teenager to adult. Clearly, the base compositions to which GOS and polyfructose are added in synergistically effective amounts, will vary depending on the age of the subject, the mode of administration and on the main symptoms to be treated
30 or prevented. For infants for example the base composition is preferably a liquid or powder form infant or follow-on formula, while for adults a nutrient supplement composition (liquid, semi-liquid or solid) or tube feeding may be more suitable.

WO 2005/110121

PCT/NL2005/000372

In a preferred embodiment GOS and polyfructose are co-administered in a synergistically effective amount suitable to significantly increase the total amount of intestinal SCFA formed and/or to significantly improve intestinal SCFA composition (especially to significantly increase the percentage of acetate relative to the total
5 amount of SCFA) and/or to significantly increase lactate production and/or to and to lower intestinal pH and/or to significantly reduce intestinal gas formation.
Use of compositions comprising a synergistically effective amount of GOS and polyfructose for the treatment and/or prevention of colic and/or abdominal cramps,
10 abdominal bloating and/or flatulence, abdominal pain, IBS, IBD and/or allergy is provided. Use of such compositions for increasing mucoprotection and strengthening the intestinal barrier is also provided. It is understood that not necessarily one composition is referred to, but that GOS and polyfructose may be present in separate compositions, which provides a synergistically effective amount when co-administered.
15
Through these changes in SCFA levels, profile and intestinal pH, the compositions are
able to cause one or more of the following downstream-beneficial effects:
a) The intestinal permeability at the site of SCFA production is decreased. This is
important for preventing disease and maintaining health, especially to prevent
20 allergies from developing. The finding that co-administration of GOS and
polyfructose causes more even fermentation and extends fermentation to the distal part of the colon is important in this respect, as the permeability of the intestine, including the distal parts of the colon, can be evenly reduced and the intestine can thereby be evenly maintained in a healthy state.
25 b) The motility or peristaltic movement of the intestine is enhanced, which reduces or prevents constipation, a common problem observed in formula fed infants.
c) Decreasing the amount of spontaneous contractions and the colonic muscle tension
resulting in less cramps and less abdominal pain.
d) Calcium-ion absorption is increased, which is important for bone mineralisation and
30 bone development of the subject, especially if the subject is an infant
e) Secondary symptoms of reduced health such as fatigue, depression and mood
fluctuation may be reduced,

WO 2005/110121 PCT/NL2005/000372
f) Mucus production of the intestinal mucosa is significantly enhanced, which
provides protection against pathogen attachment and colonization. In particular, it
was found that lactate levels correlated positively with mucus production. The
compositions according to the invention may thus be used to stimulate mucus
5 production.
g) Bile metabolism may be modified to levels and/or patterns as observed in breast fed
infants.
h) Growth of intestinal pathogenic microorganisms is inhibited along the entire colon.
10 A composition comprising a synergistically effective amount of GOS and polyfiructose may therefore be used to either maintain or establish (e.g. in a newborn, premature or mature born baby or in a non- or partially breast fed baby, or other subjects, such as adults, one or more of the above physiological effects and maintain or improve the health of the subject by ensuring or establishing a healthy large intestinal environment
15 and optimal activity of the large intestine.
In particular, incidence, duration and/or severity of diseases, disorders or symptoms such as colic and/or abdominal cramps, abdominal bloating and/or flatulence, abdominal pain, IBS, IBD and/or allergy, intestinal pathogen infection (e.g. bacteria,
20 viruses, fungi), diarrhoea, eczema, allergy induced asthma and other atopic diseases, and/or constipation can be reduced, abolished or prevented by administration of a composition according to the invention. The compositions according to the invention may also be used to relax contractions of the colon, preferably the phasic and/or tonic contractions.
25
Compositions according to the invention
Compositions suitable for the uses described above comprise both polyfructose and GOS in synergistically effective amounts. The compositions comprise GOS/polyfructose in ratios ranging from 3/97 to 97/3, preferably 5/95 to 95/5, more
30 preferably 90/10 to 45/55. All individual ratios between these end-points are encompassed herein, such as 10/90, 20/80, 30/70, 40/60, 50/50, 55/45, 60/40, 70/30, 80/20,85/15,90/10, etc.
- 19-

WO 2005/110121

PCT/NL2005/000372

The dosages required and the GOS / polyfructose ratio for achieving the (optimal) synergistic effect may vary, depending on the type of composition and the method and frequency of administration. A few examples are however given below. A skilled person may easily determine what dosages of each component is required to achieve
5 the best physiological effect and what GOS / polyfructose ratio is the most suitable. For example, if the main aim is to enhance the total level of SCFA following oral administration of a composition comprising GOS and polyfructose, a skilled person will make various compositions (comprising GOS plus polyfructose, GOS alone, polyfructose alone) and compare their efficiency in inducing high SCFA levels using
10 either in vivo or in vitro tests as known in the art. It is understood that when referring to "daily dose" or 'dosage per day', this does not imply that the dosage must be administered to the subject at one time.
A synergistically effective infant formula may, for example, consist of a base
15 composition (e.g. standard infant formula) comprising about 4 g/1, 5 g/1 or more of a mixture of GOS and polyfructose, whereby the ratio's of GOS to polyfructose may vary as described elsewhere herein (e.g. 90% GOS : 10% polyfructose).
Polyfructose may, for example, be levan and/or inulin. Polyfructose, such as levan or 20 inulin, for use in the compositions may be either extracted from natural sources (plants
or bacteria) or may be made by de novo synthesis or by recombinant DNA technologies
as known in the art. Extraction, size separation and purification methods of inulin have
been described, for example in De Leenheer (1996), US6569488 and US5968365.
Recombinant production methods have been for example described in US6559356. 25 Synthesis generally involves the use of sucrose molecules and enzymes with fructosyl
transferase activity. Inulin suitable for use in the compositions is also already
commercially available, e.g. Raftiline®HP, Orafti.
Plant inulins generally have a much lower degree of polymerisation than bacterial
30 inulins (up to 150, compared to up to 100,000 in bacteria). Plant sources include dicotyledenous species, such as Compositae. Examples of species which produce relatively large amounts of inulin, mainly in their roots, bulbs or tubers, are chicory, asparagus, dahlia, Jerusalem artichoke, garlic, and others (see Kaur and Gupta, J.
WO 2005/110121

PCT/NL2005/000372

Biosci. 2002, 27, 703-714). As the inulin should preferably not comprise oligofructose, hydrolysis should be avoided or oligofructose and/or mono- or disaccharides present should be removed prior to use.
5 Especially preferred is polyfructose with a PD of at least 10, 15, 20, 50, 70, 100, 120, 130, 150, 200, 300, 500 or more. Polyfructoses, such as levans, may be hydrolysed to avoid viscosity problems associated with too long chains, as long as a PD of 10 or more is retained.
10 Levans may also be obtained from natural sources such as plants (e.g. monocotyledons) yeast, fungi, bacteria, or made chemically or using recombinant DNA technology.
GOS may be obtained from natural sources, such as plants (e.g. chicory, Soya) or bacteria, or may be made synthetically or by recombinant DNA technology as known
15 in die art. GOS may be P-galacto-oligosaccharide or a-galacto-oligosaccharide or a mixture of both. In particular, galactose residues are linked by p\l-4) and P(l-6) glycosidic bonds (trans GOS or TOS). GOS suitable for use in die compositions is also already commercially available, e.g. VivinaKDGOS, Borculo Domo Ingredients, Zwolle, The Netherlands. GOS may also be derived from lactose, by treatment of
20 lactose enzymatically with p-galactosidase or by hydrolysis from polyglucan. In a preferred embodiment TOS is used. In one embodiment the preferred polyfructose is inulin HP, so that me combination of TOS and inulin HP are also a preferred embodiment herein.
25 Other compositions provided are compositions comprising lactate in suitable amounts, in particular for the uses described above. Suitable amounts of lactate may vary, and may for example range from 1 to 30 grams per day.
Compositions according to die invention may be eitiier food compositions, food
30 supplement compositions or pharmaceutical compositions. Apart from polyfructose and GOS (and/or lactate) they may comprise additional ingredients. For food compositions or food supplement compositions these should be food grade and physiologically acceptable. "Food" refers to liquid, solid or semi-solid dietetic compositions, especially

WO 2005/110121

PCT/NL2005/000372

total food compositions (food-replacement), which do not require additional nutrient intake or food supplement compositions. Food supplement compositions do not completely replace nutrient intake by other means. Food and food supplement compositions are in a preferred embodiment baby food or food supplements, food or
5 food supplements for prematurely bom babies, infant food, toddler food, etc., which are preferably administered enterally, preferably orally several times daily. The food or food supplement compositions are particularly suited for non- or partially breast fed infants. Also, the composition may be beneficially administered to infants in their adaptation period to solid food or infants changing from breast to bottle feeding. The
10 composition may also be part of a human milk fortifier supplement.
In one embodiment the composition is an infant or follow-on formula as e.g. known in the art, especially as described in the European Commission directive 91/3 21 /EEC and the amendments thereof, but may be modified to comprise an effective amount of
15 polyfructose and GOS. The infant or follow-on formula may be based on milk (cows milk, goats milk, etc.), infant milk formula (IMF) or soy for lactose intolerant infants or may contain amino acids as a nitrogen source for infants having problems regarding allergy or absorption. Commercially available infant or follow-on formulae comprise, thus, a milk protein or soy protein base, fat, vitamins, digestible carbohydrates and
20 minerals in recommended daily amounts and may be powders, liquid concentrates or ready-to-feed compositions.
Administration of the modified infant or follow-on formula results in a large intestinal environment which resembles that of breast-fed infants, as can be determined by
25 analyses of faecal pH, bacterial composition, SCFA production and profiles, gas production, etc. When the composition is a drink, preferably the volume (comprising the daily effective dose) consumed or administered on a daily basis is in the range of about 100 to 1500ml, more preferably about 450 to 1000 ml per day. When the formula is a solid preferably the amount (comprising the daily effective dose) consumed or
30 administered on a daily basis is in the range of about 15 to 220 g/day, preferably about 70 to 150 g/day of formula powder.

WO 2005/110121

PCT/NL2005/000372


A daily effective dose of GOS and polyfructose ranges from about 1 to 30 g/day, preferably from about 2 to 10 g/day for infants and preferably for adults from about 5 to 20 g/day.
5 Food or food supplement compositions according to the invention may additionally comprise other active ingredients, such as vitamins (A, Bl, B2, B3, B5, B12, C, D, E, K, etc.), probiotics (e.g. bifidobacteria, lactobacilli, etc.), other prebiotics, fibres, lactoferrin, immunoglobulins, nucleotides, and the like. Nutrients such as proteins, lipids and other carbohydrates (e.g. digestible carbohydrates, non-digestible
10 carbohydrates, soluble or insoluble carbohydrates) may be present in various amounts. Typical in-soluble non-digestible carbohydrates present in infant nutrition are soy polysaccharides, resistant starch, cellulose and hemicellulose. Typical soluble and digestible carbohydrates for use in infant nutrition are for example maltodextrin, lactose, maltose, glucose, fructose, sucrose and other mono- or disaccharides or
15 mixtures thereof. The composition may also comprise other inactive ingredients and carriers, such as e.g. glucose, lactose, sucrose, mannitol, starch, cellulose or cellulose derivatives, magnesium stearate, stearic acid, sodium saccharin, talcum, magnesium carbonate and the like. The compositions may also comprise water, electrolytes, essential and non-essential amino acids, trace elements, minerals, fibre, sweeteners,
20 flavorings, colorants, emulsifiers and stabilisers (such as soy lecidiin, citric acid, esters of mono- or di-glycerides), preservatives, binders, fragrances, and the like. Lipids suitable for the compositions, especially for infant food or food supplements, are milk fats, plant lipids, such as canola oil, safflower oil, sunflower oil, olive oil, marine oils, etc. or fractions or mixtures thereof comprising suitable fatty acids
25 (polyunsaturated and/or saturated).
Proteins suitable for the compositions especially for infant food or food supplements, include casein, whey, condensed skimmed milk, soy, beef, collagen, corn and other plant proteins or hydrolysed proteins, free amino acids, etc. Preferably proteins comprised in infant food or food supplement compositions are extensively hydrolysed
30 and/or partially hydrolysed to reduce the risk of allergies. The infant food compositions according to the invention preferably comprise all vitamins and minerals essential in the daily or weekly diet in nutritionally significant amounts, such as minimal recommended daily amounts.


WO 2005/110121

PCT/NL200S/000372

The food or food supplement composition may also in one embodiment be made on the basis of (i.e. starting from or comprising) a food base. It may, for example, based on, or comprises, a dairy product, such as a fermented dairy product, including but not limited
5 to milk, yoghurt, a yoghurt-based drink or buttermilk. Such compositions may be prepared in a manner known per se, e.g. by adding an effective amount of polyfructose and GOS or TOS to a suitable food or food base. Other food bases suitable may be plant bases, meat bases and the like.
10 The food or food supplement composition according to the invention may be used either as a treatment and/or prophylacticaily. This is to say that they may be either administered after gastrointestinal problems or diseases have been diagnosed in a subject or, alternatively, prior to the occurrence of symptoms (for example to high risk patients, likely to develop gastrointestinal problems). For example, if symptoms
15 associated with the disease or suboptimal functioning if the large intestine, such as constipation, flatulence, allergies, colics, abdominal pain, abdominal cramps, IBD, IBS are observed, administration of the composition will aid in re-establishing a healthy large intestinal environment or prevent the development of such symptoms.
20 In one embodiment the compositions are administered prophylacticaily, to support the development of a healthy microflora and/or healthy large intestinal environment. A "healthy large intestinal environment" refers to a normal intestinal physiology and activity, especially normal absorption of nutrient, water, resistance of the mucosa to pathogen attachment, colonisation and infection, etc. as can be determined by faecal
25 analysis and gas production. Especially, an optimal physiology and activity is referred to. Any suboptimal functioning of the large intestine results in symptoms as described and can be determined by faecal analysis and/or gas production. Intestinal diseases or disorders resulting from a suboptimal functioning are included herein.
30 Pharmaceutical compositions for the treatment or prophylaxis of intestinal disorders or symptoms of suboptimal intestinal functioning, such as IBD, colitis, IBS and/or increased barrier integrity may comprise additional biologically active ingredients, such as drugs, biologically active proteins or peptides, probiotics, and otiiers.
WO 2005/110121

PCT/NL2005/000372

embodiments described for food or food supplement compositions apply also to pharmaceutical compositions.
The compositions according to the invention may be in any dosage form, such as
5 liquid, solid, semi-solid, tablets, drinks, powders, etc., depending on the method of administration. Administration to a subject is preferably oral, although for some uses rectal or tube feeding (with a tube directly entering the stomach, duodenum, or small intestine or large intestine) may be suitable.
10 It is a further embodiment of the invention to provide a method for the manufacture of a composition according to the invention by adding a synergistically effective amount of GOS (or TOS) and polyfructose to a suitable composition base, as described above.
The following non-limiting Examples describe the synergistic effect of GOS and
15 polyfructose. Unless stated otherwise, die practice of the invention will employ standard conventional methods of molecular biology, pharmacology, immunology, virology, microbiology or biochemistry. Such techniques are described in Sambrook and Russell (2001) Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, NY, in Volumes 1 and 2 of Ausubel et al. (1994)
20 Current Protocols in Molecular Biology, Current Protocols, USA and Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, Pa., 17th ed. (1985), Microbiology: A Laboratory Manual (6th Edition) by James Cappuccino, Laboratory Methods in Food Microbiology (3rd edition) by W. Harrigan (Author) Academic Press, all incorporated herein by reference.
25
Figure Legends
Figure 1
Formation of acetate, propionate and butyrate after 48 h in vitro fermentation of TOS,
Inulin, a mixture of TOS/Inulin 9/1 and a mixture of oligofructose and inulin 1/1 by
30 fresh faeces obtained from babies. Figure 2
Relative amounts of acetate, propionate and butyrate formed after 48 h in vitro fermentation of TOS, Inulin, a mixture of TOS/Inulin 9/1 and a mixture of


WO 2005/110121

PCT/NL2005/000372

oligofructose and inulin 1/1 by fresh faeces obtained from babies. The sum of acetate
plus propionate plus butyrate formed was set at 100 % for each of the fibre tested.
Figure 3
Formation of gas after 48 h in vitro fermentation of TOS, Inulin, a mixture of
5 TOS/Inulin 9/1 and a mixture of oligofructose and inulin 1/1 by fresh faeces obtained
from babies. The amount of gas formed (ml was related to the amount of total SCFA
formed (in mmol per g fibre)
Figure 4
Effects of mixtures of SCFA (acteate/propionate/butyrate in a ratio of 90/5/5 on a molar 10 basis) and of L-lactate.
Figure 4A: Effect of 0,0.1,0.5,1 and 4 mM of the SCFA mixture or L-lactate on muc-
2 expression in a CCD18/T84 co-culture (n=6). Error bars show the SEM. The increase
at 1 and 4 mM SCFA mixture and 0.5,1 and 4 mM L-lactate is statistically significant.
Figure 4B: Effect of 0, 50, 100, 250 and 500 uM SCFA mixture or L-lactate on the 15 spontaneous PGEl and PGE2 response in CCD18 cells (n=7). Error bars show the
SEM. The increase of PGEl at 100, 250 and 500 uM SCFA mixture and 100 uM L-
lactate is statistically significant The increase of PGE2 at 100, 250 and 500 uM SCFA
mixture and 250 uM L-lactate is statistically significant (PO.05)
Figure 5 20 Effects of sodium acetate and sodium L-lactate on the spontaneous contraction in the
distal and proximal part of the colon. The blanc (set to a tension of 1 g) is 0%. The
tension after addition of 40 mM KC1 was set to 100%.
Examples 25 Example 1
In vitro fermentation studies show synergistic effects on fermentation patterns
1.1 Materials and methods Microorganisms 30 Microorganisms were obtained from fresh faeces from bottle fed babies. Fresh faecal material from babies ranging 1 to 4 month of age was pooled and put into preservative medium within 2 h.


WO 2005/110121 PCT/NL2005/000372

Compositions/Substrate
As substrate either prebiotics (TOS; TOS (from VivinalGOS, Borculo Domo Ingredients, The Netherlands) and inulin (raftilinHP from Orafti, Belgium)mixture in a 9/1 (w/w) ratio; inulin; oligofructose and inulin mixture in a 1/1 (w/w) ratio, or none
5 (blanc) was used. Media
McBain & MacFarlane medium: Buffered peptone water 3.0 g/l, yeast extract 2.5 g/l. mucin (brush borders) 0.8 g/l, tryptone 3.0 g/l, L-Cysteine-HCl 0.4 g/l, bile salts 0.05 g/l, K2HP04.3H20 2.6 g/l, NaHC03 0.2 g/l, NaCl 4.5 g/l, MgS04.7H20 0.5 g/l, CaCl2
10 0.228 g/l, FeS04.7H20 0.005 g/l. 500 ml Scott bottles were filled with the medium and sterilised for 15 minutes at 121°C.
Buffered medium: K2HP04.3H20 2.6 g/l, NaHC03 0.2 g/l, NaCl 4.5 g/l, MgS04.7H20, ~ 0.5 g/l, CaCl2 0.228 g/l, FeS04.7H20 0.005 g/l. pH was adjusted to 6.3 ± 0.1 with 15 K2HP04 or NaHCCb. 500ml Scott bottles were filled with the medium and sterilised for
15 minutes at 121°C.
Preservative medium: Buffered peptone 20.0 g/l, L-Cysteine-HCl 0.5 g/l, Sodium thioglycollate 0.5 g/l, resazurine tablet 1 per litre. pH was adjusted to 6.7 ± 0.1 with 1
20 M NaOH or HCl. The medium was boiled in microwave. 30 ml serum bottles were filled with 25 ml medium and sterilised for 15 minutes at 121°C.
The fresh faeces were mixed with the preservative medium. Fresh faeces can be preserved in this form for several hours at 4°C.
25
Faecal suspension: The preserved solution of faeces was centrifuged at 13,000 rpm for 15 minutes. The supernatant was removed and the faeces was mixed with the McBain & Mac Farlane medium in a weight ratio of 1:5.
30 Fermentation
3.0 ml of the faecal suspension were combined with 85 mg glucose or prebiotic or with no addition (blanc) in a bottle and mix thoroughly. A t=0 sample was withdrawn (0.5 ml). 2.5 ml of the resulting suspension was brought in a dialysis tube in a 60 ml bottle

WO 2005/110121 PCT/NL2005/000372

filled with 60 ml of the buffered medium. The bottle was closed well and incubated at 37°C. Samples were taken from the dialysis tube (0.2 ml) or from the dialysis buffer (1.0 ml) with a hypodermic syringe after 3, 24, and 48 hours and immediately put it on ice to stop fermentation. 5
Determination of the short chain fatty acids and lactate See Example 2. Values were corrected for blanc.
Gas determination
10 At t=3, t=24 and t=48 the gas pressure in the head space of the 60 ml bottle was measured by a gas pressure meter (Druckmessumformer, Econtronic, Germany) by stinging a hypodermic 6 ml syringe through the rubber cap of the bottle and withdrawal of gas from the headspace by this syringe until the gas pressure was 0 bar. The volume in the syringe was the volume of gas formed. Values were corrected for blanc.
15
1.2 Results
In vitro fermentation was carried out using the following samples:
1.) 85mg TOS (from VivinalGOS, Borculo Domo Ingredients, The Netherlands)
2.) 85 mg inulin (RaftilinHP, from Orafti, Belgium)
20 3.) 85 mg TOS/inulin with a ratio of TOS/inulin of 9/1 (w/w) and
4.) 85 mg OF (raftiloseP95, from Orafti, BelgiumVinulin (raftilinHP) in a ratio of OF/inulinofl/l(w/w).
Total amount of SCFA produced 25 Results are shown in Figure 1. Figure 1 shows tiiat the mixture of TOS/Inulin resulted in a significantly higher amount of SCFA per g fibre than the single components, but also higher than the mixture of oligofructose (OF) and inulin. Also tested were 85 mg TOS/inuline in a ratio of 1/1 (data not shown), which also provided a synergistic effect.
30 L- and D-lactate production
L-and D-lactate could only be determined at t=3. Table 1 shows the metabolic end products formed at that time point.

WO 2005/110121 PCT/NL2005/000372
Table 1 - metabolic end-products (mmol/g fibre) formed after 3 hours in vitro fermentation

Acetate Propionate Butyrate L-lactate D-lactate
5 TOS 0.23 0 0 0.14 0.03
Inulin 0 0 0 0.00 0.00
TOS/Inulin 0.40 0 0 0.17 0.04
OF/Inulin 0.30 0 0 0.04 0.02
10 Again a synergistic higher formation of lactate is observed for the mixture TOS/Inulin compared to the single components TOS and Inulin. Compared to the mixture with OF and Inulin the percentage lactate (based on total acids) and ratio L-/D- lactate is higher in the TOS/Inulin mixture.
15 Relative amounts of SCFA
Figure 2 shows the pattern of fermentation products after 48 h. The mixture of TOS/inulin shows a significantly higher percentage of acetate than the single components, which is also higher than for the mixture of oligofructose (OF) and Inulin. Faeces of breast fed babies show a high percentage of acetate, so the mixture of
20 TOS/Inulin results in a pattern of fermentation products which most resembles that of breast fed babies.
Gas formation
Results are shown in Figure 3. Regarding the formation of gas, TOS and the mixture
25 TOS/Inulin form the lowest amount of gas per mmol SCFA formed. Inulin and the mixture of OF/inulin show a much higher amount of gas formation. Per mmol SCFA formed the amount of gas is lowest in the TOS/inulin mixture.
Kinetics of SCFA formation 30 Table 2 shows the kinetics of SCFA formation. The combination of TOS/inulin still shows a high SCFA formation between 24 and 48 h, indicating that in the distal part of the colon still SCFA is formed and having a beneficial effect on the colon permeability, mucus formation and anti-pathogenic effects etc. Also in the first 3 h the highest


WO 2005/110121

PCT/NL2005/000372

amount of SCFA is formed, as is the case with human milk oligosaccharides (data not shown). A fast fermentation at the beginning of the colon is of importance because of the antipathogenic effects.
5 Table 2: kinetics of SCFA formation (mmol) SCFA (blanc corrected)

Time interval (hours)
Prebiotics 0-3 hrs 3-24 hrs 24-48 hrs
TOS 0.23 3.85 0.13
TOS/inulin HP 0.40 4.49 0.24
Inulin HP 0.00 3.05 0.05
OF/Inulin HP 0.11 4.26 0.00
OF = oligofructose
Example 2
Clinical study with TOS/inulin: A relative increase of acetate and relative decrease of 10 butvrate is not correlated with an increase of Bifidobacteria. TOS and Inulin have a synergistic effect.
2.1 Materials and methods
63 pregnant woman who had decided to breast-feed and 57 who chose not to, were
15 recruited during their last trimester of pregnancy. Infants with normal birth weight, no congenital abnormality, congenital disease or gastrointestinal disease were enrolled within 3 days after delivery. The study was approved by the ethical committee of the Medical Center, St. Radboud, Nijmegen, The Netherlands. Written informed consent was obtained from the parents before enrolment in the study.
20 Infants of mothers who had decided not to breast-feed, were randomly and double blindly allocated to one of two formula groups (OSF, SF). The standard formula group (SF; n=19 received a regular, non-supplemented infant formula (Nutrilon I, Nutricia, The Netherlands). The main compositional data of the standard formula at standard dilution of 131 g/l are given in Table 3. The prebiotic formula group (OSF; n=19)
2S received the same standard infant formula supplemented with a mixture of 6 g/l transgalacto-oligosaccharides (TOS; Vivinal GOS, Borculo Domo Ingredients, Zwolle, The Netherlands) and inulin (PF; RaftilineHP, Orafti active food ingredient, Tienen,


WO 2005/110121

PCT/NL2005/000372

Belgium). The mixture comprised 90% TOS and 10% inulin (polyfructose). The study formulas were fed ad libitum during the study period. Mothers who decided to breast feed were stimulated to continue breast feeding during the course of the study and were supported by a lactation consultant when needed. At termination of breast feeding their
5 infants received one of two formulae. Compliance was assessed by counting the number of unused formula tins during each visit and comparing the amount of consumed formula with the recorded food intake.
Table 3: Composition of the standard formula per litre

Energy kcal 670
Protein g 14
Casein/whey ratio 40/60
Fat g 35
Total carbohydrates g 75
Lactose g 75
Minerals
Calcium mg 540
Phosphorus mg 270
Magnesium mg 50
Sodium mg 190
Potassium mg 680
Chloride mg 430
Iron mg 5
Zinc mg 5
10
Questionnaires
Demographic, clinical and anthropometrical data of the mother are collected prior to delivery. Information on delivery was obtained from the mothers at day 5 after delivery. Information of the infants' food intake, formula tolerance, stool
15 characteristics, health and anthropometrics was obtained from questionnaires at postnatal day 5,10,28 and once every 4 weeks thereafter until the end of the study.

WO 2005/110121

PCT/NL2005/000372

Faecal samples
Parents were asked to take faecal samples from their infants, at postnatal day 5, 10, 28 and once every 4 weeks diereafter. The samples were taken from the diaper, as soon as possible after defecation, collected in faeces containers (Greiner Labortechnik, the
5 Netherlands) and stored immediately at -20°C by the parent and transported in a portable freezer to the laboratory by the investigators.
Preparation of faecal samples:
For the determination of SCFA, 1 gram of the samples was thawed in ice water diluted
10 l0x in MilliQ and homogenised for 10 minutes using a stomacher (IUL Instruments, Barcelona, Spain). 350 ul homogenised faeces was mixed with 200 ul 5% (v/v) formic acid, 100 ul 1.25 g/1 2-ethylbutyric acid (Sigma-Aldrich, Zwijndrecht, The Netherlands) and 350 ul MilliQ. The samples were centrifuged for 5 minutes at 14,000 rpm to remove large particles and the supernatant was stored at -20°C. For the FISH
15 analysis and lactic acid measurements, the samples were thawed in ice water, diluted lOx (w/v) in phosphate buffered saline, pH 7.4 (PBS) and homogenized for 10 minutes using a stomacher. The homogenised faeces were stored at -20°C.
Fluorescence in situ hybridisation
20 FISH analysis was performed as described (Langendijk et al, 1995, Appl. Environ. Microbiol. 61:3069-3075.) with some slight modifications. Paraformaldehyde fixed samples were applied to gelatin coated glass slides (PTFE coated 8-wells [1 cm2/well] object slides, CBN labsuppliers, Drachten, The Netherlands) and air-dried. The dried samples were dehydrated in 96% ethanol for 10 minutes. Hybridisation buffer (20 mm
25 Tris-HCl, 0.9 M NaCl, 0.1% SDS [pH 7.1[) wit 10 ng/1 Cy3 Labeled Bifidobacterium specific probe Bifl64mod (5'-CAT CCG GYA TTA CCA CCC), was preheated and added to the dried samples. Bif 164 mod is modified version of probe S-G-Bif-a-0164-a-A-18 ((Langendijk et al, 1995, Appl. Environ. Microbiol. 61:3069-3075.). The slides were incubated overnight in a dark moist chamber at 50°C. After hybridisation the
30 slides were washed for 30 minutes in 50 ml preheated washing buffer (20 mM Tris-HCl, 0.9 M NaCl [pH 7.2]) and briefly rinsed in MilliQ. For staining all bacteria, the samples were incubated with 0.25 ng/1 4',6-diamidino-2-phenylindole (DAPI) in PBS for 5 minutes at room temperature. After DAPI staining the slides were briefly rinsed in


WO 2005/110121

PCT/NL2005/000372

MilliQ, dried, mounted with Vectashield (Vector Laboratories, Burlingame, CA, U.S.A.) and covered wim a coverslip. The slides were automatically analysed using an Olympus AX70 epifluorescence microscope with automated image analysis software (Analysis 3.2, Soft Imaging Systems GmbH, Mtinster, Germany). The percentage of
-5 bifidobacteria per sample was determined by analysing 25 randomly chosen microscopic positions. At each position the percentage of bifidobacteria was determined by counting all cells with a DAPI filter set (SP 100, Chroma Technology Corp., Brattleboro, U.S.A.) and counting all bifidobacteria using a Cy3 filter set (41007, Chroma Technology, Brattleboro, U.S.A.).
10
Short chain fatty acids analysis
The short chain fatty acids (SCFA) acetic, propionic, n-butyric, iso-butyric and n-valeric acids were quantitatively determined by a Varian 3800 gas chromatograph (GC) (Varian Inc., Walnut Creek, U.S.A.) equipped with a flame iomsation detector. 0.5 ul
15 of the sample was injected at 80°C in the column (Stabilwax, 15 x 0.53 mm, film thickness 1.00 urn, Restek Co., U.S.A.) using helium as a carrier gas (3.0 psi). After injection of the sample, the oven was heated to 160°C at a speed of 16 °C/min, followed by heating to 220°C at a speed of 20 °C/min and finally maintained at a temperature of 220°C for 1.5 minutes. The temperature of the injector and detector was 200°C. 2-
20 ethylbytyric acid was used as an internal standard.
Lactate analysis
Homogenised faeces was thawed on ice and centrifuged for 5 minutes ant 14,000 rpm 100 ul supernatant was heated for 10 minutes at 100°C to inactivate all enzymes.
25 Lactate was determined enzymatically, using a L-lactate acid detection kit with D- and L-lactate-dehydrogenase (Boehringer Mannheim, Mannheim, Germany). Lactate was only determined in those faecal samples which were large enough.
pH analysis
30 After storage at -20°C, faecal samples were thawed and the pH was directly measured In the faeces at room temperature using a Handylab pH meter (Scott Glas, Mainz, Germany) equipped with an Inlab 423 pH electrode (Mettler-Toledo, Columbo, U.S.A.)

WO 2005/110121

PCT/NL2005/000372

Data analysis
Prior to the study, power calculations showed that to detect a difference in percentage of bifidobacteria between the intervention formula group and the standard formula group of 30% with a SD of 25%, 13 infants per group should be included. Because of
5 an expected drop out of 30% in the formula groups, more infants than calculated were included in the study. Statistical package SPSS (version 11/0) was used for statistical analysis of the results. All values were checked for normality by visual inspection of the normal probability plots. Differences in percentage bifidobacteria, pH, relative amounts of SCFA and lactate between the groups were tested for significance using
10 analysis of variance. In case of a significant difference (p 15 at that time point
2.2 Results
In total, 120 (-pro group infants were included. 57 infants started on formula feeding
directly after birth and were equally divided among the formula groups. Of the 63
20 infants that were fed breast milk directly after birth, 24 switched to formula feeding before the age of 16 weeks and 5 infants dropped out. The characteristics of the study subjects are shown in Table 4. In the formula groups, 9 infants dropped out of the study within the first 16 weeks after birth (4 in the SF, 5 in the OSF group. Reasons for drop out included: colics, suspicion of cow's milk allergy, constipation and practical
25 problems.

WO 2005/110121 PCT/NL2005/000372
Table 4 - Characteristics of study objects

Standard Formula, SF N=19 Prebiotic formula, OSF N=19 Breast milk, BFN=63
Sex Male 5 12 33
Female 14 7 30
Place of birth At home 7 8 40
Hospital 12 11 23
Mode of delivery Vaginal 14 16 59
Caesarean 5 3 4
Birth weight 3600±501 3318±602 3651±601
Faecal bifidobacteria
The percentages of bifidobacteria in faeces at the age of 5 days, 10 days, 4, 8, 12, and 5 16 weeks of the feeding groups are shown in Table 5 and the amounts in Table 5. The OSF group tends to have a higher bifidobacteria % man the SF group from total bacterial count at all ages, but the differences were not statistically different. Unexpectedly, the percentage of Bifidobacteria in breast fed babies was also relatively low and were in line with the formula fed groups. 10 Preliminary data also show an increase in Lactobacilli in the BF and OSF group, but the amounts of Lactobacilli in the faecal flora are at least one order of magnitude lower than the Bifidobacteria, the overall pattern is changes very little.
pH results
1 5 The pH values measured in the faeces of the formula-fed infants are shown in table 6.
Lowest pH was found in infants fed on breast milk. Faecal pH of faeces of infants fed the OSF formula were lower than the SF group (p SCFA results
2 0 The total amount of SCFA in the faeces is shown in Table 5 below.
The percentage of the different SCFA from total SCFA are shown in Table 6. There are no statistically significant differences found in total SCFA concentration between the formula groups. Also the amount of SCFA is comparable to those of the other feeding


WO 2005/110121

PCT/NL2005/000372

groups. However, already after 10 days, differences in the SCFA profiles can be seen between infants fed on OSF or breast milk compared to infants fed on standard formula. Infants fed the formula containing GOS and polyfructose and fed breast milk, have higher percentages of acetate and lower percentages of propionate, butyrate, iC4-6 5 SCFA when compared to infants fed the standard formula.
Lactate results
The concentrations lactate (mmol/kg faeces) of all groups are shown in Table 5.
Already from S days of age, the OS formula (not sign.) and the groups of breast milk
10 have higher amounts of lactate compared to the standard formula group. The relative amount of lactate (as a percentage of the sum of SCFA and lactate) is highest in breast fed babies and lowest in standard formula fed babies. Babies fed a formula containing TOS/inulin have an intermediate relative amount of acetate. The percentage of lactate in OSF fed babies at 16 weeks (relative to total acids) significantly differs from that of
15 SF babies.

WO 2005/110121

PCT/NL2005/000372

Table 5 - Concentration of lactate and total SCFA (mmol/kg faeces) and Bifidobacteria (*1.10,3/kg faeces) pH between birth and 16 weeks of age. Mean ± SEM. Except for pH, no statistically differences were found.

Lactate SCFA pH Bifidobacteria
5 days SF 13.5±7.7 54.7+12.6 5.93+0.15 0.58±0.49
OSF 10.7+4.3 56.5±7.7 5.49+0.15 1.20+2.24
BF 13.3±2.8 48.7+4.4 5.27+0.07 0.47±0.39
10 days SF 4.6+3.0 62.0+7.9 6.88+0.15 0.96±0.83
OSF 9.7±3.6 62.3+7.2 5.95+0.20 1.10+0.99
BF 15.1±3.2 54.7±4.9 5.35+0.07 0.48+0.61
4 weeks SF 2.6+1.4 68.3+10.3 6.77+0.21 0.97±0.96
OSF 9.9±3.4 83.1±8.8 5.88+0.18* 1.20+0.55
BF 22.8±4.4 59.8+4.8 5.45+0.12 0.56+0.64
8 weeks SF 7.6±6.8 76.5+13.2 6.80+0.20 0.89±0.56
OSF 24.4±5.3 76.0+8.4 5.68+0.18* 1.00+0.52
BF 30.9±5.3 62.8±5.4 5.27+0.15 0.58+0.59
12 weeks SF 14.1+9.4 73.9+11.9 6.88+0.20 0.91±0.80
OSF 18.4+7.0 76.1±12.1 5.60+0.18* 1.30+0.99
BF 42.1±7.1 60.4+4.9 5.29+0.17 1.40+1.38
1 6 weeks SF 1.7±1.2 68.6+14.0 7.09+0.15 1.00+0.80
OSF 18.5±5.7 67.7+11.7 5.60+0.20* 1.30+0.76
BF 45.1+9.0 59.2+6.9 5.68+0.24 0.89+0.78


WO 2005/110121

PCT/NL2005/000372


Table 6 - relative amounts of SCFA (% of total SCFA), lactate (% of total acids), % Bifidobacteria between birth and 16 weeks of age.

Day/week Acetate Propionate Butyrate Sum iC4-C5 %Bifidob acteria lactate
5d SF 84.3±3.4 12.9±3.2 1.7±0.5 1.1±0.4 45±3.6 13.8±18.5
OSF 85.8+5.1 12.0±4.7 0.5±0.5 1.7±0.7 50±8.6 8.7±13.3
BF 89.5±1.8 7.0±1.5 1.6±0.4 2.0±0.4 54±4.1 12.5±14.0
lOd SF 70.9±2.0 21.3±2.6 4.6±1.1 3.2±0.5 65±6.0 4.3±10.8
OSF 84±2.4* 13.5±2.3 1.4±0.4* 1.1±0.4 61±6.3 8.2±9.8
BF 89.3±1.9 5.8±1.3 2.3±0.3 2.6±0.4 42±4.1 13.4±13.8
4w SF 71.8±2.8 17.8±3.3 5.0±1.1 5.5±2.6 52±5.4 6.9±16.4
OSF 77.7±2.2 15.4±2.0 5.8±2.2 1.1±0.3 71±4.5 8.4±10.7
BF 91.0*1.8 4.3±1.2 2.6db0.6 2.1±0.4 47±5.4 19.6±17.0
8w SF 74.6±2.9 16.4±2.0 6.1±1.2 2.9±0.7 50tt6.3 3.5±9.9
OSF 83.5±2.7 11.4±2.1 3.7±1.2 1.4db0.4 64±4.1 17.7±15.2
BF 91.2±1.6 5.4±1.4 1.9±0.5 1.6±0.3 41±4.5 21.7±13.4
12w SF 73.9±2.9 17.8±3.3 5.0fcl.l 3.2±0.5 56±5.4 5.4±11.9
OSF 86.5±2.1 11.2±1.8 1.2±0.3* 1.0±0.4 60±5.0 13.6±13.2
BF 86.1±3.3 7.5±2.2 3.0±0.7 3.5±0.8 59±4.5 30.2±16.3
16w SF 69.9±3.9 19.6±2.7 5.6±0.9 4.9±0.8 52±6.3 0.6±0.9
OSF 82.2±5.3 14.3±4.9 2.1db0.5* 1.5±0.4* 69±7.7 16.4±12.0*
BF 89.7±2.7 6.4±2.1 1.6±0.4 2.2±0.5 47±6.3 35.6±20.4
P The above demonstrates that in faeces of infants fed with this combination of GOS and polyfructose the pH is lowered, that more lactate is formed, and that an acid (acetate and lactate) pattern is formed which is more similar to that of breast fed babies and that 10 this effect cannot be attributed to the quantitative increase of Bifidobacteria.


WO 2005/110121 PCT/NL2005/000372
Example 3 - Beneficial effects of lactate and SCFA mixture on Muc-2. PGEl and PGE2 expression.
3.1 Material and Methods
5 The effect of lactate and a SCFA mixture was analysed as described in Willemsen, LEM, Koetsier MA, van Deventer SJH, van Tol EAF (2003), Gut 52:1442-1447, with the following modifications: Lactate and a mixture of acetate/propionate/butyrate 90/5/5 was tested. For the mucus production experiments a co-culture of CCD18 and T84 cells was used, whereas for the PGEl and PGE2 production experiments a
10 monoculture of CCD18 cells was used.
3.2 Results
SCFA, in a mixture of 90/5/5 (acetate/propionate/butyrate), and L-lactate dose dependency induces MUC-2 expression in a co-culture of CCD 18 and T84 cells as can
15 be seen in Figure 4A. Also the concentration of PGEl and PGE2 increases in CCD 18 cells as can be seen in Figure 4B. At higher concentrations of the added organic acids the increases reaches statistically significance.
Example 4: Effect of lactate on colon contraction
20
4.1 Material and Methods
Male Wistar rats (CKP/Harlan, Wageningen/Horst, Netherlands) were housed under conditions of controlled temperature and light cycle and were provided free access to food pellets and water. Animals were anaesthetised by a mixture of N2O, O2 and
25 isofluran, the abdomen was opened and the colon was removed immediately. The tissue was placed in Krebs-Henseleit buffer pH 7.4 (composition in mM: 118.0 NaCl, 4.75 KC1,1.18 MgS04, 2.5 CaCl2,10 glucose, 1.17 KH2PO4 and 24.9 NaHC03). The colon was cut into a distal and a proximal portion and was rinsed with Krebs-Henseleit buffer while gently squeezing out faecal content. To approximate in vivo
30 conditions as closely as possible, 1 cm fully intact segments were attached longitudinally to an isometric force transducer (F30 type 372, HSE, Germany) in 20 ml water-jacketed (37°C) organ baths (Schuler, HSE, Germany) containing Krebs-Henseleit buffer gassed continuously with 95% 02-5% CO2. The segments were

WO 2005/110121 PCT/NL2005/000372
gradually stretched to a resting tension of 1 g and allowed to equilibrate for 45 minutes with intermittent washings. The tensions of me segments in rest and in response to different stimuli were amplified by a transducer amplifier module (HSE, Germany) and recorded on a multi-pen recorder (Rikadenki, HSE, Germany).
5 The segments were incubated with 40 mM KCl for 5 minutes and the contractile responses were measured. KCl was washed out by three consecutive washes at 5 minutes intervals. The segments were then incubated with increasing concentrations up to 100 mM of acetate or sodium-L-lactate. The acid solutions were prepared freshly in distilled water. NaOH was added to acetate to obtain a neutral pH. At the end of the
10 incubation with a fatty acid, 40 mM KCl was added to determine whether the contractile response to KCl was influenced by the fatty acid. Before a new incubation the segments were allowed to equilibrate for 45 minutes in fresh Krebs-Henseleit buffer with intermittent washings. The experimental protocol consisted of two proximal and two distal sections of the
15 colon. For data analysis (n=3), the contraction level induced by the stimuli was defined as the tension in g after 5 minutes incubation. Data obtained from identical segments (proximal or distal) were used to calculate a mean value and each segment served as its own control sample.
20 4.2 Results
As can be seen from Figure 5, sodium acetate and especially sodium-L-lactate decrease the tension of tonic contractions. The relaxation effects are higher in the distal part of the colon than in the proximal part of the colon. Also the number of spontaneous contractions, the phasic contractions, decrease in the
25 proximal part of the colon upon addition of the sodium acetate and sodium-L-lactate, whereas no effects are observed in the distal part of the colon.
In the proximal part of the colon the tonic contractions as a response to KCl, however, are comparable in the presence or absence of 25 mM sodium actetate or sodium L-lactate. At higher concentrations a significant relaxation is observed even after addition
30 of KCl.

WE CLAIM:
1. A synergistic composition comprising of galacto- oligosaccharides and polyfructose wherein the amount of galacto- oligosaccharides: polyfructose has a ratio of3:97to97:3.
2. A composition as claimed in claim 1, wherein the preferable ratio of galacto-oligosaccharides and polyfructose is 5:95 to 95:5.
3. A composition as claimed in claim 2, wherein the most preferable ratio of galacto- oligosaccharides and polyfructose is 90:10 to 45:55.
4. A composition as claimed in claim 1, wherein the composition optionally comprises of pharmaceutically acceptable excipients.
5. A composition claimed in claim 1, wherein oligosaccharides have a chain length of less than 10 units.
6. A composition as claimed as claim 1, wherein the galacto- oligosaccharide is transgalacto-oligosaccharide and/or the polyfructose is inulin.
7. A composition as claimed as claim 1, wherein the polyfructose is inulin with an average degree of polymerization of 20 or above.
8. A composition as claimed as claim 1, wherein said composition is suitable for decreasing the faecal and/or intestinal pH to below pH 6, preferably to pH 5.75 or less, and wherein said composition is suitable for oral administration to an infant.
9. A composition as claimed as claim 1, wherein said composition is suitable for increasing the intestinal and/or faecal lactate to above about 10 mmol/kg faeces, and wherein said composition is suitable for oral administration to an infant.
10. A composition as claimed as claim 1, wherein said composition is suitable for increasing the intestinal and/or faecal acetate to above about 85% of the total SCFA.
-40-

11. A composition as claimed as claim 1, wherein said composition is suitable for decreasing the sum of intestinal and/or faecal butyrate, isobutyrate, valerate and isovalerate to below 7% of total SCFA.
12. A composition as claimed in claim 1, wherein the wherein the effective dosage of GOS and polyfructose ranges from 1 -30g/day.
13. A composition as claimed in claim 11, wherein the preferable effective dosage is 2 to l0g/day.
14. A composition as claimed in claim 1, wherein the dosage form is selected form the group comprising of liquid, solid, semi-solid, tablets, drinks and powders.
15. A composition as claimed in claim 1, wherein the composition is useful against abdominal bloating, gas formation, abdominal pain and/or flatulence.
16. A composition as claimed in claim 1, wherein the composition is useful against allergy, eczema or atopic diseases.
17. A composition as claimed in claim 1, wherein the composition is useful for the relaxation of contractions of the colon, preferably the tonic and/or phasic contractions.
18. A composition as claimed in claim 1, wherein the composition is useful against irritable bowel syndrome or inflammatory bowel disease.
19. A composition as claimed in claim 1, wherein the composition is useful for increasing intestinal barrier functioning and/or mucus production of the large intestine.
20. A composition as claimed in claim 1, wherein intestinal and/or faecal short chain fatty acid levels are increased, intestinal and/or faecal acetate levels relative to total short chain fatty acids are increased, intestinal lactate levels are increased, intestinal and/or faecal pH is decreased, the sum of intestinal and/or faecal butyrate, isobutyrate, valerate and/or isovalerate relative to total short chain fatty acids is
-41-

decreased and/or - intestinal gas production is decreased, without having a significant effect on the total and/or relative number of intestinal bifidobacteria.
21. A composition as claimed in claim 1, wherein the composition promotes the production of short chain fatty acids at the beginning, middle and end of the colon.
22. A composition as claimed in claim 1, wherein the composition is a food composition or food supplement composition, preferably an infant nutrition, more preferably an infant or follow-on formula.
23. A synergistic composition substantially as herein described with reference to the foregoing examples and the accompanying drawings.
Dated this 6th day of December, 2006
(RAJ LATHA KOTNI)
OfK&SPARTNERS
AGENT FOR THE APPLICANTS
-42-

ABSTRACT
'SYNERGISM OF GOS AND POLYFRUCTOSE'
The present invention relates to the filed of prebiotics. Provided are uses for compositions comprising synergistically effective amounts of polyfructose and galactooligosaccharides (GOS).
-43-

Documents:

1491-MUMNP-2006-ABSTRACT(6-12-2006).pdf

1491-MUMNP-2006-ABSTRACT(AMENDED)-(25-5-2009).pdf

1491-MUMNP-2006-ABSTRACT(GRANTED)-(18-1-2011).pdf

1491-mumnp-2006-abstract.doc

1491-mumnp-2006-abstract.pdf

1491-MUMNP-2006-CANCELLED PAGES(20-12-2010).pdf

1491-MUMNP-2006-CANCELLED PAGES(25-5-2009).pdf

1491-MUMNP-2006-CLAIMS(25-5-2009).pdf

1491-MUMNP-2006-CLAIMS(AMENDED)-(20-12-2010).pdf

1491-MUMNP-2006-CLAIMS(AMENDED)-(25-5-2009).pdf

1491-MUMNP-2006-CLAIMS(AMENDED)-(4-5-2010).pdf

1491-MUMNP-2006-CLAIMS(COMPLETE)-(6-12-2006).pdf

1491-MUMNP-2006-CLAIMS(GRANTED)-(18-1-2011).pdf

1491-MUMNP-2006-CLAIMS(MARKED COPY)-(20-12-2010).pdf

1491-mumnp-2006-claims.doc

1491-mumnp-2006-claims.pdf

1491-mumnp-2006-correspondance-received.pdf

1491-MUMNP-2006-CORRESPONDENCE(21-9-2010).pdf

1491-MUMNP-2006-CORRESPONDENCE(25-5-2009).pdf

1491-MUMNP-2006-CORRESPONDENCE(7-12-2010).pdf

1491-MUMNP-2006-CORRESPONDENCE(IPO)-(19-1-2011).pdf

1491-MUMNP-2006-CORRESPONDENCE1(7-12-2010).pdf

1491-mumnp-2006-description (complete).pdf

1491-MUMNP-2006-DESCRIPTION(COMPLETE)-(25-5-2009).pdf

1491-MUMNP-2006-DESCRIPTION(COMPLETE)-(6-12-2006).pdf

1491-MUMNP-2006-DESCRIPTION(GRANTED)-(18-1-2011).pdf

1491-MUMNP-2006-DRAWING(25-5-2009).pdf

1491-MUMNP-2006-DRAWING(6-12-2006).pdf

1491-MUMNP-2006-DRAWING(GRANTED)-(18-1-2011).pdf

1491-mumnp-2006-drawings.pdf

1491-MUMNP-2006-FORM 1(19-1-2007).pdf

1491-MUMNP-2006-FORM 1(25-5-2009).pdf

1491-MUMNP-2006-FORM 1(6-12-2006).pdf

1491-MUMNP-2006-FORM 18(8-5-2008).pdf

1491-mumnp-2006-form 2(25-5-2009).pdf

1491-MUMNP-2006-FORM 2(COMPLETE)-(6-12-2006).pdf

1491-MUMNP-2006-FORM 2(GRANTED)-(18-1-2011).pdf

1491-MUMNP-2006-FORM 2(TITLE PAGE)-(25-5-2009).pdf

1491-MUMNP-2006-FORM 2(TITLE PAGE)-(COMPLETE)-(6-12-2006).pdf

1491-MUMNP-2006-FORM 2(TITLE PAGE)-(GRANTED)-(18-1-2011).pdf

1491-MUMNP-2006-FORM 26(19-1-2007).pdf

1491-MUMNP-2006-FORM 26(25-5-2009).pdf

1491-MUMNP-2006-FORM 26(7-12-2010).pdf

1491-MUMNP-2006-FORM 3(25-5-2009).pdf

1491-MUMNP-2006-FORM 3(4-5-2010).pdf

1491-MUMNP-2006-FORM 3(6-12-2006).pdf

1491-MUMNP-2006-FORM 5(25-5-2009).pdf

1491-MUMNP-2006-FORM 5(6-12-2006).pdf

1491-mumnp-2006-form-1.pdf

1491-mumnp-2006-form-2.doc

1491-mumnp-2006-form-2.pdf

1491-mumnp-2006-form-3.pdf

1491-mumnp-2006-form-5.pdf

1491-mumnp-2006-form-pct-ib-306.pdf

1491-mumnp-2006-form-pct-ro-101.pdf

1491-MUMNP-2006-OTHER DOCUMENT(25-5-2009).pdf

1491-mumnp-2006-pct-search report.pdf

1491-MUMNP-2006-PETITION UNDER RULE 137(25-5-2009).pdf

1491-MUMNP-2006-REPLY TO EXAMINATION REPORT(4-5-2010).pdf

1491-MUMNP-2006-REPLY TO HEARING(20-12-2010).pdf

1491-MUMNP-2006-WO INTERNATIONAL PUBLICATION REPORT(6-12-2006).pdf

abstract1.jpg


Patent Number 245415
Indian Patent Application Number 1491/MUMNP/2006
PG Journal Number 03/2011
Publication Date 21-Jan-2011
Grant Date 18-Jan-2011
Date of Filing 06-Dec-2006
Name of Patentee N. V. NUTRICIA
Applicant Address Eerste Stationsstraat 186, 2712 HM Zoetermeer, The Netherlands
Inventors:
# Inventor's Name Inventor's Address
1 SPEELMANS, Gelske Opal 15, NL-6708, LW Wageningen, The Netherlands
2 GOVERS, Maria, Johanna, Adriana, Petronella Bosmeesterkamp 6a, NL-6721 AJ Bennekom, The Netherlands
3 VAN TOL, Eric, Alexander, Franciscus Roemer Visscherstraat 62, NL-6824 MZ Arnhem, The Netherlands
4 KNOL, Jan Johan Beenstraat 10, NL-6708 SM Wageningen, The Netherlands
PCT International Classification Number A23L1/29
PCT International Application Number PCT/NL2005/000372
PCT International Filing date 2005-05-17
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 04076479.7 2004-05-17 EUROPEAN UNION