Title of Invention

A SHIELDED NEEDLE ASSEMBLY

Abstract A needle shield assembly includes an elongate needle having a proximal end and a distal needle tip. A needle shield is provided for slidable movement from a retracted position in which the needle tip is exposed to an extended position in which the needle tip is covered. A flexible actuator is fixedly positioned toward the proximal end of the needle and releasably connected to the needle shield for actuatable release thereof. A resilient band attached to the shield urges the shield along the needle to cover the distal tip upon release of the connection between the shield and the actuator.
Full Text United States Patent Application
for
NEEDLE ASSEMBLY
by
Bradley M. Wilkinson
BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] The present invention relates generally to needle shield assemblies for blood
collection/intravenous infusion devices. More particularly, the present invention relates to a
needle assembly having a needle shield that may be activated by a single-handed operation in
order to avoid accidental needle sticks.
2, Description of the Prior Art
[0002] A conventional IV infusion or blood collection assembly includes elongated small
gauge plastic flexible tubing material having a disposable needle and a body or hub for holding
the needle on one end. Usually, the hub is adhered to one end of the flexible tube by a friction
fit. The hub includes wings extending on either side for the phlebotomist or user to grasp and
position the hub for inserting the needle into a patient. Such assemblies may be used for infusing
medication into a patient or for collecting blood from a patient. Generally, at the end of the
flexible tube opposite the needle is a female connection for connecting supplies of fluid to be
infused or for connecting apparatus for collecting blood, as required.
[0003] After the needle of the assembly has been withdrawn from a patient, protection of
the used needle tip becomes important. Accidental sticks with a used needle can transmit
bloodborne disease such as hepatitis, AIDS and other similar diseases. As a result, there is a
present need for methods and devices to enclose the used disposable needle by providing a
covering for the used needle tip after it has been withdrawn from the patient.
[0004] Many needle guards are known. Certain techniques include placing a separate
needle cap over the needle after use, positioning a sliding shield distally over the used needle, or
hiding the withdrawn needle within a hollow needle bearing holder. Many of the current needle
guards require a two-handed technique in order to activate the guard. Such a two-handed
technique is awkward to use and may still pose a risk of accidental needle stick.
[0005] In addition to safety shielding devices for needles which require two-handed
operation, the art has also seen the use of needle shield devices which are automatically activated
and do not require one-handed or two-handed operation. However, many of these shields are
difficult to fabricate, awkward to use, and require additional handling steps to actuate the device.
[0006] There exists a need for a simple, straightforward, reliable, easily fabricated needle
assembly which is self-contained, capable of single-handed activation, and can be used with
blood collection and intravenous delivery devices.
SUMMARY OF THE INVENTION
[0007] The present invention has been developed to overcome the disadvantages of the
prior art. A needle assembly is provided which allows for safe removal and disposal of used
needles without risk of exposure to bloodborne pathogens. The needle assembly allows for use
of a one-handed needle removal technique.
[0008] A shielded needle assembly is provided for protection against exposure to
bloodborne pathogens by protecting the sharp tip of a used needle. The needle assembly of the
present invention includes a needle, a needle shield, and a flexible actuator arranged toward a
proximal end of the needle and releasably connected to the shield. A resilient band is interposed
between the actuator and the needle shield. The needle shield is capable of moving from a
retracted position in which a tip of the needle is exposed to an extended position covering the
needle and shielding the needle tip. The resilient band urges the needle shield over the needle to
guard the needle tip upon actuatable release of the flexible actuator.
[0009] A needle shield assembly is provided, including an elongate needle having a
proximal end and a distal needle tip. A needle shield is provided for slidable movement from a
retracted position in which the needle tip is exposed to an extended position in which the needle
tip is covered. A flexible actuator is fixedly positioned toward the proximal end of the needle
and releasably connected to the needle shield for actuatable release thereof. A resilient band is
attached to the shield urges and the shield along the needle to cover the distal tip upon release of
the shield.
[0010] Additionally, a needle shield assembly is provided, including an elongate needle
having a proximal end and a distal needle tip. A needle shield is provided for slidable movement
from a retracted position in which the needle tip is exposed, to an extended position in which the
needle tip is covered. A substantially H-shaped flexible actuator is fixedly positioned toward the
proximal end of the needle and releasably connected to the needle shield for actuatable release
thereof. A resilient band is attached to the shield for urging the shield along the needle to cover
the distal tip.
[0011] These and other features of the invention will be better understood through a
study of the following detailed description and accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] FIG. 1 is a perspective view of a needle assembly of the present invention with
the shield member in the retracted position.
[0013] FIG. 2A is a side view of the needle assembly according to FIG. 1 with the shield
member in the retracted position.
[0014] FIG. 2B is a partial side view of the needle assembly according to FIG. 1 with the
shield member in the extended position.
[0015] FIG. 3 is a perspective view of a needle assembly of the present invention with
the shield member in the retracted position.
[0016] FIG. 4A is a side view of the needle assembly according to FIG. 3 with the shield
member in the retracted position.
[0017] FIG. 4B is a partial side view of the needle assembly according to FIG. 3 with the
shield member in the extended position.
[0018] FIG. 5 is a perspective view of an alternative embodiment of the needle assembly
of the invention with the shield member in the retracted position.
[0019] FIG. 6A is a side view of the needle assembly according to FIG. 5 with the shield
member in the retracted position.
[0020] FIG. 6B is a partial side view of the needle assembly according to FIG. 5 with the
shield member in the extended position.
[0021] FIG. 7 is a bottom plan view of a needle assembly according to the present
invention.
[0022] FIG. 8 is a cross sectional view of the needle assembly according to FIG. 7 along
the VIII-VIII line shown in FIG. 7.
[0023] FIG. 9 is a side view of a leaf spring of the needle assembly according to the
present invention.
[0024] FIG. 10A is a side view of the leaf spring of FIG. 9 bearing against the needle.
[0025] FIG. 10B is a side view of the leaf spring of FIG. 9 covering the tip of the needle.
[0026] FIGS. 11A and 11B are schematic views of the mode of operation of the actuator
in releasing the shield.
[0027] FIG. 12 is a perspective view of an embodiment of the invention shown with an
evacuated tube blood drawing system.
[0028] FIG. 13 is a perspective view of an embodiment the invention shown with an
evacuated tube blood drawing system.
[0029] FIG. 14 is a perspective view of an embodiment of the needle assembly of the
invention including an safety cap useful for the needle assemblies shown in FIGS. 1 and 12.
[0030] FIG. 15 is a perspective view of an embodiment of the needle assembly of the
invention including a safety cap useful for the needle assemblies shown in FIGS. 3 and 13.
[0031] FIG. 16 is a cross sectional top view of the safety cap shown in FIGS. 14 and 15.
[0032] FIG. 17 is a perspective view of an alternative embodiment of a safety cap useful
for the needle assemblies shown in FIGS. 3 and 13.
[0033] FIG. 18 is a cross sectional top view of the safety cap shown in FIG. 17.
[0034] FIG. 19 is a perspective view of an embodiment of the needle assembly of the
invention including a safety cap useful for the needle assembly shown in FIG. 5.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0035] The present invention provides a needle assembly for preventing contact with the
tip of a used needle by providing a needle shield which, when retracted, allows the needle tip to
be exposed, but when extended, blocks access to the tip of the needle and protects against needle
stick injuries.
[0036] As used herein, the top of a needle assembly is that part having the bevel of the
needle. The bevel faces away from the patient's skin when the needle is inserted into a vein.
The bottom of a needle assembly is 180° from the top, while the sides of the needle assembly are
90° from either the top or the bottom of the assembly.
[0037] Referring to the drawings in which like characters refer to like members
throughout the several views, FIG. 1 shows an embodiment of the needle assembly according to
the present invention. The needle assembly, referred to generally by the reference numeral 2,
includes a hollow needle 4. The needle 4 possesses a distal tip 6 which is used to access a
patient's bloodstream. A shield member 12, also referred to as a needle shield and/or simply as
the shield, is provided to protect the tip 6 of the needle 4 after it has been contaminated. Tubing
18 is in fluid communication with the needle 4 for transport of fluid to or from the patient. A
flexible actuator 10 is arranged toward a proximal end of the needle shield 12. A guide member
in the form of a fin 16a is provided on the actuator 10 for guiding placement of the needle 4
during venipuncture. A biasing element in the form of a resilient band 14 connects the shield 12
and the actuator 10.
[0038] The shield 12 is positioned about the needle 4 and is releasably connected to the
actuator 10. The shield 12 is capable of movement from a retracted position as illustrated in
FIG. 2A, in which the tip 6 of the needle 4 is exposed, to an extended position as illustrated in
FIG. 2B, in which the tip 6 of the needle 4 is covered.
[0039] As best seen in FIG. 2A, the shield 12 includes a proximal annular portion 30 and
a distal blunting end 40 joined by an elongate barrier arm 38. The blunting end 40 has a distal
aperture 42 and a proximal needle passageway 44. The needle 4 is positioned within the
proximal annular portion 30 and the proximal needle passageway 44 of the blunting end 40 of
the shield member 12. Any conventional shield may be used as the shield member. An
appropriate shield for this purpose is disclosed, for example, in U.S. Patent No. 5,738,665.
[0040] Referring again to FIG. 2A, when the shield 12 is in the retracted position, the tip
6 of the needle 4 passes completely through the shield 12 and is exposed through the distal
aperture 42. In this position, the needle tip 6 is exposed and available for use to access a patient.
As shown in FIG. 2B, when the shield 12 is in the extended position, the tip 6 of the needle 4 is
withdrawn from the distal aperture 42 and is protected within the shield 12. In this position, the
needle tip 6 is shielded and unintentional contact, such as a needle stick, is prevented.
[0041] In the configuration of the invention as shown in FIGS. 7, and 11A and 11B, the
actuator 10 is substantially "H"-shaped. The actuator 10 includes an actuating member 20 and a
retaining member 22 with a pivot 32 therebetween. Specifically, the actuator 10 includes
elongate arms. The elongate arms include proximal actuating arms 20 running laterally toward a
distal end of the assembly 2 and distal latching arms 22 running laterally toward a proximal end
of the assembly 2. In this embodiment, the pivot 32 includes a central tubular portion 26 which
circumscribes the needle 4 toward a proximal end thereof. The central tubular portion 26 serves
as a point of attachment of the actuator 10 to the needle 4. Both the latching arms 22 and the
actuating arms 20 are connected to the central tubular portion 26 via the pivot 32. It is to be
understood that other arrangements of attachment of the elongate arms are possible so long as the
arms are capable of pivoting to actuably release the shield from the actuator.
[0042] Toward a distal end of each of the latching arms 22 is a coupling member in the
form of inwardly facing hooked ends 24. The hooked ends 24 fit over oppositely directed lugs
28 on the shield member 12. When the hooked ends 24 of the latching arms 22 are fitted over
the lugs 28, the shield member 12 is secured in the retracted position so that the needle tip 6 is
exposed.
[0043] It is to be understood that although a pair of latching arms and lugs are shown, it
is also possible to have a single latching arm. In this case, a single latching arm will possess a
hooked end. The actuator arm on the side of the actuator opposite the latching arm may be
relatively inflexible and serve a support function for one or more fingers. The actuating arm in
linear alignment with the latching arm will be flexible so as to permit release of the actuator from
the shield upon application of pressure to the flexible actuating arm. Furthermore, it is within the
scope of the invention for the connection between the actuator and shield to be formed of
equivalent structures, such as a protrusion of the actuator fitting into a recess on the shield, or
any other equivalent structures.
[0044] The simplicity of design and operation of the actuator 10 is best seen in schematic
FIGS. 11A and 11B. In FIG. 11A the actuator 10 is shown in position over lugs 28 of the shield
12. Application of pressure on the actuating arms 20 toward one another causes a pivoting
motion about the pivot 32 which forces the latching arms 22 to move away from one another as
shown in FIG. 11B. This movement releases the connection between the actuator 10 and the
shield 12, specifically between the hooked ends 24 of the latching arms 22 and the lugs 28 of the
shield 12.
[0045] The actuator is a simple integrally formed flexible member that may readily be
fabricated using known molding techniques. The flexibility of the one-piece actuator is all that is
required to create a reliable releasable connection with the shield member. The simplicity of
design enables manufacture of a needle shield assembly in a simple and cost-efficient manner.
[0046] Referring now to FIG. 3, a biasing element in the form of a resilient band 14 is
arranged on the top of the needle assembly 2. Resilient band 14 is an elongate generally planar
member. A proximal end of the band 14 includes a slot 36 for attaching the band 14 to the
actuator 10. The actuator 10 includes a boss 34 for this purpose. The slot 36 fits over the boss
34 to connect the resilient band 14 to the actuator 10. The distal end of the band 14 is connected
to the top of the shield 12 by an adhesive or other appropriate securement member. It is to be
understood that any appropriate means for attaching the band 14 to the actuator 10 and the shield
12 may be used.
[0047] When the actuator 10 is at rest, the shield 12 is maintained in the retracted
position by the connection between the hooked ends 24 of the latching arms 22 of the actuator 10
and the lug 28 of the shield 10. In this retracted position, the needle tip 6 is exposed and
available for use, and the resilient band 14 is arched and possesses an elastic potential energy.
[0048] There are no particular limitations to the material with which the resilient band 14
is made so long as the band resists memory deformation in the arched shape that it assumes when
the shield 12 is retracted. Thus, suitable materials include any elastomeric or flexible material
which does not maintain shape memory. One particularly suitable material is a silicone band.
Others will be readily apparent to one having skill in the art.
[0049] Upon application of digital pressure to the elongate actuating arms 20, the
latching arms 22 are moved outwardly, away from the needle 4, releasing the connection
between the shield member 12 and the actuator 10. This motion actuates conversion of the
potential energy stored in the resilient band 14 to kinetic energy. The kinetic energy of the
released band 14 moves the shield member 10 distally along the needle 4 until the blunting end
40 of the shield 12 covers the needle tip 6.
[0050] The guide member may take a variety of different forms. Referring again to FIG.
3, an alternative configuration of the guide member is shown. In this aspect, a portion of the
actuator 10b may additionally serve the function of the guide member. Here, the latching arms
22 of the actuator 10b includes contact surfaces such as finger pads 16b which serve the function
of the guide member. In this embodiment, a user may safely apply pressure to the actuator 10b
at this point and avoid releasing the connection between the actuator 10b and the shield member
12. Specifically, application of a pressure at this location will further press the latching arms 22
toward one another, thus reinforcing the connection between the actuator 10b and the shield
member 12.
[0051] The position of a user's hand to guide a needle into a patient in this embodiment
is best shown in FIG. 4A. In operation, a user will hold the latching arms 12 of the actuator 10 at
the finger pads 16b while guiding the needle 4 into a patient.
[0052] In this embodiment, when the needle is to be withdrawn, the user may hold the
actuating arms 20b of the actuator 10b to withdraw the needle. In this case, the user may apply a
further pressure to the actuating arms 20. Upon application of the further pressure, the actuator
10 will force the hooked ends (not shown) out of position over the lug (not shown), releasing the
connection between the actuator 10 and the shield 12, and allowing the elastic potential energy of
the resilient band 14 to be released. The resilient band 14 will then move the shield 12 over the
needle tip 6 as shown in FIG. 4B.
[0053] Alternatively, the user may hold the actuating arms 20 of the actuator 10 to
withdraw the needle while simultaneously applying sufficient pressure to the actuating arms 20
so as to release the connection between the actuator 10 and the shield member 12. In this case,
the shield 12 abuts the skin of the patient while the needle 4 is being withdrawn. Once the
needle 4 is entirely withdrawn from the patient, the kinetic energy of the released resilient band
14 will move the shield 12 over the tip 6 of the needle 4. The band 14 will then be extended in a
linear fashion as opposed to being arched, and will have forced the shield member 12 over the
needle tip 6.
[0054] Another alternative embodiment of the present invention is shown in FIG. 5. In
this aspect, the guide member is in the form of two laterally placed opposed wings 16c. In this
case, the wings 16c are formed integrally with the latching arms 22 of the actuator 10. A user
may hold the wings 16c together at the top of the needle assembly 2 when inserting the needle 4
into a patient.
[0055] Referring now to FIGS 5 and 6A, possible positions of a user's hand when
removing the needle 4 from a patient are shown. In FIG. 5, the user holds a wing 16c to remove
the needle 4. In FIG 6A, the user holds the actuating arms 20 to remove the needle 4. In this
case, the actuator 10 may be actuated before, during, or after removal of the needle 4 by timing
the further application of pressure to activate the actuator 10.
[0056] Each of the various embodiments of guide members may be formed integrally
with the actuator, or may be formed separately from the actuator, and then attached, for example,
by an adhesive, thermobonding or other suitable means.
[0057] Once a needle assembly according to the present invention has been used, and the
shield member has been positioned over the needle tip, it is important to maintain the position of
the shield member over the needle tip. It is therefore desirable to prevent retrograde motion of
the shield to prevent re-exposure to the used needle and any resultant needle stick injuries this
would entail. Thus, in a further embodiment of the invention, a locking member is provided.
[0058] Referring now to FIG. 6A, 9,10A and 10B, a locking member according to the
invention is shown. The locking member is a tensioned leaf spring 46 shown positioned toward
a bottom of the shield 12. The leaf spring 46 has a relatively flat rectilinear surface 54 including
an orifice 52 for fastening the leaf spring 46 to the shield 12. A boss 50 toward the proximal end
of the shield 12 fits into the orifice and fastens the leaf spring 46 to the shield 12. In FIG. 8,
which is a cross sectional view along line VIII-VIII of FIG. 7, the leaf spring 46 is shown having
a pair of tabs 52 angled at an approximately 90° angle from the rectilinear surface 54 for further
securement of the leaf spring 46 to the shield 12. The distal end of the leaf spring 46 is bent
upward substantially perpendicular to the rectilinear surface 54 and defines a cover plate 56 for
covering the needle tip 6. The cover plate 56 further includes a flange 58 which assists in
maintaining the cover plate 56 in position over the needle tip 6.
[0059] As best shown in FIG. 10A, the leaf spring 46 is designed to bear against the shaft
of the needle 4 when the shield 12 is retracted. As shown in FIG. 10B, the leaf spring 46 covers
tip 6 of the needle 6 of the shield 12 when the shield is in the extended position.
[0060] The mode of operation of the leaf spring 46 is shown in FIGS. 10A and 10B.
When the shield 12 is in the retracted position, as in FIG. 10A, the leaf spring 46 bears against
the shaft of the needle 4 with a certain amount of tension. When the shield 12 is released, the
resilient band 14 moves the shield 12 including the leaf spring 46 along the shaft of the needle 4
until the leaf spring 46 reaches the tip 6 of the needle 4. At this point, the tension on the leaf
spring 46 provided by the needle 4 is released. This released tension moves the cover plate 56 in
place over the tip 6 of the needle 4. This is best shown in FIGS. 10B and 6B. In this position,
the distal aperture 42 of the blunting end 40 of the shield 12 is covered by the cover plate 56 and
the needle tip 6 is effectively prevented from movement through the aperture 42. In this way, the
leaf spring 46 prevents retrograde movement of the shield 12 back over the needle 4.
[0061] Preferably, the needle assembly of the invention is used with blood collection
devices. Generally, two types of blood collection devices are employed. In one type of blood
collection device, illustrated infra, blood is drawn into a flexible tubing prior to collection in a
blood collection tube. In another type of blood collection device, blood is drawn directly from
the collection needle into a blood collection tube. Each of these blood collection devices usually
includes a hollow, cylindrical tubular body (the needle holder) in fluid communication with
either a single-ended or double-ended needle at the point of collection of the blood sample. The
holder serves, inter alia, to provide protection against exposure to blood splatter and/or glass
which may occur as a result of collection tubes breaking or malfunctioning during blood
collection. It is to be understood that the needle assembly of the present invention may be used
with any blood collection device for providing protection from exposure to used needles.
[0062] When blood is drawn directly into a blood collection tube, a double-ended needle
is used. In this case, a proximal end of the needle extends into the needle holder and is covered
with a flexible sleeve. A distal end of the needle extends outwardly from the needle holder for
insertion into a patient's vein. In this arrangement, the holder is arranged proximate to the blood
collection needle. See, for example, U.S. Patent No. 5,687,740, the entirety of which is herein
incorporated by reference.
[0063] Blood collection devices as discussed above, draw blood from a patient using
evacuated tubes, such as those sold under the trade name VACUTAENER (Becton Dickinson).
Evacuated tubes have a closed end and an open end with a closure therein and are used in
conjunction with a needle holder assembly. The vacuum in the tubes assists in drawing blood
from a patient's blood stream.
[0064] When used in combination with evacuated tube blood collection systems wherein
blood is drawn directly into blood collection tubes, the structure of the needle shield assembly is
substantially similar to the assembly illustrated in FIGS. 1-11A and B. Accordingly, substantially
similar components that perform substantially similar functions are numbered identically to those
components of the embodiment of FIGS. 1-10A and 10B except that a suffix is used to identify
alternative embodiments of the components in FIGS. 12 to 19.
[0065] Referring now to FIGS. 12 and 13, a needle shield according to the present
invention is shown as part of a blood collection system as described above, in which the needle is
attached directly to a holder in an assembly 60. In FIG. 12, the needle shield assembly including
an actuator 10 with a guide member in the form of a fin 16a, is shown with the shield 12 in the
retracted position. The operation of the needle assembly is essentially as described previously.
In this embodiment, the pivot 32 may be made to have a more elongate construction so as to
provide necessary clearance between the actuating arms 20 and the distal end of the needle
holder 62.
[0066] In FIG. 13, a needle shield assembly 2 with the needle shield 12 in the retracted
position is shown including an actuator 10 having an exterior portion of the latching arms 22
serving as the guide member. The operation of the shield assembly 2 is essentially as described
previously. In this embodiment, the pivot 32 may be constructed as in FIG. 12, with elongate
members providing sufficient clearance between the actuating arms and the distal end of the
needle holder 62.
[0067] The needle assembly may further include a securement member for protection of
the needle before use. The securement member also serves to protect the user from the needle tip
prior to use. Additionally, the securement member secures the connection between the shield
and actuator, preventing inadvertent premature activation of the actuator during shipping and
handling prior to use. Referring now to FIG. 14, a securement member in the form of a safety
cap 64a is shown for use with the embodiments of the invention described in FIGS. 1 and 12 in
which the needle assembly 2 includes a fin guide member 16a. The cap 64a is an elongate
member with an open proximal end 66a, a distal end 68a and a polygonal sidewall 70a which
defines the shape of the cap 64a. Distal end 68a is preferably closed. The cap 64a includes a
distal portion 72a which covers and protects the needle tip (not shown). A cut out portion 74 on
the top of the cap 64a is shaped to accommodate the resilient band 14. The open proximal end
66 of the cap 64a includes two elongate members 76a running laterally along the sides of the
needle assembly 2. Specifically, the elongate members 76a at least partially overlap and cover
the actuating arms 20.
[0068] Referring now to FIG. 15, the safety cap 64a of FIG. 14 is shown for use with the
embodiment of the invention shown in FIG. 13. As in the previous embodiment, the cap 64a is
an elongate member with an open proximal end 66a, a distal end 68a and a sidewall 70a which
defines the shape of the cap 64a. Distal end 68a is again, preferably closed. The cap 64a
includes a distal portion 72a which covers and protects the needle tip (not shown). A top cut out
portion 74a on the top of the cap 64a is shaped to accommodate the resilient band 14. The open
proximal end 66a of the cap 64a includes two elongate members 76a running laterally along the
sides of the needle assembly 2. Specifically, the elongate members 76a at least partially overlap
and cover the actuating arms 20 of the actuator 10. The finger pad guide member (not shown) is
secured inside the cap 64a.
[0069] Referring now to FIG. 16, a top cross sectional view of the cap according to FIG.
15 is shown. An exterior surface 23 of latching arms 22 is shown in abutting contact with a
portion of an interior surface 78 of the safety cap 64a. In this configuration, it is clear that the
pivot 32 is prevented from performing its function when the cap 64a is in place on the assembly
2. Even upon application of a pressure to the actuator arms 20, the hooked ends 24 of the
latching arms 22 will still maintain a connection with the lugs 28 of the shield 12.
[0070] Referring now to FIGS. 17 and 18, an alternative safety cap 64b for use with an
assembly having contact pad guide members 16b is shown. In this configuration, the cap 64b is
as described previously, with an elongate member having an open proximal end 66b, a distal end
68b and a polygonal sidewall 70b which defines the shape of the cap 64b. Distal end 68b is
again, preferably closed. The cap 64b includes a distal portion 72b which covers and protects
the needle tip (not shown). A top cut out portion 74b on the top of the cap 64b is shaped to
accommodate the resilient band 14. Additionally, the open proximal end 66b of the cap 64b
ends in a substantially blunt edge 80b sized to fit between a distal portion of the finger pads 16b
and an exterior surface 23 of the latching arms 22. The cap 64b is shown with a raised rib 84
toward the blunt edge 80b of the cap 64b.
[0071] The cap may merely end at the blunt edge or it may include a raised rib to engage
a coupling member on the finger pads. As shown in FIGS. 17 and 18, the finger pads 16b
include a coupling member 82 to further secure the connection between the cap 64b and the
assembly 2. The coupling member 82 fits over and engages the raised rib 84 of the cap 64b in a
snap fit arrangement when the cap 64b is in place on the assembly 2. In this configuration, the
finger pad guide member 16b remains outside the cap 64b while the latching arms 22 are
covered by the cap 64b. It is also possible for other snap fit configurations known in the art to be
used. For example, the coupling member may snap fit into a corresponding indent or orifice in
the cap.
[0072] Referring now to FIG. 19, an alternative safety cap 64c for use with an assembly
having winged guide members 16c is shown. In this configuration, the cap 64c is as described
previously, with an elongate member having an open proximal end 66c, a distal end 68c and a
polygonal sidewall 70c which defines the shape of the cap 64c. Distal end 68c is again,
preferably closed. The cap 64c includes a distal portion 72c which covers and protects the
needle tip (not shown). In contrast to the previously described embodiments, the cap includes a
raised portion 86 to fit over a distal portion of the resilient band 14. The open proximal end 66c
of the cap 64c ends in a substantially blunt edge 80c including side cut out portions 88 for
accommodating a distal portion of the wings 16c. When in place over the needle assembly 2, the
safety cap 64c is secured to the assembly by a friction or snap fit with at least an exterior surface
of the latching arms (not shown). The cap 64c effectively stops inadvertent release of the
connection between the actuator 10 and the shield 12 by preventing the pivot 32 from moving the
latching arms 22 away from the shield 12.
[0073] In each of the aforementioned embodiments, the cap of the invention is connected
to the needle shield assembly by a friction fit between an inside surface of the cap and at least a
portion of an exterior surface of the latching arms of the actuator. The cap may be removed from
the assembly by simply holding the assembly at a point other than the actuator arms, for example
by the guide member and the cap. The cap may then be removed by pulling the cap distally
away from the assembly.
[0074] Performance of the cap in preventing inadvertent activation of the actuator is
twofold. First, access to the actuator arms is limited by the elongate members which provide a
barrier from contact with the actuator. Second, the inside of the cap is in close enough relation
with the exterior of the latching arms so as to secure the connection of the latching arms with the
shield. Therefore, even if access to the actuator arms is possible, the actuator will not be
activated because the cap provides a physical barrier to release of the connection between the
latching arms and the shield.
[0075] Suitable materials for forming the cap and shield of the invention include, but arc
not limited to, thermoplastic polymeric resins such as polypropylene, polystyrene, polycarbonate,
acrylonitrile/butadiene/styrene, and the like. In a preferred embodiment, the cap is a rigid
member formed of molded thermoplastic. The needle is traditionally made of stainless steel,
although other metals and alloys are feasible.
[0076] The needle assembly according to the invention may be used in conjunction with
any conventional blood collection device or may be adapted to any specimen collection device
which requires protection from the fluid being collected. Additionally, the present invention
may be used in conjunction with intravenous delivery systems which pose a similar hazard of
exposure to both bloodborne diseases as well as contact with the substance being delivered.
[0077] Although illustrative embodiments of the present invention have been described
herein with reference to the accompanying drawings, it is to be understood that the present
disclosure is to be considered as exemplary of the principles of the invention and is not intended
to be limited to those precise embodiments, and that various other changes and modifications
may be effected therein by one skilled in the art without departing from the scope or spirit of the
invention.
WHAT IS CLAIMED IS:
1. A shielded needle assembly, comprising:
an elongate needle having a proximal end and a distal needle tip;
a needle shield for slidable movement from a retracted position in which said distal
needle tip is exposed to an extended position in which said needle tip is covered;
a flexible actuator fixedly positioned toward said proximal end of said needle and
releasably connected to said needle shield for actuatable release thereof; and
a resilient band attached to said shield for urging said shield along said needle to cover
said distal tip upon said actuatable release of said shield.
2. The needle assembly according to claim 1, wherein said actuator is manually actuatable
to release said needle shield.
3. The needle assembly according to claim 1, wherein a portion of said actuator is fixedly
positioned about said proximal end of said needle.
4. The needle assembly according to claim 1, wherein a portion of said actuator is fixedly
positioned proximal to said shield.
5. The needle assembly according to claim 1, wherein said actuator includes a central
tubular portion, said central tubular portion being fixedly positioned about said proximal end of
said needle.
6. The needle assembly according to claim 5, wherein said shield includes an annular
portion, said annular portion being in abutting contact with said central tubular portion.
7. The needle assembly according to claim 2, wherein said shield member includes at least
one lug and said actuator includes at least one flexible latching arm for releasably engaging said
lug.
8. The needle assembly according to claim 7, wherein said actuator includes a pivot, said
latching arm engages said lug at a location distal to said pivot and substantially parallel to said
needle.
9. The needle assembly according to claim 8, wherein said latching arm includes a hooked
end facing said needle for engaging said lug.
10. The needle assembly according to claim 2, wherein said actuator is substantially H-
shaped, including a pair of spaced apart elongate arms having a pivot therebetween, said elongate
arms having proximal ends and distal ends, whereby said actuator is configured so as to release
said shield upon application of a pressure urging said proximal ends together.
11. The needle assembly according to claim 10, wherein said shield includes two
substantially opposed lugs and whereby said distal ends of said elongate arms are configured so
as to engage said lugs.
12. The needle assembly according to claim 11, wherein said distal ends of said elongate
arms further include substantially opposed hooked ends for engaging said lugs.
13. The needle assembly according to claim 1, wherein said actuator is formed of an
elastomeric material.
14. The needle assembly according to claim 1, wherein said resilient band is formed of an
elastomeric material without shape memory.
15. The needle assembly according to claim 13, wherein said resilient band is formed of
silicone.
16. The needle assembly according to claim 1, further comprising at least one guide member
for guiding placement of said needle.
17. The needle assembly according to claim 16, wherein said guide member is a pair of
flexible wings.
18. The needle assembly according to claim 16, wherein said guide member is a dorsal fin.
19. The needle assembly according to claim 16, wherein said guide member is a contact
surface on a portion of said actuator.
20. The needle assembly according to claim 19, wherein said contact surface is integral with
said actuator.
21. The needle assembly according to claim 20, wherein said contact surface is configured so
as to reinforce a connection between said actuator and said shield upon application of a digital
pressure thereto.
22. The needle assembly according to claim 16, wherein said resilient band is attached to at
least one of said actuator and said guide member.
23. The needle assembly according to claim 1, further comprising a locking member
connected to said shield for preventing retrograde movement of said needle when said shield is
in said extended position.
24. The needle assembly according to claim 23, wherein said locking member includes a leaf
spring, said leaf spring being configured so as to bear against said needle when said shield is in
said retracted position and to cover said tip of said needle when said shield is in said extended
position.
25. The needle assembly according to claim 1, further comprising a blood collection device.
26. The needle assembly according to claim 25, wherein said blood collection device delivers
blood to one of a flexible tubing and a blood collection tube.
27. The needle assembly according to claim 1, further comprising a removable securcment
member for covering said needle, said securement member being configured so as to cover said
needle tip and to form a friction fit connection with said needle assembly.
28. The needle assembly according to claim 27, wherein said securement member is a safety
cap.
29. The needle assembly according to claim 28, wherein said safety cap is configured so as to
retain a connection between said actuator and said shield when said safety cap is placed over said
needle.
30. The needle assembly according to claim 29, wherein an inside surface of said safety cap
is adjacent to an exterior surface of said latching arm.
31. The needle assembly according to claim 30, wherein said inside surface is in abutting
contact with said exterior surface.
32. A needle shield assembly, comprising:
an elongate needle having a proximal end and a distal needle tip;
a needle shield for slidable movement from a retracted position in which said needle tip is
exposed, to an extended position in which said needle lip is covered;
a substantially H-shaped flexible actuator fixedly positioned toward said proximal end of
said needle and releasably connected to said needle shield for actuatable release thereof; and
a resilient band attached to said shield for urging said shield along said needle and over
said distal tip upon said actuatable release of said shield.
33. The assembly according to claim 32, wherein a portion of said actuator is fixedly
positioned proximal to said shield.
34. The assembly according to claim 32, wherein said actuator includes a pair of spaced apart
elongate arms having proximal ends and distal ends, said elongate arms having a pivot
therebetween, said actuator being configured so as to release said shield upon application of a
pressure urging said proximal ends together.
35. The assembly according to claim 34, wherein said shield member includes two
substantially opposed lugs, and said distal ends of said elongate arms further include
substantially opposed hooked ends for engaging said lugs.
36. The assembly according to claim 32, wherein said resilient band is configured to possess
a potential energy when said shield is in said retracted position and a kinetic energy when a
connection between said shield and said actuator is released, said kinetic energy being sufficient
to move said shield into said extended position.
37. The assembly according to claim 32, wherein said resilient band is attached to at least one
of said actuator and said guide member.
38. The assembly according to claim 32, further comprising a removable sccurement member
for covering said needle tip, said securement member being configured so as to secure a
connection between said actuator and said shield.
39. The assembly according to claim 32, further comprising a blood collection device.
40. The needle assembly according to claim 39, wherein said blood collection device delivers
blood to one of a flexible tubing and a blood collection tube.

A needle shield assembly includes an elongate needle having a proximal end and a distal
needle tip. A needle shield is provided for slidable movement from a retracted position in which
the needle tip is exposed to an extended position in which the needle tip is covered. A flexible
actuator is fixedly positioned toward the proximal end of the needle and releasably connected to
the needle shield for actuatable release thereof. A resilient band attached to the shield urges the
shield along the needle to cover the distal tip upon release of the connection between the shield
and the actuator.

Documents:

544-KOL-2003-ABSTRACT.pdf

544-KOL-2003-AMENDED DOCUMENT.pdf

544-KOL-2003-ANNEXURE TO FORM 3.pdf

544-kol-2003-assignment.pdf

544-KOL-2003-CANCELLED DOCUMENT.pdf

544-KOL-2003-CLAIMS.pdf

544-KOL-2003-CORRESPONDENCE 1.1.pdf

544-KOL-2003-CORRESPONDENCE.pdf

544-kol-2003-correspondence1.1.pdf

544-KOL-2003-DESCRIPTION COMPLETE.pdf

544-KOL-2003-DRAWINGS.pdf

544-kol-2003-examination report.pdf

544-kol-2003-form 18.pdf

544-KOL-2003-FORM 2.pdf

544-KOL-2003-FORM 27.pdf

544-kol-2003-form 3.pdf

544-KOL-2003-FORM-27.pdf

544-kol-2003-gpa.pdf

544-kol-2003-granted-abstract.pdf

544-kol-2003-granted-claims.pdf

544-kol-2003-granted-description (complete).pdf

544-kol-2003-granted-drawings.pdf

544-kol-2003-granted-form 1.pdf

544-kol-2003-granted-form 2.pdf

544-kol-2003-granted-specification.pdf

544-KOL-2003-INTERNATIONAL PUBLICATION.pdf

544-KOL-2003-PETITION UNDER RULE 137.pdf

544-kol-2003-priority document.pdf

544-KOL-2003-REPLY TO EXAMINATION REPORT.pdf

544-kol-2003-reply to examination report1.1.pdf


Patent Number 243399
Indian Patent Application Number 544/KOL/2003
PG Journal Number 42/2010
Publication Date 15-Oct-2010
Grant Date 13-Oct-2010
Date of Filing 21-Oct-2003
Name of Patentee BECTON DICKINSON AND COMPANY
Applicant Address ONE BECTON DRIVE, FRANKLIN LAKES, NEW JERSEY
Inventors:
# Inventor's Name Inventor's Address
1 WILKINSON BRADLEY M 39 HILSIDE DRIVE, NORTH HALEDON, NJ
PCT International Classification Number A61M 5/32
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/387,919 2003-03-13 U.S.A.