Title of Invention

GLP-1 ANALOGUES

Abstract The present invention is directed to peptide analogues of glucagon-like peptide-1, the pharmaceutically-acceptable salts thereof, to methods of using such analogues to treat mammals and to pharmaceutical compositions useful therefor comprising said analogues.
Full Text

The present invention is directed to peptide analogues of giucagon-like peptide-1, the pharmaceutically-acceptable salts thereof, to methods of using such analogues to treat mammals and to pharmaceutical compositions useful therefor comprising said analogues.
Giucagon-iike peptide-1 (7-36) amide (GLP-1) (SEQ ID NO: 1) is synthesized in the intestinal L-ceils by tissue-specific post-translational processing of the glucagon precursor pre-proglucagon (Varndell, J.M., et alM J. Histochem Cytochem, 1985:33:1080-6) and is released into the circulation in response to a meal. The plasma concentration of GLP-1 rises from a fasting level of approximately 15 pmoi/L to a peak postprandial level of 40 pmol/L. It has been demonstrated that, for a given rise in plasma glucose concentration, the increase in plasma insulin is approximately threefold greater when glucose is administered orally compared with intravenously (Kreymann, B.t et aL, Lancet 1987:2, 1300-4). This alimentary enhancement of insulin release, known as the incretin effect, is primarily humoral and GLP-1 is now thought to be the most potent physiological incretin in humans. In addition to the insulinotropic effect, GLP-1 suppresses glucagon secretion, delays gastric emptying (Wettergren A., et aL, Dig Dis Sci 1993:38:665-73) and may enhance peripheral glucose disposal (D'Alessio, D.A. et aL, J. Clin Invest 1994:93:2293-6).
In 1994, the therapeutic potential of GLP-1 was suggested following the observation that a single subcutaneous (s/c) dose of GLP-1 could completely normalize postprandial glucose levels in patients with non-insulin-dependent diabetes mellitus (NIDDM) (Gutniak, M.K., et aL, Diabetes Care 1994:17:1039-44). This effect was thought to be mediated both by increased insulin release and by a reduction in glucagon secretion. Furthermore, an intravenous infusion of GLP-1 has been shown to delay postprandial gastric emptying in patients with NIDDM (Williams, B., et aL, J. Clin Endo Metab 1996:81:327-32). Unlike suifonylureas, the insulinotropic action of GLP-1 is dependent on plasma glucose concentration (Holz, G.G, 4th, et aL, Nature 1993:361:362-5). Thus, the loss of GLP-1-mediated insulin release at low piasma glucose concentration protects against severe hypcglycemia.

This combination of actions gives GLP-1 unique potential therapeutic advantages over other agents currently used to treat NIDDM.
Numerous studies have shown that when given to healthy subjects, GLP-1 potently influences glycemic levels as well as insulin and giucagon concentrations (Orskov, C, Diabetologia 35:701-711, 1992; Hoist, JJ., etal., Potential of GLP-1 in diabetes management in Glucagon III, Handbook of Experimental Pharmacology, Lefevbre PJ, Ed. Berlin, Springer Verlag, 1996, p, 311-326), effects which are glucose dependent (Kreymann, B., et al., Lancet ii: 1300-1304, 1987; Weir, G.C., et al., Diabetes 38:338-342, 1989). Moreover, it is also effective in patients with diabetes (Gutniak, M., N. Engi J Med 226:1316-1322, 1992; Nathan, D.M., et al., Diabetes Care 15:270-276, 1992), normalizing blood glucose levels in type 2 diabetic subjects (Nauck, MA, et al., Diagbetologia 36:741-744, 1993), and improving glycemic control in type 1 patients (Creutzfeldt, W.O., et al., Diabetes Care 19:580-586,1996), raising the possibility of its use as a therapeutic agent.
GLP-1 is, however, metabolically unstable, having a plasma half-life (t1/2) of only 1-2 min in vivo. Exogonously administered GLP-1 is also rapidly degraded (Deacon, C.F., et ai., Diabetes 44:1126-1131, 1995). This metabolic instability limits the therapeutic potential of native GLP-1. Hence, there is a need for GLP-1 analogues that are more active or are more metabolically stable than native GLP-1.
Summary of the Invention
in one aspect, the present invention is directed to a compound of formula (I),
A24 _A25 _A26 -A27 ^28 ^29 ^30 ^31 ^32 ^33 ^34 ^35 ^36 ^ R1 (
(I)
wherein
A7 is L-His, Ura, Paa, Pta, D-His, Tyr, 3-Pal, 4-Pal, Hppa, Tma-His, Amp or deleted,
provided that when A7 is Ura, Paa, Pta or Hppa then R2 and R3 are deleted;
A8 is Alaf D-Aia, Aib, Ace, N-Me-Aia, N-Me-D-Ala, Arg or N-Me-Gly;
A9 is Glu, N-Me-Glu, N-Me-Asp or Asp;
A10 is Gly, Ace, Ala, D-Aia, Phe or Aib;
A11 isThrorSer;
A12 is Phe, Ace, Aic, Aib, 3-Pal, 4-Pal, p-Nal, Cha, Trp or X1-Phe;
A13 is Thr or Ser;
A14 is Ser, Thr, Ala or Aib;

A15 is Asp, Ala, D-Asp or Glu;
A16 is Val, D-Val, Ace, Aib, Leu, lie, Tie, Nle, Abu, Ala, D-Ala, Tba or Cha;
A17 is Ser, Ala, D-Ala, Aib, Ace or Thr;
A18 is Ser, Ala, D-Ala, Aib, Ace or Thr;
A19 is Tyr, D-Tyr, Cha, Phe, 3-Pal, 4-Pal, Ace, p-Nal, Amp or X1-Phe;
A20 is Leu, Ala, Ace, Aib, Nle, lie, Cha, Tie, Val, Phe or X1-Phe;
A21 is Glu, Ala or Asp;
A22 is Gly, Ace, Ala, D-Ala, p-Ala or Aib;
A23 is Gin, Asp, Ala, D-Ala, Aib, Ace, Asn or Glu;
A24 is Ala, Aib, Val, Abu, Tie or Ace;
A25 is Ala, Aib, Val, Abu, Tie, Ace, Lys, Arg, hArg, Om, HN-CH((CH2)n-NR10R11)-
C(0) or HN-CH((CH2)e-X3)-C(O);
A26 is Lys, Ala, 3-Pal, 4-Pal, Arg, hArg, Orn, Amp, HN-CH((CH2)n-NR10R11)-C(O) or
HN-CH((CH2)e-X3)-C(O);
A27 is Glu, Ala, D-Ala or Asp;
A28 is Phe, Ala, Pal, p-Nal, X^Phe, Aic, Ace, Aib, Cha or Trp;
A29 is lie, Ace, Aib, Leu, Nle, Cha, Tie, Val, Abu, Ala, Tba or Phe;
A30 is Ala, Aib, Ace or deleted;
A31 is Trp, Ala, p-Nal, 3-Pal, 4-Pal, Phe, Ace, Aib, Cha, Amp or deleted;
A32 is Leu, Ala, Ace, Aib, Nle, lie, Cha, Tie, Phe, X'-Phe, Ala or deleted;
A33 is Val, Ace, Aib, Leu, lie, Tie, Nle, Cha, Ala, Phe, Abu, X1-Phe, Tba, Gaba or
deleted;
A34 is Lys, Arg, hArg, Orn, Amp, Gaba, HN"CH((CH2)n-NR10R11)-C(O), HN-
CH((CH2)e-X3)-C(O) or deleted;
A35 is Gly or deleted;
A36 is L- or D-Arg, D- or L-Lys, D- or L-hArg, D- or L-Orn, Amp, HN-CH((CH2)n-
NR10R1l)-C(O), HN-CH((CH2)e-X3)-C(O) or deleted;
A37 is Gly or deleted;
X1 for each occurrence is independently selected from the group consisting
of (Ci-C6)alkyl, OH and halo;
R1 is OH, NH2, (Ci-C12)alkoxy, or NH-X2-CH2-Z°, wherein X2 is a (Cr
C12)hydrocarbon moiety, and 2° is H, OH, CO2H or CONH2;


occurrence is independently -C(O)-, -NH-C(O)- or -CH2-, and f for each occurrence is independently an integer from 1 to 29; each of R2 and R3 is independently selected from the group consisting of H, (CrC3o)alkyl, (C2-C3o)alkenyl, phenyi(CrC30)alkyI, naphthyl(C1-C3o)alkyi, hydroxy(Ci-C30)alkyl, hydroxy(CrC30)alkenyIt hydroxyphenyl(C1-C30)alkyl) and hydroxynaphthyl(CrC3o)alkyi; or one of R2 and R3 is C(O)X5 in which X5 is (CrC3o)alkyh (C2-C30)alkenyl, phenyKd-C^alkyl, naphthyl(CrC3o)alkyl, hydroxy(Ci-C3o)alkyl, hydroxy(C2-C3o)alkenyI, hydroxyphenyi(CrC3o)alkyl,

where Y is H or OH, r is 0-4 and q is 0-4;
n for each occurrence is independently an integer from 1-5; and
R10 and R11 for each occurrence is each independently H, (D-i-C^alky!, (d-
C30)acyl, (CrC30)alkylsulfonyi, -C((NH)(NH2)) or

R11 is H or (Ci-C30)alkyl; and
R12 is (CrC3o)alkyI; with the proviso that:
(i) at least one amino acid of a compound of formula (I) is not the same as the native sequence of hGLP-1(7-36, or -37)NH2 (SEQ ID NOS: 1, 2) or hGLP-1(7-36, or -37)OH (SEQ ID NOS: 3, 4);

(ii) a compound of formula (!) is not an analogue of hGLP-1(7-36, or -37)NH2 (SEQ ID NOS: 1, 2) or hGLP-1(7-36, or -37)OH (SEQ ID NOS: 3, 4) wherein a single position has been substituted by Ala;
(iii) a compound of formula (I) is not [Lys26(NE-alkanoyl)]hGLP-1(7-36, or -37)-E (SEQ ID NOS: 5-8), [Lys34(NE-alkanoyl)]hGLP-1(7-36, or -37)-E (SEQ ID NOS: 9-12), [Lys2634-bis(NE-alkanoyl)]hGLP-1(7-36, or-37)-E (SEQ ID NOS: 13-16), [Arg26, Lys34(NE-alkanoyl)]hGLP-1 (8-36, or -37)-E (SEQ ID NOS: 17-20). or [Arg2634, Lys36(NE-alkanoyl)]hGLP-1 (7-36, or -37)-E, wherein E is -OH or -NH2 (SEQ ID NOS:
21-24);
(iv) a compound of formula (I) is not Z1-hGLP-1(7-36, or -37)-OH, Z1-hGLP-1(7-36,
or -37)-NH2, where Z1 is selected from the group consisting of
(a) [Arg26] (SEQ ID NOS: 25-28 ), [Arg34] (SEQ ID NOS: 29-32), [Arg26'34] (SEQ ID
NOS: 33-36), [Lys36] (SEQ ID NOS: 37-40), [Arg26, Lys36] (SEQ ID NOS: 41-44),
[Arg34, Lys36] (SEQ ID NOS: 45-48), [D-Lys36], [Arg36] (SEQ ID NOS: 3,4,1,2),
[D-Arg36], [Arg26'34, Lys36] (SEQ ID NOS: 49-52), or [Arg26'36, Lys34] (SEQ ID
NOS: 25-28);
(b) [Asp21] (SEQ ID NOS: 53-56);
(c) at least one of [Aib8] (SEQ ID NOS: 57-60), [D-Ala8] and [Asp9] (SEQ ID NOS:
61-64); and
(d) [Tyr7] (SEQ ID NOS: 65-68), [N-acyl-His7] (SEQ ID NOS: 69-72), [N-alkyl-His7],
[N-acyl-D-His7] (SEQ ID NOS: 73-76) or [N-alkyl-D-His7];
(v) a compound of formula (I) is not a combination of any two of the substitutions listed in groups (a) to (d); and
(vi) a compound of formula (I) is not [N-Me-Ala8]hGLP-1(8-36 or -37) (SEQ ID NOS: 75, 78), [Glu15]hGLP-1(7-36 or -37) (SEQ ID NOS: 79, 80), [Asp21]hGLP-1(7-36 or -37) (SEQ ID NOS: 53, 54)or [Phe31]hGLP-1(7-36 or -37) (SEQ ID NOS: 81, 82).
A preferred compound of the immediately foregoing compound of formula (I) is where A11 is Thr; A13 is Thr; A14 is Ser, Aib or Ala; A17 is Ser, Ala, Aib or D-Ala; A18 is Ser, Ala, Aib or D-Ala; A21 is Glu or Ala; A23 is Gin, Glu, or Ala; and A27 is Glu or Ala; or a pharmaceutically acceptable salt thereof.
A preferred compound of the immediately foregoing compound of formula (I) is where A9 is Glu, N-Me-Glu or N-Me-Asp; A12 is Phe, Ace or Aic; A16 is Val, D-Val, Ace, Aib, Ala, Tie or D-Ala; A19 is Tyr, 3-Pal, 4-Pal or D-Tyr; A20 is Leu, Ace, Cha, Ala or Tie; A24 is Ala, Aib or Ace; A25 is Ala, Aib, Ace, Lys, Arg, hArg, Orn, HN-

CH((CH2)n-NH-R10)-C(O); A28 is Phe or Ala; A29 is He, Ace or Tie; Aou is Ala, Aib or deleted; A31 is Trp, Ala, 3-Pal, 4-Pal or deleted; A32 is Leu, Ace, Cha, Ala or deleted; A33 is Val, Ace, Alat Gaba, Tie or deleted; or a pharmaceuticaliy acceptable salt
thereof.
A preferred compound of the immediately foregoing compound of formula (I) is where A8 is Ala, D-Ala, Aib, A6c, A5c, N-Me-Ala, N-Me-D-Ala or N-Me-Gly; A10 is Gly, Ala, D-Ala or Phe; A12 is Phe, A6c or A5c; A16 is Val, Ala, Tie, A6c, A5c or D-Val; A20 is Leu, A6c, A5c, Cha, Ala or Tie; A22 is Gly, Aib, p-Ala, L-Ala or D-Ala; A24 is Ala or Aib; A29 is lie, A6c, A5c or Tie; A32 is Leu, A6c, A5c, Cha, Ala or deleted; A33 is Val, A6c, A5c, Ala, Gaba, Tie or deleted; or a pharmaceuticaliy acceptable salt thereof.
A preferred compound of the immediately foregoing compound of formula (I) is where R1 is OH or NH2 or a pharmaceuticaliy acceptable salt thereof.
A preferred compound of the immediately foregoing compound of formula (I) or a pharmaceuticaliy acceptable salt thereof is where R2 is H and R3 is (Ci-C30)alky[, (C2-C3o)alkenyl, (CrC30)acyl,

A most preferred compound of formula (I) is where said compound is [D-Ala8, Ala17'22*23'27, 3-Pal19-31, Gaba34]-GLP-1(7-34)NH2; [D-Ala8'23-27, 3. Pal19-31]hGLP-1(7-35)-NH2; [Ala18'2327, 3-Pal19'31]hGLP-1(7-35)-NH2 (SEQ ID NO: 83); [Ala16-2327, 3-Pal19l31]hGLP-1(7-35)-NH2 {SEQ ID NO: 84); [Ala14*23'27, 3-Pal19'31]hGLP-1(7-35)-NH2(SEQ ID NO: 85); [Ala22-23-27, 3-Pal1931]hGLP~1(7-35)-NH2 (SEQ ID NO: 86); [Hppa7]hGLP-1(7-36)-NH2 (SEQ ID NO: 87); [Ala15-23'27, 3-Pai19>3l]hGLP-1(7-35)-NH2(SEQ ID NO: 88); [Ala17*23-27, 3-Pal19t31]hGLP-1(7-35)-NH2 (SEQ ID NO: 89); [Ala22-2327, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2(SEQ ID NO: 90); [A|ai5.22.23.27 3.pa|i9.3if Qaba34]hGLP-1 (7-34)-NH2 (SEQ ID NO: 91); [Ala17'22*23*27, 3-Pal19-31, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 92); [Ala18-22-23'27, 3-Pall931v Gaba34]hGLP-1(7-34)-NH2(SEQ ID NO: 93); [Ala21*22-23'27, 3-Pal19-31, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 94); [Ala22'23'26'27, 3-Pal19-31, Gaba34]hGLP-1(7-34)-NH2

(SEQ ID NO: 95); [Ala22'2327'32, 3-PaI19'31, Gaba>GLP-1(7-34)-NH2 (SEQ ID NO: 96); [Ala22'23'26'27, 3-Pal19'31, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 97); [Ala22'23-27'31, 3-Pal19, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 98); [Ala22'2327'28, 3-Pal1931, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 99); [Ala22'2327-29, 3-Pal19'31, Gaba33]hGLP-1(7-33)-NH2(SEQ ID NO: 100); [Ala23'27, 3-Pal19'31, Gaba33]hGLP-1 (7-33)-NH2(SEQ ID NO: 101); [Ala20'22'23'27, 3-Pal1931, Gaba33]hGLP-1(7-33)-NH2(SEQ ID NO: 102); [Ala22'2327, 3-Pal19'31, Gaba^hGLP-i(7-33)-NH2 (SEQ ID NO: 103); [Ala17'22'23'27, 3-Pal19'31, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 104); [D-Ala10, Ala22'2327, 3-Pal19'31, Gaba33]hGLP-1(7-33)-NH2; [D-Ala8, Ala17'23'27, 3-Pal19'31]hGLP-1(7-34)-NH2; [Ala17'23'27, S-Pal^'^hGLP-i (7-34)-NH2 (SEQ ID NO: 105); [D-Ala6, Ala17, 3-Pal19'31]hGLP-1 (7-34)-NH2; [Ala17'23'27, 3-Pal19'31]hGLP-1(7-34)-NH2(SEQ ID NO: 106); [D-Ala8, Ala17'23'27, 3-Pal19'31, Tle29]hGLP-1(7-34)-NH2; [D-Ala8, Ala17'23'27, 3-Pal19'31, Tle16]hGLP-1(7-34)-NH2; [D-A!a8, Ala17'23'27, 3-Pal19'31, GabaM]hGLP-1(7-34)-NH2; [D-Ala22, Ala17'23'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2; [Aib8, Ala17'23'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 107); [D-Ala8, Ala17'22'23'27, 3-Pal1931]hGLP-1 (7-33)-NH2; [Aib8, Ala17'22'23'27, 3-Pal19'31]hGLP-1(7-33)-NH2 (SEQ ID NO: 108); [Ala17'18'23'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 109); [Ala17'23'27, 3-Pal19'31, Tie33, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 110); [Tie16, Ala17'23'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 111); [N-Me-D-Ala8, Ala17'22'23'27, 3-Pal1931]hGLP-1 (7-33)-NH2; [Aib8, Ala17'18'2"3'27, 3-Pall9'31]hGLP-1 (7-33)-NH2(SEQ ID NO: 112); [Ala17'18'22'23'27, 3-Pal19'31, Tie16'20, GabaM]hGLP-1(7-34)-NH2(SEQ ID NO: 113); [D-Ala8, Ala17'18-22'23-27, 3-Pal1931, Tie16, Gaba34]hGLP-1(7-34)-NH2; [D-Ala8'22, Ala17'18-23-27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2; [D-Ala818, Ala17'22'23'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2; [D-Ala8'17, Ala18'22'23'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2; or [D-Ala8, Ala17'18'22'23'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2; or a pharmaceutically acceptable salt thereof.
Another most preferred compound of formula (I) is wherein said compound is
[Aib8, A6c32]hGLP-1(7-36)NH2(SEQ ID NO: 114); [A6c20'32)hGLP-1 (7-36)-NH2 (SEQ ID NO: 115); [Aib8]hGLP-1(7-36)-NH2(SEQ ID NO: 116); [(Tma-His)7]hGLP-1(7-36)-NH2(SEQ ID NO: 117); [A6c8]hGLP-1(8-36)-NH2 (SEQ ID NO: 118); [A6c8]hGLP-1(7-36)-NH2 (SEQ ID NO: 119); [A6c1M0]hGLP-1(7-36)-NH2 (SEQ ID NO: 120); [A6c29'32]hGLP-1 (7-36)-NH2 (SEQ ID NO: 121); [A6c20, Aib2>GLP-1(7-36)-NH2 (SEQ ID NO: 122); [Aib24, A6c29'32]hGLP-1(7-36)-NH2 (SEQ ID NO: 123);

[A6c16-29'32]hGLP-1(7-36)-NH2(SEQ ID NO: 124); [Ura7]hGLP-1(7-36)-NH2(SEQ ID NO: 125); [Paa7]hGLP-1(7-36)-NH2 (SEQ ID NO: 126); pta7]hGLP-1(7-36)-NH2 (SEQ ID NO: 127); [N-Me-Ala8]hGLP-1 (7-36)-NH2 (SEQ ID NO: 128); [N-Me-AlaB]hGLP-1(8-36)-NH2; (SEQ ID NO. ) [N-Me-D-Ala8]hGLP-1 (7-36)-NH2; [N-Me-D-Ala8]hGLP-1 (8-36)-NH2; [N-Me-Gly8]hGLP-1(7-36)-NH2 (SEQ ID NO: 129); [A5cB]hGLP-1(7-36)-NH2(SEQ ID NO: 130); [N-Me-Glu9]hGLP-1(7-36)-NH2(SEQ ID NO: 131); [A5cB, A6c2°'32]hGLP-1 (7-36)-NH2 (SEQ ID NO: 132); [Aib8, A6c32]hGLP-1(7-36)-NH2 (SEQ ID NO: 133); [AibB'25]hGLP-1 (7-36)-NH2 (SEQ ID NO: 134); [AibB'24]hGLP-1 (7-36)-NH2 (SEQ ID NO: 135); [AibB'3°]hGLP-1(7-36)-NH2 (SEQ ID NO: 136); [Aib8, Cha20]hGLP-1(7-36)-NH2 (SEQ ID NO: 137); [Aib8, Cha32]hGLP-1 (7-36)-NH2 (SEQ ID NO: 138); [Aib8, Glu23]hGLP-1(7-36)-NH2 (SEQ ID NO: 139); [Aib8, A6c20]hGLP-1(7-36)-NH2(SEQ ID NO: 140); [Aib8, A6c2Q32]hGLP-1 (7-36)-NH2 (SEQ ID NO: 141); [Aib8>22]hGLP-1 (7-36)-NH2 (SEQ ID NO: 142); [AibB,p-
Ala22]hGLP-1(7-36)-NH2(SEQ ID NO: 143); [Aib8, Lys25]hGLP-1(7-36)-NH2(SEQ ID NO: 144); [Aib8, A6c12]hGLP-1(7-36)-NH2(SEQ ID NO: 145); [Aib8, A6c29]hGLP-1 (7-36)-NH2 (SEQ ID NO: 146); [Aib8, A6c33]hGLP-1 (7-36)-NH2 (SEQ ID NO: 147); [AibM4]hGLP-1 (7-36)NH2 (SEQ ID NO: 148); [AibB'1B]hGLP-1(7-36)NH2(SEQ ID NO: 149); or [Aib817]hGLP-1(7-36)NH2 (SEQ ID NO: 150); or a pharmaceutically acceptable salt thereof. In another aspect, the present invention provides a pharmaceutical composition comprising an effective amount of a compound of formula (I) as defined hereinabove or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent.
In still another aspect, the present invention provides a method of eliciting an agonist effect from a GLP-1 receptor in a subject in need thereof which comprises administering to said subject an effective amount of a compound of formula (I) as defined hereinabove or a pharmaceutically acceptable salt thereof.
In yet a further aspect, this invention provides a method of treating a disease selected from the group consisting of Type I diabetes, Type II diabetes, obesity, glucagonomas, secretory disorders of the airway, metabolic disorder, arthritis, osteoporosis, central nervous system disease, restenosis and neurodegenerative disease, renal failure, congestive heart failure, nephrotic syndrome, cirrhosis, pulmonary edema, hypertension, and disorders wherein the reduction of food intake is desired, in a subject in need thereof which comprises administering to said subject an effective amount of a compound of formula (I) as

defined hereinabove or a pharmaceutically acceptable sait thereof. Preferred of the foregoing method is where the disease is Type I diabetes or Type II diabetes.
With the exception of the N-terminal amino acid, all abbreviations (e.g. Ala) of amino acids in this disclosure stand for the structure of -NH-CH(R)-CO-, wherein R is the side chain of an amino acid (e.g., CH3 for Ala). For the N-terminal amino acid, the abbreviation stands for the structure of (R2R3)-N-CH(R)-CO-, wherein R is a side chain of an amino acid and R2 and R3 are as defined above except in the case where A7 is Ura, Paa, Pta or Hppa in which case R2 and R3 are not present since Ura, Paa, Pta and Hppa are considered here as des-amino amino acids. The abbreviations: p-Nal, Nle, Cha, Amp, 3-Pal, 4-Pal and Aib stand for the following oc-amino acids: p-(2-naphthyl)alanine, norleucine, cyclohexylalanine, 4-amino-phenylalanine, p-(3-pyridinyl)alanine, p-(4-pyridinyl)alanine and a-aminoisobutyric acid, respectively. Other amino acid definitions are: Ura is urocanic acid; Pta is (4-pyridylthio) acetic acid; Paa is frans-3-(3-pyridyl) acrylic acid; Tma-His is N,N-tetramethylamidino-histidine; N-Me-Ala is N-methyl-alanine; N-Me-Giy is N-methyl-glycine; N-Me-Glu is N-methyl-glutamic acid; Tie is terf-butylglycine; Abu is a-aminobutyric acid; Tba is tert-butylalanine; Orn is omithine; Aib is a-aminoisobutyric acid; p-Aia is P-alanine; Gaba is y-aminobutyric acid; Ava is 5-aminovaleric acid; and Aic is 2-aminoindane-2-carboxylic acid.
What is meant by Ace is an amino acid selected from the group of 1-amino-1-cyclopropanecarboxylic acid (A3c); 1-amino-1-cyclobutanecarboxylic acid (A4c); 1-amino-1-cyclopentanecarboxylic acid (A5c); 1-amino-1-cyclohexanecarboxylic acid (A6c); 1-amino-1-cycloheptanecarboxylic acid (A7c); 1-amino-1-cyclooctanecarboxylic acid (A8c); and 1-amino-1-cyclononanecarboxylic acid (A9c). In the above formula, hydroxyalkyi, hydroxyphenylalkyl, and hydroxynaphthylalkyl may contain 1-4 hydroxy substituents. COX5 stands for -C=OX5. Examples of -C=OX5 include, but are not limited to, acetyl and phenylpropionyl.
What is meant by Lys(NE-alkanoyl) is represented by the following structure:



The full names for other abbreviations used herein are as follows: Boc for t-butyloxycarbonyl, HF for hydrogen fluoride, Fm for forrnyl, Xan for xanthyl, Bzl for benzyl, Tos for tosyl, DNP for 2,4-dinitrophenyl, DMF for dimethylformamide, DCM for dichloromethane, HBTU for 2-(1H-BenzotriazoM-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate, DIEA for diisopropylethylamine, HOAc for acetic acid, TFA for trifluoroacetic acid, 2CIZ for 2-chlorobenzyloxycarbonyl and OcHex for O-cyclohexyl.
A peptide of this invention is also denoted herein by another format, e.g., [A5c8]hGLP-1(7-36)-NH2(SEQ ID NO: 130), with the substituted amino acids from the natural sequence placed between the set of brackets (e.g., A5c8 for Ala8 in

hGLP-1). The abbreviation GLP-1 means giucagon-like peptide-1, and hGLP-1 means human glucagon-like peptide-1. The numbers between the parentheses refer to the number of amino acids present in the peptide (e.g., hGLP-1 (7-36) (SEQ ID NO: 3) is amino acids 7 through 36 of the peptide sequence for human GLP-1). The sequence for hGLP-1 (7-37) (SEQ ID NO: 4) is listed in Mojsov, S., Int. J. Peptide Protein Res,. 40, 1992, pp. 333-342. The designation "NH2" in hGLP-1 (7-36)NH2 (SEQ ID NO: 1) indicates that the C-terminus of the peptide is amidated. hGLP-1 (7-36) (SEQ ID NO: 2) means that the C-terminus is the free acid.
Detailed Description
The peptides of this invention can be prepared by standard solid phase peptide synthesis. See, e.g., Stewart, J.M., et al., Solid Phase Synthesis (Pierce Chemical Co., 2d ed. 1984). The substituents R2 and R3 of the above generic formula can be attached to the free amine of the N-terminal amino acid by standard methods known in the art. For example, alkyl groups, e.g., (C1-C30)alkyl, can be attached using reductive alkylation. Hydroxyalkyl groups, e.g., (Cr C30)hydroxyalkyl, can also be attached using reductive alkylation wherein the free hydroxy group is protected with a t-butyl ester. Acyl groups, e.g., COE1, may be attached by coupling the free acid, e.g., E1COOH, to the free amine of the N-terminal amino acid by mixing the completed resin with 3 molar equivalents of both the free acid and diisopropylcarbodiimide in methylene chloride for one hour. If the free acid contains a free hydroxy group, e.g., p-hydroxyphenylpropionic acid, then the coupling should be performed with an additional 3 molar equivalents of HOBT.
When R1 is NH-X2-CH2- CONH2 (i.e., Z0=CONH2), the synthesis of the peptide starts with BocHN-X2-CH2-COOH which is coupled to the MBHA resin. If R1 is NH-X2-CH2-COOH (i.e., Z°=COOH) the synthesis of the peptide starts with Boc-HN-X2-CH2-COOH which is coupled to PAM resin.
The following describes a synthetic method for making a peptide of this invention, which method is well-known to those skilled in the art. Other methods are also known to those skilled in the art.
Benzhydrylamine-polystyrene resin (Advanced ChemTech, Inc., Louisville, KY) (0.9 g, 0.3 mmole) in the chloride ion form is placed in a reaction vessel of an Advanced ChemTech Peptide Synthesizer Model 200 programmed to perform the following reaction cycle: (a) methylene chloride; (b) 33% trifluoroacetic acid in

methyiene chloride (2 times for 1 and 15 min each); (c) methyiene chloride; (d) ethanol; (e) methyiene chloride; (f) 10% diisopropylethylamine in methyiene chloride.
The neutralized resin is stirred with Boc-protected amino acid which is to be the C-terminai amino acid of the desired peptide to be synthesized and diisopropylcarbodiimide (3 mmole each) in methyiene chloride for 1 hour and the resulting amino acid resin is then cycled through steps (a) through (f) in the above wash program. The other amino acids (3 mmol) of the desired peptide are then coupled successively by the same procedure. The finished peptide is cleaved from the resin by mixing it with anisole (5 ml), dithiothreitol (100 mg) and anhydrous hydrogen fluoride (35 mi) at about 0 °C and stirring it for about 45 min. Excess hydrogen fluoride is evaporated rapidly under a stream of dry nitrogen and free peptide precipitated and washed with ether. The crude peptide is then dissolved in a minimum volume of dilute acetic add and eluted on a column (2.5 x 25 cm) of VYDAC® octadecylsilane silica (10 mM) and eluted with a linear gradient of 20-60% acetonitrile over about 1 h in 0.1% trifluoroacetic acid in water. Fractions are examined by thin layer chromatography and analytical high performance liquid chromatography (40-70% B at 1%/min, solution B is 80% acetonitrile/water containing 0.1% TFA) and pooled to give maximum purity rather than yield. Repeated iyophilization of the solution from water gives the product as a white, fluffy powder.
The product peptide is analyzed by HPLC. Amino acid analysis of an acid hydrolysate of the product peptide can confirm the composition of the peptide. Laser desorption MS is used to determine the molecular weight of the peptide.
The protected amino acid 1-[N-tert-butoxycarbonyl-amino]-1-cyclohexane-carboxyiic acid (Boc-A6c-OH) was synthesized as follows. 19.1 g (0.133 mol) of 1-amino-1-cyclohexanecarboxylic acid (Acros Organics, Fisher Scientific, Pittsburgh, PA) was dissolved in 200 ml of dioxane and 100 ml of water. To it was added 67 ml of 2N NaOH. The solution was cooled in an ice-water bath. 32.0 g (0.147 mol) of di-tert-butyl-dicarbonate was added to this solution. The reaction mixture was stirred overnight at room temperature. Dioxane was then removed under reduced pressure. 200 ml of ethyl acetate was added to the remaining aqueous solution. The mixture was cooled in an ice-water bath. The pH of the aqueous layer was adjusted to about 3 by adding 4N HCI. The organic layer was separated. The aqueous layer was extracted with ethyl acetate (1 x 100 ml). The two organic

layers were combined and washed with water (2 x 150 ml), dried over anhydrous MgSO4, filtered, and concentrated to dryness under reduced pressure. The residue was recrystallized in ethyl acetate/hexanes. 9.2 g of the pure product was obtained. 29% yield.
Boc-A5c-OH was synthesized in an analogous manner to that of Boc-A6c-OH. Other protected Ace amino acids can be prepared in an analogous manner by a person of ordinary skill in the art as enabled by the teachings herein.
In the synthesis of a peptide of this invention containing A5c, A6c and/or Aib, the coupling time is about 2 hrs. for these residues and the residue immediately following them. For the synthesis of [Tma-His7]hGLP-1 (7-36)NH2 (SEQ ID NO: 117), HBTU (2 mmol) and DIEA (1.0 ml) in 4 ml DMF were used to react with the N-terminal free amine of the peptide-resin in the last coupling reaction; the coupling time is about 2 hours.
The full names for the abbreviations used above are as follows: Boc for t-butyloxycarbonyl, HF for hydrogen fluoride, Fm for formyl, Xan for xanthyl, Bzl for benzyl, Tos for tosyl, DNP for 2,4-dinitrophenyi, DMF for dimethylformamide, DCM for dichloromethane, HBTU for 2-(1H-benzotriazoM-yl)-1,1,3I3-tetramethyl uronium hexafluorophosphate, DIEA for diisopropylethylamine, HOAc for acetic acid, TFA for trifluoroacetic acid, 2CIZ for 2-chlorobenzyloxycarbonyI, 2BrZ for 2-bromobenzyloxycarbonyl and OcHex for O-cyclohexyl.
The substituents R2 and R3 of the above generic formula can be attached to the free amine of the N-terminal amino acid by standard methods known in the art. For example, alkyl groups, e.g.t (C.|-C3o)alkyl, may be attached using reductive alkylation. Hydroxyalkyl groups, e.g., (CrC3o)hydroxyalkyl, can also be attached using reductive alkytation wherein the free hydroxy group is protected with a t-butyl 'ester. Acyl groups, e.g., COX1, can be attached by coupling the free acid, e.g., X1COOH, to the free amine of the N-terminal amino acid by mixing the completed resin with 3 molar equivalents of both the free acid and diisopropylcarbodiimide in methylene chloride for about one hour. If the free acid contains a free hydroxy group, e.g., p-hydroxyphenylpropionic acid, then the coupling should be performed with an additional 3 molar equivalents of HOBT.
A compound of the present invention can be tested for activity as a GLP-1 binding compound according to the following procedure. Ceil Culture:

RIN 5F rat insulinoma cells (ATCC-# CRL-2058, American Type Culture Collection, Manassas, VA), expressing the GLP-1 receptor, were cultured in Duibecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum, and maintained at about 37 °C in a humidified atmosphere of 5% CO2/95% air. Radioiigand Binding:
Membranes were prepared for radioiigand binding studies by homogenization of the RIN cells in 20 ml of ice-cold 50 mM Tris-HCI with a Brinkman Polytron (Westbury, NY) (setting 6, 15 sec). The homogenates were washed twice by centrifugation (39,000 g / 10 min), and the final pellets were re-suspended in 50 mM Tris-HCI, containing 2.5 mM MgCI2, 0.1 mg/ml bacitracin (Sigma Chemical, St. Louis, MO), and 0.1% BSA. For assay, aliquots (0.4 ml) were incubated with 0.05 nM [125I]GLP-1(7-36) (SEQ ID NO: 151) (-2200 Ci/mmol, New England Nuclear, Boston, MA), with and without 0.05 ml of unlabeled competing test peptides. After a 100 min incubation (25 °C), the bound [125!]GLP-1(7-36) (SEQ ID NO: 151) was separated from the free by rapid filtration through GF/C filters (Brandei, Gaithersburg, MD), which had been previously soaked in 0.5% poiyethyleneimine. The filters were then washed three times with 5 ml aliquots of ice-cold 50 mM Tris-HCI, and the bound radioactivity trapped on the filters was counted by gamma spectrometry (Wallac LKB, Gaithersburg, MD). Specific binding was defined as the total [125l]GLP-1(7-36) (SEQ ID NO: 151) bound minus that bound in the presence of 1000 nM GLP1(7-36) (SEQ ID NO: 3) (Bachem, Torrence, CA).
The peptides of this invention can be provided in the form of pharmaceutically acceptable salts. Examples of such salts include, but are not limited to, those formed with organic adds (e.g., acetic, lactic, maleic, citric, malic, ascorbic, succinic, benzoic, methanesulfonic, toluenesulfonic, or pamoic acid), inorganic acids (e.g., hydrochloric acid, sulfuric acid, or phosphoric acid), and polymeric acids (e.g., tannic acid, carboxymethyl cellulose, polylactic, polyglycolic, or copolymers of polylactic-glycolic adds). A typical method of making a salt of a peptide of the present invention is well known in the art and can be accomplished by standard methods of salt exchange. Accordingly, the TFA salt of a peptide of the present invention (the TFA salt results from the purification of the peptide by using preparative HPLC, eluting with TFA containing buffer solutions) can be converted into another salt, such as an acetate salt by dissolving the peptide in a small

amount of 0.25 N acetic acid aqueous solution. The resulting solution is applied to a semi-prep HPLC column (Zorbax, 300 SB, C-8). The column is eiuted with (1) 0.1 N ammonium acetate aqueous solution for 0.5 hrs., (2) 0.25N acetic acid aqueous solution 0.5 hrs. and (3) a linear gradient (20% to 100% of solution B over 30 min.) at a flow rate of 4 ml/min (solution A is 0.25N acetic acid aqueous solution; solution B is 0.25N acetic acid in acetonitrile/water, 80:20). The fractions containing the peptide are collected and lyophilized to dryness.
As is well known to those skilled in the art, the known and potential uses of GLP-1 is varied and multitudinous [See, Todd, J.F., et a!., Clinical Science, 1998, 95, pp. 325-329; and Toddt J.F. et al., European Journal of Clinical Investigation, 1997, 27, pp.533-536]. Thus, the administration of the compounds of this invention for purposes of eliciting an agonist effect can have the same effects and uses as GLP-1 itself. These varied uses of GLP-1 may be summarized as follows, treatment of: Type I diabetes, Type II diabetes, obesity, glucagonomas, secretory disorders of the airway, metabolic disorder, arthritis, osteoporosis, central nervous system diseases, restenosis and neurodegenerative diseases. GLP-1 analogues of the present invention that elicit an antagonist effect from a subject can be used for treating the following: hypoglycemia and malabsorption syndrome associated with gastroectomy or small bowel resection.
Accordingly, the present invention includes within its scope pharmaceutical compositions comprising, as an active ingredient, at least one of the compounds of formula (!) in association with a pharmaceutically acceptable carrier or diluent.
The dosage of active ingredient in the compositions of this invention may be varied; however, it is necessary that the amount of the active ingredient be such that a suitable dosage form is obtained. The selected dosage depends upon the desired therapeutic effect, on the route of administration, and on the duration of the treatment. In general, an effective dosage for the activities of this invention is in the range of 1x10'7 to 200 mg/kg/day, preferably 1X10*4 to 100 mg/kg/day, which can be administered as a single dose or divided into multiple doses.
The compounds of this invention can be administered by oral, parenteral (e.g., intramuscular, intraperitoneal, intravenous or subcutaneous injection, or implant), nasal, vaginal, rectal, sublingual or topical routes of administration and can be formulated with pharmaceutically acceptable carriers to provide dosage forms appropriate for each route of administration.

Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules. In such solid dosage forms, the active compound is admixed with at least one inert pharmaceutically acceptable carrier such as sucrose, lactose, or starch. Such dosage forms can also comprise, as is normal practice, additional substances other than such inert diluents, e.g., lubricating agents such as magnesium stearate. in the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, the elixirs containing inert diluents commonly used in the art, such as water. Besides such inert diluents, compositions can also include adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring and perfuming agents.
Preparations according to this invention for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, or emulsions. Examples of non-aqueous solvents or vehicles are propylene glycol, polyethylene glycol, vegetable oils, such as oiive oil and corn oil, gelatin, and injectable organic esters such as ethyl oleate. Such dosage forms may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents. They may be sterilized by, for example, filtration through a bacteria-retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions. They can also be manufactured in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.
Compositions for rectal or vaginal administration are preferably suppositories which may contain, in addition to the active substance, excipients such as coca butter or a suppository wax.
Compositions for nasal or sublingual administration are also prepared with standard excipients well known in the art.
Further, a compound of this invention can be administered in a sustained release composition such as those described in the following patents and patent applications. U.S. Patent No. 5,672,659 teaches sustained release compositions comprising a bioactive agent and a polyester. U.S. Patent No. 5,595,760 teaches sustained release compositions comprising a bioactive agent in a gelable form. U.S.

Application No. 08/929,363 filed September 9, 1997, teaches polymeric sustained release compositions comprising a bioactive agent and chitosan. U.S. Application No. 08/740,778 filed November 1, 1996, teaches sustained release compositions comprising a bioactive agent and cyclodextrin. U.S. Application No. 09/015,394 filed January 29, 1998, teaches absorbable sustained release compositions of a bioactive agent. U.S. Application No. 09/121,653 filed July 23, 1998, teaches a process for making microparticies comprising a therapeutic agent such as a peptide in an oil-in-water process. U.S. Application No. 09/131,472 filed August 10, 1998, teaches complexes comprising a therapeutic agent such as a peptide and a phosphoryiated polymer. U.S. Application No. 09/184,413 filed November 2, 1998, teaches complexes comprising a therapeutic agent such as a peptide and a polymer bearing a non-polymerizable lactone. The teachings of the foregoing patents and applications are incorporated herein by reference.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Also, all publications, patent applications, patents and other references mentioned herein are incorporated by reference.
The following examples describe synthetic methods for making a peptide of this invention, which methods are well-known to those skilled in the art. Other methods are also known to those skilled in the art. The examples are provided for the purpose of illustration and is not meant to limit the scope of the present invention in any manner.
Example 1 [D-Ala8, Ala17'22'23'27, 3-Pal1w\ Gaba34]-GLP-1(7-34)NH2
Benzhydrylamine-polystyrene resin (Advanced ChemTech, Inc. Louisville, KY) (0.9 g, 0.3 mmole) in the chloride ion form was placed in a reaction vessel of an Advanced ChemTech peptide synthesizer Model 200 programmed to perform the following reaction cycle: (a) methylene chloride; (b) 33% trifluoroacetic acid in methylene chloride (2 times for 1 and 15 min each); (c) methylene chloride; (d) ethanol; (e) methyiene chloride; (f) 10% diisopropylethylamine in methylene chloride.
The neutralized resin was stirred with Boc-Gaba and diisopropyicarbodiimide (3 mmole each) in methylene chloride for 1 hour and the resulting amino acid resin was then cycled through steps (a) to (f) in the above wash program. The following amino acids (3 mmole) were then coupled

successively by the same procedure: Boc-Val, Boc-Leu, Boc-3-Pal, Boc-Ala, Boc-lle, Boc-Phe, Boc-Ala, Boc-Lys(2-CI-Z), Boc-Ala, Boc-Ala, Boc-Ala, Boc-Ala, Boc-Glu(Bzl), Boc-Leu, Boc-3-Pal, Boc-Ser(Bzl), Boc-Ata, Boc-Val, Boc-Asp(Bzl), Boc-Ser(Bzl), Boc-Thr(Bzl), Boc-Phe, Boc-Thr(Bzl), Boc-Gly, Boc-Glu(Bzl), Boc-D-Aia, Boc-His(Bom).
The resin with the completed peptide sequence was mixed with anisole (5 ml), dithiothreitol (100 mg) and anhydrous hydrogen fluoride (35 ml) at about 0 °C and stirred for about 45 min. Excess hydrogen fluoride was evaporated rapidly under a stream of dry nitrogen and free peptide precipitated and washed with ether. The crude peptide was then dissolved in a minimum volume of dilute acetic acid and etuted on a column (2.5 x 25 cm) of VYDAC® octadecylsilane silica (10 mM) and eiuted with a linear gradient of 20-60% acetonitrile over about 1 h in 0.1% trifluoroacetic acid in water. Fractions were examined by thin layer chromatography and analytical high performance liquid chromatography (40-70% B at 1%/min; r.t.: 14.1 min) and pooled to give maximum purity rather than yield. Repeated lyophilization of the solution from water gives the product (49.9 mg) as a white, fluffy powder.
The product was found to be homogeneous by HPLC and tic. Amino acid analysis of an acid hydrolysate confirms the composition of the peptide. Laser desorption MS gave a MW of 2880 (Calc. M+H 2873).
Example 2 Synthesis of Peptide Lower-Alkylamides
Peptides are assembled on O-benzyl-polystyrene resin (often referred to as Merrifield resin) using the Boc amino acid protocol described in Example 1, except that Asp and Giu amino acid carboxyl side-chains are protected with an Fm (fluorenylmethyl ester) group. Completed peptide-resins are suspended in dilute DMF solutions of an appropriate lower alkylamine (such as ethylamine, propylamine, phenethylamine, 1,2-diaminoethane, etc.) and stirred at about 60 °C (for about 18 hrs) whereupon filtration, removal of solvents under reduced pressure and trituration of cleaved peptide oil with ether gives a solid, protected alkylamide peptide. This is then subjected to HF cleavage to remove additional side chain protecting groups and HPLC purification as described in Example 1.

Examples 3-5
Examples 3-5 can be synthesized substantially according to the procedure described in Example 1 using the appropriate protected amino acids to yield the noted peptides.
Example 3: [Aib8, D-Ala17, Ala16'22'23'27, 3-Pal19'31, Tie16, Gaba34]-GLP-1 (7-34)NH2 Example 4: [Aib8, D-Ala17, Ala22'23'27, 3-Pal19'31, Tle16]-GLP-1 (7-33)NH2 Example 5: [Aib8, D-Ala17, Ala22'23'27, 3-Pal19'31, Tle16'20]-GLP-1(7-33)NH2
Examples 6-51
Examples 6-51 were made substantially according to the procedure described for Example 1 but using the appropriate protected amino acid to yield the noted peptide. MS were obtained by laser desorption MS (NA means not available). Example 6: [D-Ala8'23'27, 3-Pal19'31]hGLP-1 (7-35)-NH2; MS = 2971.0; Calc. MW = 2974.4.
Example 7: [Ala18'23'27, 3-Pal19'31]hGLP-1 (7-35)-NH2 (SEQ ID NO: 83); MS = 2954.4; Calc. MW = 2958.4.
Example 8: [Ala16'23'27, 3-Pal19'31]hGLP-1(7-35)-NH2 (SEQ ID NO: 84); MS = 2943.0; Calc. MW = 2946.3.
Example 9: [Ala14'2327, 3-Pal19'31]hGLP-1(7-35)-NH2 (SEQ ID NO: 85); MS = 2956.0; Calc. MW = 2958.4.
Example 10: [Ala22'2327, 3-Pal19'31]hGLP-1 (7-35)-NH2 (SEQ ID NO: 86); MS = 2981.0; Calc. MW = 2988.4.
Example 11: [Hppa7]hGLP-1 (7-36)-NH2 (SEQ ID NO: 87); MS = NA Example 12: [Ala15'2327, 3-Pal19'31]hGLP-1(7-35)-NH2 (SEQ ID NO: 88); MS = 2928.0; Calc. MW = 2930.4.
Example 13: [Ala17'2327, 3-Pal19'31]hGLP-1 (7-35)-NH2 (SEQ ID NO: 89); MS = 2955.0; Calc. MW = 2958.4.
Example 14: [Ala222327, 3-Pal1931, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 90); MS = 2896.0; Calc. MW = 2888.3.
Example 15: [Ala15'2223-27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 91); MS = 2852.0; Calc. MW = 2844.3.
Example 16: [Ala17'22'2327, 3-Pal1931, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 92); MS = 2880.0; Calc. MW = 2872.3.
Example 17: [Ala18'222327, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 93); MS = 2870.0; Calc. MW = 2872.3.

Example 18: [Ala21'22'23-27, 3-Pa!19'31, Gaba^hGLP-i (7-34)-NH2 (SEQ ID NO: 94);
MS = NA.
Example 19: [Ala22'2326'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 95);
MS = 2832.0; Calc. MW = 2831.2.
Example 20: [Ala22'23-2732, 3-Pal19'31, Gaba^hGLP-i(7-34)-NH2 (SEQ ID NO: 96);
MS = 2855.0; Calc. MW = 2846.2.
Example 21: [Ala22232627, 3-Pal1931, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 97);
MS = 2729.0; Calc. MW = 2732.0.
Example 22: [Ala22'23-2731, 3-Pal19, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 98);
MS = 2711.6; Calc. MW = 2712.0.
Example 23: [Ala2223'27-28, 3-Pal19'31, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 99);
MS = 2712.0; Calc. MW = 2713.0.
Example 24: [Ala22'2327'29,3-Pal19'31, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 100);
MS = 2746.9; Calc. MW = 2747.1.
Example 25: [Ala2327, 3-Pal18'31, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 101); MS
= 2777.0; Calc. MW = 2,775.1.
Example 26: [Ala20222327, 3-Pal1931, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 102);
MS = 2742.0; Calc. MW = 2747.1.
Example 27: [Ala22'23-27, 3-Pal19'31, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 103);
MS = 2786.7; Calc. MW = 2789.1.
Example 28: [Ala17222327, 3-Pal19'31, Gaba33]hGLP-1(7-33)-NH2 (SEQ ID NO: 104);
MS = 2771.0; Calc. MW = 2773.1.
Example 29: [D-Ala10, Ala22-23'27, 3-Pal19'31, Gaba33]hGLP-1 (7-33)-NH2; MS =
2802.0; Calc. MW = 2803.2.
Example 30: [D-Ala8, Ala17-23'27, 3-Pal19'31]hGLP-1(7-34)-NH2; MS = 2905.0; Calc.
MW = 2901.3.
Example 31: [Ala17'2327, S-Pal^^^^hGLP-i(7-34)-NH2 (SEQ ID NO: 105); MS =
2920.0; Calc. MW = 2921.3.
Example 32: [D-Ala8, Ala17, 3-Pal19'31]hGLP-1 (7-34)-NH2; MS = 2908.0 (Na+ salt);
Calc. MW = 2885.3.
Example 33: [Ala172327, 3-Pal1831]hGLP-1 (7-34)-NH2 (SEQ ID NO: 106); MS =
2907.0; Calc. MW = 2901.3.
Example 34: [D-Ala8, Ala17'23'27, 3-Pal1931, Tle29]hGLP-1(7-34)-NH2; MS = 2906.0;
Calc. MW = 2901.3.

Example 35: [D-Ala8, Ala17-23'27, 3-Pal19'31, Tle16]hGLP-1(7-34)-NH2; MS = 2914.0;
Calc. MW = 2915.4.
Example 36: [D-Ala8, Ala172327, 3-Pal19'31, Gaba34]hGLP-1 (7-34)-NH2; MS =
2856.8; Calc. MW = 2858.2.
Example 37: [D-Ala22, Ala17'23'27, 3-Pal19'31, Gaba34]hGLP-1 (7-34)-NH2; MS =
2871.0; Calc. MW = 2872.3.
Example 38: [Aib8, Ala17'23'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO:
107); MS = 2875.0; Calc. MW = 2872.3.
Example 39: [D-Ala8, Ala17'22'23'27, 3-Pal19'31]hGLP-1 (7-33)-NH2; MS = 2786.0;
Calc. MW = 2787.2.
Example 40: [Aib8, Ala17'2223'27, 3-Pal19'31]hGLP-1 (7-33)-NH2 (SEQ ID NO: 108);
MS = 2800.0; Calc. MW = 2801.2.
Example 41: [Ala17'18-23'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2 (SEQ ID NO: 109);
MS = 2842.5; Calc. MW = 2842.2.
Example 42: [Ala17'2327, 3-Pal19'31, Tie33, Gaba34]hGLP-1 (7-34)-NH2 (SEQ ID NO:
110); MS = 2871.0; Calc. MW = 2872.3.
Example 43: [Tie16, Ala17-2327, 3-Pal19'31, Gaba^hGLP-i(7-34)-NH2 (SEQ ID NO:
111); MS = 2870.0; Calc. MW = 2872.3.
Example 44: [N-Me-D-Ala8, Ala17'22-23'27, 3-Pal19'31]hGLP-1 (7-33)-NH2; MS =
2795.0; Calc. MW = 2801.2.
Example 45: [Aib8, Ala1718'22'23'27, 3-Pal1B'31]hGLP-1(7-33)-NH2 (SEQ ID NO: 112);
MS = 2784.2; Calc. MW = 2785.2.
Example 46: [Ala17'18-22'23-27, 3-Pal19'31, Tie16'20, Gaba34]hGLP-1 (7-34)-NH2 (SEQ ID
NO: 113); MS = 2871.9; Calc. MW = 2870.3.
Example 47: [D-Ala8, Ala17'18'22'23-27, 3-Pal19'31, Tie16, Gaba34]hGLP-1 (7-34)-NH2;
MS = 2870.0; Calc. MW = 2870.3.
Example 48: [D-Ala822, Ala1718'23-27, 3-Pal19'31, Gaba^hGLP-1 (7-34)-NH2; MS =
2856.3; Calc. MW = 2856.3.
Example 49: [D-Ala8'18, Ala17'22'23-27, 3-Pa!19'31, Gaba^hGLP-i (7-34)-NH2; MS =
NA.
Example 50: [D-Ala8'17, Ala18'22'23'27, 3-Pal19'31, Gaba^hGLP-i (7-34)-NH2; MS =
NA.
Example 51: [D-Ala8, Ala17'18'22'23'27, 3-Pal19'31, Gaba34]hGLP-1(7-34)-NH2; MS =
2861.6; Calc. MW = 2856.3.

Example 52 [Aib8, A6c32]hGLP-1(7-36)NH2 (SEQ ID NO: 114)
The title peptide was synthesized on an Applied Biosystems (Foster City, CA) model 430A peptide synthesizer which was modified to do accelerated Boc-chemistry solid phase peptide synthesis. See Schnolzer, et al., Int. J. Peptide Protein Res., 40:180 (1992). 4-Methylbenzhydrylamine (MBHA) resin (Peninsula, Belmont, CA) with the substitution of 0.91 mmol/g was used. The Boc amino acids (Bachem, CA, Torrance, CA; Nova Biochem., LaJolla, CA) were used with the following side chain protection: Boc-Ala-OH, Boc-Arg(Tos)-OH, Boc-Asp(OcHex)-OH, Boc-Tyr(2BrZ)-OH, Boc-His(DNP)-OH, Boc-Val-OH, Boc-Leu-OH, Boc-Gly-OH, Boc-Gln-OH, Boc-lle-OH, Boc-Lys(2C!Z)-OH, Boc-Thr(BzI)-OH, Boc-A6c-OH, Ser(Bzl)-OH, Boc-Phe-OH, Boc-Aib-OH, Boc-Glu(OcHex)-OH and Boc-Trp(Fm)-OH. The synthesis was carried out on a 0.20 mmol scale. The Boc groups were removed by treatment with 100% TFA for 2 x 1 min. Boc amino acids (2.5 mmol) were pre-activated with HBTU (2.0 mmol) and DIEA (1.0 mi) in 4 ml of DMF and were coupled without prior neutralization of the peptide-resin TFA salt. Coupling times were about 5 min except for the Boc-Aib-OH and Boc-A6c-OH residues and the following residues, Boc-Trp(Fm)-OH and Boc-His(DNP)-OH wherein the coupling times were about 2 hours.
At the end of the assembly of the peptide chain, the resin was treated with a solution of 20% mercaptoethanol/10% DIEA in DMF for 2 x 30 min to remove the DNP group on the His side chain. The N-terminal Boc group was then removed by treatment with 100% TFA for 2 x 2 min. After neutralization of the peptide-resin with 10% DIEA in DMF (1 x 1 min), the formyl group on the side of the chain of Trp was removed by treatment with a solution of 15% ethanolamine/ 15% water/ 70% DMF for 2 x 30 min. The partially-deprotected peptide-resin was washed with DMF and DCM and dried under reduced pressure. The final cleavage was done by stirring the peptide-resin in 10 ml of HF containing 1 ml of anisoie and dithiothreitol (24 mg) at 0 °C for about 75 min. HF was removed with a flow of nitrogen. The residue was washed with ether (6x10 ml) and extracted with 4N HOAc (6x10 ml).
The peptide mixture in the aqueous extract was purified on a reverse-phase preparative high pressure liquid chromatography (HPLC) using a reverse phase VYDAC® C18 column (Nest Group, Southborough, MA). The column was eluted with a linear gradient (20% to 50% of solution B over 105 min) at a flow rate of 10

ml/min (Solution A = water containing 0.1% TFA; Solution B = acetonitrile containing 0.1% of TFA). Fractions were collected and checked on analytical HPLC. Those containing pure product were combined and lyophilized to dryness. 92 mg of a white solid was obtained. Purity was >99% based on analytical HPLC analysis. Electro-spray mass spectrometer analysis gave the molecular weight at 3324.2 (the calculated molecular weight is 3323.7).
The synthesis of other compounds of the present invention can be carried out in the same manner as described for the synthesis of [Aib8, A6c32]hGLP-1 (7-36)NH2 (SEQ ID NO: 114) in Example 52 above but using the appropriate protected amino acids depending on the desired peptide.
[(Na-HEPES-His)7JhGLP-1(7-36)NH2 (SEQ ID NO; 152) {HEPES is (4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid)} can be synthesized as follows: After assembly of the peptide long chain on MBHA resin (0.20 mmol), the peptide-resin is treated with 100% TFA (2x2 min.) and washed with DMF and DCM. The resin is then neutralized with 10% DIEA in DMF for about 2 min. After washing with DMF and DCM, the resin is treated with 0.23 mmol of 2-chloro-1-ethanesulfonyl chloride and 0.7 mmol of DEA in DMF for about 1 hour. The resin is washed with DMF and DCM and treated with 1.2 mmol of 2-hydroxyethyipiperazine for about 2 hours. The resin is washed with DMF and DCM and treated with different reagents ((1) 20% mercaptoethanol / 10% DIEA in DMF and (2) 15% ethanolamine / 15% water / 70% DMF) to remove the DNP group from the His side chain and formyl group on the Trp side chain as described above before the final HF cleavage of the peptide from the resin.
[(Na-HEPA-His)7]hGLP-1(7-36)NH2 (SEQ ID NO: 153) ([(4-(2-hydroxyethyI)-1-piperazineacety()-His7]hGLP-1(7-36)NH2) can be made substantially according to the procedure described immediately above for making [(Na-HEPES-His)7]hGLP-1(7-36)NH2 (SEQ ID NO: 152) except that 2-bromo-acetic anhydride is used in place of 2-chloro-1-ethanesulfonyl chloride.
Examples 53-90 and 104
Examples 53-90 and 104 were made substantially according to Example 52 but using the appropriate protected amino acid.
Example 53: [A6c20-32]hGLP-1(7-36)-NH2 (SEQ ID NO: 115); MS =3322.3 ; Calc. MW = 3321.7.

Example 54: [Aib8]hGLP-1 (7-36)-NH2 (SEQ ID NO: 116); MS = 3311.7; Calc. MW
= 3311.7.
Example 55: [(Tma-His)7]hGLP-1 (7-36)-NH2 (SEQ ID NO: 117); MS = 3395.9;
Calc. MW = 3396.9.
Example 56: [A6cBlhGLP-1(8-36)-NH2 (SEQ ID NO: 118); MS = 3214.5; Calc.
MW = 3214.7.
Example 57: [A6c8]hGLP-1 (7-36)-NH2 (SEQ ID NO:119); MS = 3351.5; Calc. MW
= 3351.8.
Example 58: [A6c16|2>GLP-1(7-36)-NH2 (SEQ ID NO: 120); MS = 3335.9; Calc.
MW = 3335.8.
Example 59: [A6c29'32]hGLP-1 (7-36)-NH2 (SEQ ID NO: 121); MS = 3321.7; Calc.
MW = 3321.7.
Example 60: [A6c20, Aib24]hGLP-1(7-36)-NH2 (SEQ ID NO: 122); MS = 3323.6;
Calc. MW = 3323.7.
Example 61: [Aifa24, A6c29'32]hGLP-1(7-36)-NH2 (SEQ ID NO: 123); MS = 3335.7;
Calc. MW = 3335.8.
Example 62: [A6c1629'32]hGLP-1(7-36)-NH2 (SEQ ID NO: 124); MS = 3347.7;
Calc. MW = 3347.8.
Example 63: [Ura7]hGLP-1(7-36)-NH2 (SEQ ID NO: 125); MS = 3279.5; Calc.
MW = 3280.7.
Example 64: [Paa7]hGLP-1 (7-36)-NH2 (SEQ ID NO: 126); MS = 3290.9; Calc.
MW = 3291.8.
Example 65: [Pta7]hGLP-1(7-36)-NH2 (SEQ ID NO: 127); MS = 3311.2; Calc. MW
= 3311.8.
Example 66: [N-Me-Ala8]hGLP-1(7-36)-NH2 (SEQ ID NO: 128); MS = 3311.4;
Calc. MW = 3311.7.
Example 67: [N-Me-D-Ala8]hGLP-1(7-36)-NH2; MS = 3311.6; Calc. MW = 3311.7.
Example 68: [N-Me-D-Ala8]hGLP-1 (8-36)-NH2; MS = 3174.0; Calc. MW = 3174.6.
Example 69: [N-Me-GlyB]hGLP-1(7-36)-NH2 (SEQ ID NO: 129); MS = 3297.3;
Calc. MW = 3297.7.
Example 70: [A5cB]hGLP-1(7-36)-NH2 (SEQ ID NO: 130); MS = 3337.3; Calc. MW
= 3337.8.
Example 71: [N-Me-Glu9]hGLP-1(7-36)-NH2 (SEQ ID NO: 131); MS = 3311.4;
Calc. MW = 3311.7.

Example 72: [A5c8, ASc^hGLP-i (7-36)-NH2 (SEQ ID NO: 132); MS = 3361.4;
Calc. MW = 3361.8.
Example 73: [Alb8, A6c32]hGLP-1(7-36)-NH2 (SEQ ID NO: 133); MS = 3323.2;
Calc. MW = 3323.7.
Example 74: [AibB'25]hGLP-1(7-36)-NH2 (SEQ ID NO: 134); MS = 3325.8; Calc.
MW = 3325.7.
Example 75: [AibB'24]hGLP-1(7-36)-NH2 (SEQ ID NO: 135); MS = 3325.8; Calc.
MW = 3325.7.
Example 76: [Aib8'30]hGLP-1(7-36)-NH2 (SEQ ID NO: 136); MS = 3326.1; Calc.
MW = 3325.7.
Example 77: [Aib8, Cha20]hGLP-1(7-36)-NH2 (SEQ ID NO: 137); MS = 3351.8;
Calc. MW = 3351.8.
Example 78: [Aib8, Cha32]hGLP-1 (7-36)-NH2 (SEQ ID NO: 138); MS = 3352.0;
Calc. MW = 3351.8.
Example 79: [Aib8, Glu23]hGLP-1 (7-36)-NH2 (SEQ ID NO: 139); MS = 3311.7;
Calc. MW = 3312.7.
Example 80: [Aib8, A6c20]hGLP-1(7-36)-NH2 (SEQ ID NO: 140); MS = 3323.6;
Calc. MW = 3323.7.
Example 81: [Aib8, A6c2C'32]hGLP-1(7-36)-NH2 (SEQ ID NO: 141); MS = 3335.3;
Calc. MW = 3335.7.
Example 82: [Aib8>22]hGLP-1(7-36)-NH2 (SEQ ID NO: 142); MS = 3339.8; Calc.
MW = 3339.8.
Example 83: [Aib8,p-Ala22]hGLP-1(7-36)-NH2 (SEQ ID NO: 143); MS = 3325.6;
Calc. MW = 3325.8.
Example 84: [Aib8, Lys25]hGLP-1(7-36)-NH2 (SEQ ID NO: 144); MS = 3369.0;
Calc. MW = 3368.8.
Example 85: [Aib8, A6c12]hGLP-1(7-36)-NH2 (SEQ ID NO: 145); MS = 3289.8;
Calc. MW = 3289.7.
Example 86: [Aib8, A6c29]hGLP-1(7-36)-NH2 (SEQ ID NO:146); MS = 3323.9;
Calc. MW = 3323.7.
Example 87: [Aib8, A6c33]hGLP-1(7-36)-NH2 (SEQ ID NO: 147); MS = 3338.0;
Calc. MW = 3337.8.
Example 88: [AibB'14]hGLP-1(7-36)NH2 (SEQ ID NO: 148); MS = 3309.8; Calc.
MW = 3309.7.

Example 89: [Aib8'1s]hGLP-1(7-36)NH2 (SEQ ID NO: 149); MS = 3309.7; Calc.
MW = 3309.7.
Example 90: [AibB>l7]hGLP-1(7-36)NH2 (SEQ ID NO: 150); MS = 3309.4; Calc.
MW = 3309.7.
Example 104: [AibB, D-Arg;26]hGLP-1(7-36)NH2; MS = 3310.7; Calc. MW =
3311.73.
Example 91
[Aib6, A5c33]hGLP-1 (7-36)NH2 (SEQ ID NO: 154)
The title compound can be made substantially according to Example 52 using the appropriate protected amino acids.
Example 92 [Aib6, A6c32, Lys36(NE-tetradecanoyl)]hGLP-1(7-36)NH2 (SEQ ID NO: 155)
The Boc amino acids to be used are the same as those in the synthesis of [Aib8, A6c32]hGLP-1(7-36)NH2 (SEQ ID NO: 114) (Example 52) except that Fmoc-Lys(Boc)-OH is used here for the Lys36(NE-tetradecanoyl) residue. The first amino acid residue is coupled to the resin manually on a shaker. 2.5 mmoi of Fmoc-Lys(Boc)-OH is dissolved in 4 ml of 0.5N HBTU in DMF. To the solution is added 1 mi of D1EA. The mixture is shaken for about 2 min. To the solution is then added 0.2 mmol of MBHA resin (substitution = 0.91 mmol/g). The mixture is shaken for about 1 hr. The resin is washed with DMF and treated with 100% TFA for 2x2 min to remove the Boc protecting group. The resin is washed with DMF. Myristic acid (2.5 mmol) is pre-activated with HBTU (2.0 mmol) and DIEA (1.0 ml) in 4 mi of DMF for 2 min and is coupled to the Fmoc-Lys-resin. The coupling time is about 1 hr. The resin is washed with DMF and treated with 25% piperidine in DMF for 2x20 min to remove the Fmoc protecting group. The resin is washed with DMF and transferred to the reaction vessel of the peptide synthesizer. The remainder of the synthesis and purification procedures of the peptide are the same as those in the synthesis of [Aib8, A6c32]hGLP-1(7-36)NH2.(SEQ ID NO: 114)
The syntheses of other compounds containing Lys(NE-alkanoyl) residue are carried out in an analogous manner as described for the synthesis of [Aibs, A6c32, Lys36(NMetradecanoyl)]hGLP-1(7-36)NH2 SEQ ID NO: 155). Fmoc-Lys(Boc)-OH amino acid is used for the residue of Lys(Ne -alkanoyl) in the peptide, while Boc-Lys(2CIZ)~OH amino acid is used for the residue of Lys. If the Lys(NE-alkanoyl)

residue is not at the C-terminusT the peptide fragment immediately prior to the Lys(Ne-alkanoyl) residue is assembled on the resin on the peptide synthesizer first.
Examples 93-98
Examples 93-98 can be made substantially according to the procedure described for Example 92 using the appropriate amino acids. Example 93: [Aib8, A6c32, Lys36(NMetradecanoyl)]hGLP-1(7-36)NH2 (SEQ ID NO:
155)
Example 94: [Aib8, Arg26'34, A6c32, Lys36(NMetradecanoyl)]hGLP-1(7-36)NH2 (SEQ
ID NO: 156)
Example 95: [Aib8, Arg26, A6c32, Lys34(NE-tetradecanoyI)]hGLP-1(7-36)NH2 (SEQ ID
NO: 157)
Example 96: [Aib6, Lys26(NE-tetradecanoyl), A6c32, Arg34]hGLP-1(7-36)NH2 (SEQ ID
NO: 158)
Example 97: [Aib6, Lys36(NE-octanoyl)]hGLP-1 (7-36)NH2 (SEQ ID NO: 159)
Example 98: [Aib5, A6c20'32, Lys36(NE-octanoyl)]hGLP-1 (7-36)NH2 (SEQ ID NO:
160)
Example 99 [Aib8, Arg26*34, A6c32, Lys36(NE-tetradecanoyl)]hGLP-1(7-36)-OH (SEQ ID NO: 161)
The Boc amino acids to be used are the same as those used in the synthesis of [AibB( A6c32, Lys36(Nc-tetradecanoyl)]hGLP-1(7-36)NH2 (SEQ ID NO: 162) (Example 92). Fmoc-Lys(Boc)-OH (2.5 mmol) is pre-activated with HBTU (2.0 mmol), HOBt (2.0 mmol) and DIEA (2.5 ml) in DMF (4 ml) for about 2 min. This amino acid is coupled to 235 mg of PAM resin (Chem-lmpex, Wood Dale, IL; substitution = 0.85 mmol/g) manually on a shaker. The coupling time is about 8 hrs. The remainder of the synthesis and purification procedures for making the peptide are the same as those described in Example 52.
The syntheses of other analogs of hGLP-1(7-36)-OH (SEQ ID NO: 3) and hGLP-1(7-37)-OH, (SEQ ID NO: 4) which contain Lys(N£-alkanoyl) residue, are carried out in an analogous manner as described for the synthesis of [Aib8, Arg26t34, A6c32, Lys36(NE-tetradecanoyl)]hGLP-1(7-36)-OH (SEQ ID NO: 161). Fmoc-Lys(Boc)-OH amino acid is used for the residue of Lys(NE-alkanoyl) in the peptide, while Boc-l_ys(2CIZ)-OH amino acid is used for the residue of Lys.

Examples 100-103
Examples 100-103 can be made substantially according to the procedure described for Example 99 using the appropriate amino acids. Example 100: [Aib8, Arg26, A6c32, LysM(NMetradecanoyl)]hGLP-1(7-36)-OH (SEQ ID NO: 162)
Example 101: [Aib8, Lys26(NE-tetradecanoyl), A6c32, Arg34]hGLP-1(7-36)-OH (SEQ ID NO: 163)
Example 102: [Aib8, Arg26'34, A6c32, Lys36(NE-tetradecanoyl)]hGLP-1(7-37)-OH (SEQ ID NO: 164)
Example 103: [Aib8, Arg26, A6c32,Lys34(NMetradecanoyl)]hGLP-1(7-37)-OH (SEQ ID NO: 165)







WE CLAIM:
1. A compound of formula (I),
(R*f?y A7 -A* -A* -A* -A11 -A12 -A1S -A14 -A16 «A1€ *A17 -A*8 -A19 -AM -A* -A22 -A23

wherein
A7 is l-Hls, D-His, Tyr, TmaHHts,
A* is Ala, O-Ala, Aib, Ace N4te-Ala, N-Me-D«Ala, Arg or N-Me-Gfy;
Ag is Glu. N-Me-Glu, N-Me-Asp or Asp;
A10 is Gly, Ace, Ate, O-Ala, Phe or Afe;
A^sThrorSer;
A12 is Phe, Ace, Ale. Aib, 3-Faf, 4-Pai, ^Naf, Cha, Trp or X^Phe;
A13isThrorSer;
A14 m Ser, Thr, Ala or Aib;
A15 is Asp, Ala, D-A$p or Glu;
A* is Val, D-Val, Ace, Aib, Leu, lie, He, Nle, Abu, Ala, D-Ata» Tba or Cha;
A17 is Ser, Ala, O-Ala, Aib, Ace at Thr,
A18 Is Ser, Ala, D-Aia, A%>t Ace or Thn
A1* Is Tyr, D-Tyr, Chat Phe, 3-Pal, 4-Pal( Ace, p-Nal» Amp or X1-Pha;
A20 is Leu, ^Ma, Ace, Alb, Nlef He, Chat Tie, Val, Phe or X1-Phe;
A21 Is Glu, Ala or Asp;
A22 is Gly, Ace, Ala, D-Ala, {WUa or Aib;
A23 is Gin, Asp, Ala, D-Ala, Aib, Acct Asn or Glu;
A24 is Ala, Aib, Vai, Abu, Tie or Ace*
A2* is Ata. Aib, Vat, Abu, Tie, Ace, Lys, Arg, hArg, Orn, HN-CHtfCHa^-NR'W1)-
C{0) or HN-CHHCHalrX^CiO);
A2* Is Ly$, Ala, 3-Pal, 4-Pai, Arg, hArg, Orn, Amp, HN-CH((CH2)«rNR10R1>C{O> or
HN-CH((CH2),rX3}-C(O);
A77 is Glu, Wa, D*Ala or Asp;
Aw is Phe, Ate, Pal, p-Nai. Xf-Ph». Ale. Ace, Alb, Cha or Trp;

Aw *s lie, Acc( Att>» Leu, N!e» Cte, lie* Vai, Abu, Ala, Tba or Phe;
A* teA&*Aibt Ace or deleted;
A31 la Trp, Aia, {^Nal, 3-Fal, 4-Pai, Phe> Ace, Afc, Cha. Amp or deleted;
A34 is Uu, Ala* Ace, Aib, Nte, Me, Cha> Tte, Pte, X1^^, Al» or A* Is Vai, Ace. AD# Lot, Ite, Tie, Nte, Cha. Ala, Phe* Abu, X1-Pte, Tba, Gaba or
d«tet©d;
AM Is Lys, Arg, hAig, Om, Amp, Gaba, HN^HaCHakHR^^H^O), HN-
CH«CH2)#-X4>C(O) or deleted;
A36 is Gly or deleted;
A3* te L- or D-Af& E>- or L-Lys, D- or L-hArg, l>- or L-Om, Amp, MN-CHftC^I^-
NR1OR")-C(O). I^W^K^V^KHO) or delated;
A^lftGly or deleted;
X1 for each occurrence Is independently selected from the group constating
of (CrC«)aikyi, OH and halo;
R1 is OH, NH* (CrCultfmy, Ct^hydrocarbon moiety, and Z° Js H, OH, CO2H or CONHa;

occurrence is hdependentfy -C{0}*, -NH-C(O)- or -CHri «^3 f for each occurrence is Independently an integer from 1 to 29; each of R2 and R* Is independently selected from the §roup consisting of H» (Ci-C^lkyf, (CrC»)afcerryl, phen^d-CaoJalkyl, naphttiyl{C^C»)atkyl, hydroxy{Ci"CsB)dkyl( r^^Ca-Cw)^*^^, Nydtxxyprw^yffCi-Caq^^l, and r^roxpapTrth^KCi-CapJaicyt; or one c# ft2 and R5 Is CCOJX8 in which X* & (Ct-CsoJaikyi, (CrCjo^ikenyf, phenyi(CrC»3all;yt> naphthylfC.-C^afkyl, hydroxyfC-CaeJalkyl, hycfeo^CrCaoJaa^nyl, hy^o)^^«myl{Ci*C3o)aicyl,


wtweYtsHorOH,rfeOto4andqtsOto4;
e for each occurrence to Independently an integer from 1 to 4;
n for each occurrence is independently en Integer from 1-5; and
Rw ertd R" for each occurrence is each inciependentty H, (Ci-CaoJelky), (Cr
C*)acyt, (G^ja&yfculforryi, -C((NH)(NH*)) or

R1' Is H or (CrCjoJalkyi; and
R1* is (C,-C*)alIcyH with the proviso lhal:
(f) at (east one sfnfno acid of a compound of formula (I) Is not the same as the native sequence of r*GUM(7-36, or -37)NHi (SEQ fD NOS: 1,2) or hGLP-1(7-36, or -37)OH (SEQ ID NOS: 3.4);
(ii) a compound of formula (I) Is not an analogue of hGLP-1(7-36, or -37)NH2 (SEQ ID NOS: 1,2) or hGLFM(7-36, or -37)OH {SEQ ID NOS: 3. 4) wherein a single position has been substituted by AJa;
(«) a compound of formula (I) Is not (Lys^^-alkanoyiJJhGLP-i^-ae. or -37}-£ (SEO ID NOS: 5*8), |Lys34(N«^ikanoyipGLI»-1{7.36, or -37J-E (iv) a compound of formula (I) Is not Z'-hGLfMfT-ae, or -37}-OH; Z'-hGLP-K?^, or -37^NH», where Z1 te selected from the group consisting of
(a) [Ars^ (SEQ ID NOS: 25-28), [Arg"] (SEQ ID NOS: 29-32), fAjg3**] (SEQ ID
NOS: 33-38), (lys*3 (SEQ ID NOS: 37-40). (Arg*. lys"l (SEQ ID NOS: 41-44),
[Arg34, Lys»l (SEQ ID NOS: 45-46), tD-Lys*1}, |Arfl*l (SEQ ID NOS: 37-40)t (D-
Arg*!, [Ars*3", Lys*1! (SEQ 10 NOS: 46-S2), or [Aro*3*, Lys34) (S€Q ID NOS:
25-28);
(b) [Asp21] {SEQ ID NOS; 53-56);

(c) at least one of [Alb*! (SEQ ID NOS; 57-60). ID-Ala*! and (Asp^CSiQ ID NOS;
61-64); and
(d) |Tyr*] (SEQ ID NDS: €5-68), {M^cjrf-Kls^ (SEQ ID NOS: 69-72), tN-alfcyJ-Mis'3
(SEQ ID NOS: 73*76), {N-acyf-D-HisT] or (N-alkyi-O-His7];
(v) a compound of formula (I) is not a combination of any two of the substitutions tsted in groups (a) to (d): and
(vl) a compound of formula (I) is not (N-Me-Ala*]hGLP-1(8-36 or -37) (SEQ ID NOS: 77. 78), tGluiaJhGUM 2. The compound according to claim 1 or a pharmaceutically acceptable salt thereof wherein
A11 is Thr; A13 is Thr; A14 is Ser, Aib or Ala; A17 is Ser, Ala, Aib or D-Ala; A18 is Ser, Ala,
Aib or D-Ala; A21 is Glu or Ala; A23 is Gin, Glu, or Ala; and A27 is Glu or Ala.
3. The compound according to claim 2 or a pharmaceutically acceptable salt thereof wherein
A9 is Glu, N-Me-Glu or N-Me-Asp; A12 is Phe, Ace or Aic; A16 is Val, D-Val, Ace, Aib, Ala,
Tie or D-Ala; A19 is Tyr, 3-Pal, 4-Pal or D-Tyr; A20 is Leu, Ace, Cha, Ala or Tie; A24 is Ala,
Aib or Ace; A25 is Ala, Aib, Ace, Lys, Arg, hArg, Orn, HN-CH((CH2)n-NH-R10)-C(O); A28 is
Phe or Ala; A29 is lie, Ace or Tie; A30 is Ala, Aib or deleted; A31 is Trp, Ala, 3-Pal, 4-Pal or
deleted; A32 is Leu, Ace, Cha, Ala or deleted; A33 is Val, Ace, Ala, Gaba, Tie or deleted.
4. The compound according to claim 3 or a pharmaceutically acceptable salt thereof wherein
A8 is Ala, D-Ala, Aib, A6c, A5c, N-Me-Ala, N-Me-D-Ala or N Me-Gly; A10 is Gly, Ala, D-
Ala or Phe; A12 is Phe, A6c or A5c; A16 is Val, Ala, Tie, A6c, A5c or D-Val; A20 is Leu, A6c,
A5c, Cha, Ala or Tie; A22 is Gly, Aib, P-Ala, L-Ala or D-Ala; A24 is Ala or Aib; A29 is lie,
A6c, A5c or Tie; A32 is Leu, A6c, A5c, Cha, Ala or deleted; A33 is Val, A6c, A5c, Ala, Gaba,
Tie or deleted.
5. The compound according to claim 4 or a pharmaceutically acceptable salt thereof wherein
R1 is OH or NH2.

6. The compound according to claim 5 or a pharmaceutical ly acceptable salt thereof wherein R2 is H and R3 is (CrC3o)alkyl, (C2-C3o)alkenyl, (Ci-C30)acyl,

7 A compound according to claim 1 wherein said compound is [D-Ala8, Ala"-*"3* 3-Pal1w\ Gaba«]-GLP.1(7-34)NH2; IP-Ala"**, J-Pal19*l]hGLP-1(7-35)-NHj; [Ala'8-2"7. 3-ParM']hGLP-1{?-35>WH2 (SEQ ID NO: 83); lAla"*", 3-Pal1ft81lhGLP-1(7-35)-MH2 (SEQ ID NO: 84); [Ala14"*3'". 3-Pal1w1lhGLP-1(7-35H3H2{S£Q ID NO: 85); [Ala*2*337, 3-Pal1M1JhGUM(7-35)-NH2 {SEQ ID NO: 86)',
[Ala1""7,3-Pal1M1lhGLP-1(7-35)-NHj (SEQ ID NO: 88); {AJa17JB". 3-Pal1M1JhGLP-1(7-3S)-NHj (SEQ ID NO: 89); [Ala2"9*, 3-PaltM1, Gaba*]hGLP-1(7-34)-NH2 (SEQ ID NO: 90); [A(ai5.»*w7 3^^'w, GabaM3hGU»-1(7.34)-NH2 {SEQ ID NO: 91); [Ate17**8*, 3-f»at1»'*', Gata1hGLP-1(7-34)-NH* (SEQ ID NO: 92); [Ala1**"3*, 3-Pai1w', G8ba3*lhGUP-1(7-34)-NH2 (SEQ ID NO: 93); [A|a!i,».2W7 $jto$*»\ GabaihGLP-K?^)^^ (SEQ ID NO: 94);
IMa7233**1,3-Pal1wt, Gaba^hGLP-ia^-NHj (SEQ ID NO: 95); [A|a22jBUTj» a.paiiw^ ©aba^lbGLP-it?-^^^ (SEQ ID NO: 96); y^p&xM 3.Pa|«.3* Gaba^hGLP-i^-aaj-NHj (SEQ \D NO: 97); [Ala*"**7'111,3-Pal1*, Gaba^hGLP-KT-SSJ-NH, (SEQ ID NO: 98); [PtiF**™. 3-Pal1'"31, Gaba^hGLP-ifT-aS^NHj (SEQ ID NO: 99); {Alaaa27j» 3^>ajiMi Qaba^hGLP-KT-SShNHi (SEQ ID NO: 100); lMaaxt, 3-PalU3\ Gabaas|hGLP-1(7-33)-NH2 (SEQ ID NO: 101); jAlaa>,a2M7> 3-Pal1BJM, Gaba^jhGLP-K?^^^ (SEQ ID NO: 102); lAte».»,*7 a^ai*,^ Gaba^hGU»-1(7-33)-NH2(SEQ ID NO: 103); |/Uaiwa»47> 3.pBjtMi| GabaM)hGLP-1(7-33)-NH2 (SEQ ID NO: 104); [D-Alaw, Ala^23-27. 3-Pal1M1. Gaba«3hGLP-1(7-33)-NH2; P-Ala», Ala172"7, S-Par'^'IhGLP-ifr^^NHj; rAJa17-*12', 3-Pat1»-*31]hGlP-1{7-34).NHj (SEQ ID NO: 105); ID-Ala», Ala17,3-PalwailhGLP-1(7-34)-NH2;

[D-Ala", m%73XZI, 3-Paf"M, Tfe^hGUM^J-NHa;
[D-Ala8, Ala17*"7,3-W**1. Gaba'ihGLP-i (7-34)-NH*
[CWUa* Ala17-2"7, 3-PalWJS\ Gaba^JUGLP-itT-Mj-NH*;
[AttA Ala1723-27.3-Pal19-91, Gaba«JhGLP-1(7-34^NH2{SEQ ID NO; 107);
[D-Ala8, Ala1732"28*7. 3-PaliM1JhGLP-1(7.33)-NH2;
[Alb8, Ato1w3:W7, 3-Pa11""lb{3U9-1(7^3)-NHi (SEQ ID NO: 108);
[AlaiM«.zMT 3.pa|«1, Gaba^hGLP-KZ-MJ-NHa (SEQ ID NO: 109);
{Ata1^-87,3-Pal1M1. Tie33. Gaba^hGLP-KT-WVNHi (SEQ ID NO: 110);
pie", A!a1MMT. 3-Pal'*-'1, Gaba^JhGLP-IOT^hNHj (SEQ ID NO: 111);
(N-Me-D-Ala\ AlaO22!!Mr, 3-Pal1w']hGLP-1(7^3)-NH2;
[Aib*. Ala1Tl' [A|aiT,i*,ajBjTt ^pai'Mi^ -jTe'^ Gaba^hGLP-KT^hNHi {SEQ ID NO: 113);
[D-Ala*. Ata17'W2Z!3W, a-Pal1*81, Tie", Gaba*^bGLP-1{7-34)-NH2;
[D-Ala1-38, Ala17-1"3'7.3^»alWiS1. Gabas']hGLP-1{7-34^NH^;
[D-Ala'1'. Ala17'3-*'*7. ZJ>B\ [D-Ala*17, Ala1 [D-Ala8, Ala171'"23"7. 3-Pal1M1, Gaba»4JhGLP-1(7-34)-NH2; or a pharmaoeuticatly
acceptabte aaft thereof.
8. A compound according to claim 1 wherein said compound is [Aib*. Aec^KSLP.I^-aejNHj (SEQ JD NO: 114); [A6cw'a*|hGLP.1(7-36)-NHi! {SEQ ID NO: 115); [AibihGLP-KT-SBJ-NH* (SEQ ID NO: 116); [(Tma.Hts)7]hGLP-1(7.36)-NH2 (SEQ ID NO: 117); |A6c!a]hGLP-1(B-36)-NH2 (SEQ ID NO: 118); [A6c>GiP-1(7-3e)-NH, (SEQ ID NO: 119); [ASc'^hGLP-HT-Sej-NHj (SEQ ID NO: 120); [Aec^hGLP-itf-Se^NH* (SEQ ID NO: 121); [A6c?°, Aib^hGUM (7.36)-NHJ {SEQ ID NO: 122);
[Aib*. A6cJ9'M|hGLP-1(7-36)-NHi (SEQ ID NO: 123); rAeteiaA«jhGLP-1(7-36)-NH, (8EQ lD N0:124);
IN4te-Ala
[N-Me-«a^hGLP-1{S-36)-MHj (SEQ 10 NO: ); [N-Me-D-A)8*|hGLP-1 (7-36}-NHj; [N-Me-O-Alal>)riGlP-1 (8-36)-NHj; [N-We-Gly*]hGLP-1(7-36H^H2 (SEQ ID NO: 129); [A5c?JhGLP-1M0JhGLP-1 (7-36)-NHj {SEQ ID NO: 136); {Alb*. Cha^JhGLP-KT-ae^NHa {SEQ ID NO: 137); [Aib8, Cha^lhGLP-i^-SSJ-NHsi (SEQ ID NO: 138); (Aib». Glua]hGLP-1{7-36)-NH, (SEQ ID NO: 139); [Aib*. A6cM]hGLP-1(7-36>NH, {SEQ ID NO: 140); [Alb*, A6ca>'M]hGLP-1{7-36)-NHa (SEQ ID NO: 141); tAB^hGlP-ifr-Sej-NMSEQ ID NO: 142);
[Aib8,p-Ate^GLP-1(7-36)-NHj {SEQ IO NO: 143);
(Aib*, Lys8SJhGLP-1(7-36)-NH, (SEQ ID NO: 144);
[Afo8, A6cl!tlhGLP-1 (7-36)-NHj (SEQ ID NO: 145);
|Aib', ASca1hGLP-1(7-36)-NHa (SEQ ID NO: 146);
tAib*. A8c*3jhGlP-1(7-36>-NH2 (SEQ ID NO: 147);
tAlb*'14]hGLP-1(7-38)NHa(SEQ ID NO: 148);
tAib(l1s|hGLP-1(7-36)NH?(SEQ ID NO: 149);
lAibM7JhGLP-1{7-36)NH*(SEQ ID NO: 150); or
{Alb*, D-Arg;w3hGLP-1 (7-3e^Hj; or a pharmaceuticatly acceptable salt thereof.
9. A pharmaceutical composttion comprising art effective amount of a compound according to claim 1 or a pharrnaceutically acceptable salt thereof and a pharmaceuticaity acceptable carrier or diluent.

Dated this 14 day of August 2006 PUXX^AJ
( VAISHNAVI SK) OF DePENNING & DePENNING AGENT FOR THE APPLICANTS

Documents:

2982-CHENP-2006 CORRESPONDENCE OTHERS 12-03-2010.pdf

2982-chenp-2006 form-3 12-03-2010.pdf

2982-CHENP-2006 AMANDED CLAIMS 23-11-2009.pdf

2982-chenp-2006 correspondence others-08-07-2009.pdf

2982-CHENP-2006 EXAMINATION REPORT REPLY RECEIVED 23-11-2009.pdf

2982-CHENP-2006 FORM-3 23-11-2009.pdf

2982-CHENP-2006 OTHER PATENT DOCUMENT 23-11-2009.pdf

2982-chenp-2006 others-08-07-2009.pdf

2982-CHENP-2006 POWER OF ATTORNEY 23-11-2009.pdf

2982-chenp-2006-abstract.pdf

2982-chenp-2006-assignement.pdf

2982-chenp-2006-claims.pdf

2982-chenp-2006-correspondnece-others.pdf

2982-chenp-2006-description(complete).pdf

2982-chenp-2006-form 1.pdf

2982-chenp-2006-form 3.pdf

2982-chenp-2006-form 5.pdf


Patent Number 245016
Indian Patent Application Number 2982/CHENP/2006
PG Journal Number 53/2010
Publication Date 31-Dec-2010
Grant Date 29-Dec-2010
Date of Filing 14-Aug-2006
Name of Patentee SOCIETE DE CONSEILS DE RECHERCHES ET D'APPLICATIONS SCIENTIFIQUES SAS
Applicant Address 51-53, rue du Docteur Blanche, F-75016 Paris
Inventors:
# Inventor's Name Inventor's Address
1 Zheng, Xin DONG, 66 Fairview Street, Holliston, MA 01746
2 David, H. COY, 1529 Fourth Street, New Orleans, LA 70130
PCT International Classification Number A61K38/00,C07K14/605
PCT International Application Number PCT/US1999/028929
PCT International Filing date 1999-12-07
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/206,833 1998-12-07 U.S.A.
2 60/111,186 1998-12-07 U.S.A.