Title of Invention

"APPARATUS AND METHOD FOR PRODUCING MALEIC ANHYDRIDE USING A FLUIDIZED BED REACTOR"

Abstract An apparatus for providing a mixture of an oxygen-bearing gas and a gaseous reactant stream selected from the group consisting of butane, butane and benzene to a reactor having fluidized beds to produce a maleic anhydride, comprising a source of a first oxygen-bearing gas coupled to said reactor; said gaseous reactant stream; a sparger means for entraining a second oxygen-bearing gas into said gaseous reactant stream; a feed means which couples said sparger means to said fluidized bed of said reactor, for introducing said reactant gas stream and entrained second oxygen-bearing gas directly into contact with said fluidized bed; and a control means for controlling feed of said second oxygen-bearing gas to said sparger means so as to entrain sufficient oxygen into said gaseous reactant stream at a point of feed injection to maintain an effective amount of oxygen for producing said maleic anhydride.
Full Text This invention relates to an apparatus and method for producing maleic anhydride by using a fluidized bed reactor.
FIELD OF THE INVENTION
This invention relates to a method and apparatus for entraining an oxygen-bearing gas in a reactant stream which is fed to a fluidized bed reactor and, more particularly, for injection of oxygen into a reactant feed stream to a fluidized bed reactor that is employed in a maleic anhydride synthesis process.
BACKGROUND OF THE INVENTION
The production of anhydrides involves partial oxidation of an appropriate hydrocarbon in the presence of a suitable catalyst. Commercial maleic anhydride production employs feeds of an appropriate gaseous reactant stream such as butane, butane or benzene into a partial oxidation reactor where, in the presence of air/oxygen and a suitable catalyst, maleic anhydride is produced with lower amounts of other oxygenates and carbon oxides. IN most cases, butane is the preferred feedstock. When butane is used as the starting raw material, the reactor is often a fluidized bed reactor which includes a separate air injection conduit for introduction of air into the fluidized bed.
To provide oxygen for the conversion of butane to maleic anhydride, the prior art has suggested the addition of oxygen o oxygen-containing gas directly to the feed flow or as a separate feed to the reactor. Such teachings can be found in US Patent No. 3,899,516 to Dickason, US Patent No. 4, 668, 802 to Contractor, US Patent Nos. 4,987,239 and 5, 126, 463 to Ramachandran et at. None of the aforesaid patents_


provides anv, teaching that an oxygen deficiency can occur in a fluidized bed reactor at the point of reactant feed introduction. pickason teaches adding substantially pure oxygen dire'ctly to the reactor at high butane concentrations. Contractor teaches the use of a transport bed with air, oxygen enriched air, or oxygen in the regeneration zone. Both /Kamachandran--—" patents' teach that when pure oxygen feed is present in the partial oxidation reactor, that a gaseous flame suppressor mixture be utilized, e.g., carbon dioxide or a substantially unreacted hydrocarbon. As a result, both Ramachandran patents provide further apparatus downstream from the partial oxidation reactor to recover and recycle the carbon dioxide and unreacted hydrocarbon feed.
U.S. Patent No. 3,661,165 to Rainbird et al. discloses a sparger valve for mixing oxygen with gaseous hydrocarbons in a process stream. The Rainbird et al. sparger valve includes a number of jets facing downstream within the hydrocarbon gas flow. The jets introduce oxygen at a jet velocity that is substantially higher than the velocity of the hydrocarbon gas. Variations in oxygen mass flow are achieved by varying the area of the jet orifices, while maintaining a predetermined pressure drop across the orifices.
U.S. Patent No. 3,702,619 to Son discloses a process and apparatus for dispensing /a"n aaseous stream into another gaseous stream in an inline mixing apparatus.
U.S. Patent No. 5,356,213 to Arpentinier describes a further sparger design which is positioned coaxially with respect to the axis of a channel containing a feed





stream. Radial vanes are employed in the sparger to inject gas in a substantially radial direction towards the outside of the feed flow so as to enable a mixing of the injected gas with the feed flow gas
The above noted prior art includes no teaching of fluidized bed reactor performance penalties which occur
as a result of oxygen deficiencies at points of feed
tream introduction. Further, the prior art, while
including teachings regarding the introduction of
oxygen-bearing--gases at various points in a process,
includes nd teachings' of how such an introduction can
be accomplished in a manner to assure process safety.

Accordingly, it is an object of this invention to
provide an improved system for enabling an oxygen
bearing gas to be combined with a gaseous reactant feed

flow to a fluidized bed reactor.
It is another object of this invention to provide 1

an improved system and method for combining, an oxygen-
bearing gas and gaseous reactants in a manner to avoid
explosions, deflagration or other anomalous effects in

the process.
It is yet another object of this invention to provide an improved method and system for addition of oxygen to butane in a fluidized bed reactor wherein oxygen deficiencies at feed flow entries are voided.
SUMMARY OF THE INVENTION
A system provides an oxygen-bearing gas and a gaseous reactant stream to a fluidized bed reactor. A sparger causes an entraining of the oxygen-bearing gas into the reactant gas stream. A feed line couples the sparger to the reactor's fluidized bed and introduces the reactant gas stream and entrained oxygen-bearing

gas directly into contact with the fluidized bed. A controller controls both the amount of oxygen-bearing gas and the gaseous reactant so that, at the point of feed injection, the fluidized bed catalyst does not experience an oxygen deficiency. To assure safety, the reactant content of the combined feed and oxygen stream is maintained above an upper flammability limit, preferably with a safety margin of at least 10%. In one embodiment, the system enabled the production of maleic anhydride from a feed stream comprising butane and oxygen.
Accordingly, there is provided an apparatus for providing a mixture of an oxygen-bearing gas and a gaseous reactant stream selected from the group consisting of butane, butane and benzene to a reactor having fluidized beds to produce a maleic anhydride, comprising a source of a first oxygen-bearing gas coupled to said reactor; said gaseous reactant stream; a sparger means for entraining a second oxygen-bearing gas into said gaseous reactant stream; a feed means which couples said sparger means to said fluidized bed of said reactor, for introducing said reactant gas stream and entrained second oxygen-bearing gas directly into contact with said fluidized bed; and a control means for controlling feed of said second oxygen-bearing gas to said sparger means so as to entrain sufficient oxygen into said gaseous reactant stream at a point of feed injection to maintain an effective amount of oxygen for producing said maleic anhydride.
Accordingly, there is also provided a method carried out in the apparatus for providing a mixture of an oxygen-bearing gas and a gaseous reactant stream selected from the group consisting of butane, butane and benzene to a fluidized bed reactor to produce maleic anhydride, comprising the steps of entraining an oxygen-bearing gas into said gaseous reactant stream; feeding said gaseous reactant stream and entrained second oxygen-bearing gas directly into contact with said fluidized bed reactor; and controlling feed of said oxygen-bearing gas so as to entrain sufficient oxygen into said gaseous reactant stream at a point to feed injection for maintaining an effective amount of oxygen directed to produce said maleic anhydride.

BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram of a system that
embodies the invention hereof.
Fig. 2 is a sectional view of a feed pipe which
includes a sparger for introducing oxygen into a
gaseous feed stream.
Fig. 3 is a schematic view of a pair of adjacent
jets of the sparger of Fig. 2.
DETAILED DESCRIPTION OF THE INVENTION
While the invention will hereafter be described in the context of fluidized bed maleic anhydride production process, those skilled in the art will realize that it is equally applicable to other processes which entrain an oxygen-containing gas with a reactant stream feed to a fluidized bed reactor. In Fig. 1, a system is shown for producing maleic anhydride using a fluidized bed partial oxidation process. A conduit 10 provides a flow of butane through a control valve 12, a check valve 14 to a
sparger 26. An oxygen source is connected via a control valve 28 to sparger 26.
Sparger 26 thereby enables oxygen to be entrained into the mixed reactant gas stream and to pass via conduit 30 to feedlines 32. Feedlines 32 are in direct contact with a fluidized bed 34 which comprises a particulate catalyst that facilitates a reaction occurring between the butane and oxygen constituents to produce maleic anhydride. That product is output from reactor 36 via conduit 38 where it is subjected to further processing. At the bottom of reactor 36 is an air feed 38 which provides additional oxygen for the
reaction.
A controller 40 includes control connections to A each of valves 12, 20 and 28 and serves to control t/ reactant feeds therethrough in accordance with sensed process conditions. While a single controller 40 is
sh'own in the Fig. 1, those skilled in the art
realize that a plurality of controllers can be used to control the respective valves and other control entities. The process inputs to controller 40 are not
shown in the Figs. 2 and 3.
Controller 40 (under operator control) assures that sufficient oxygen is injected by sparger 26 into the feed stream to assure at the points of injection within fluidized bed reactor 36, that sufficient oxygen is present to prevent an oxygen deficiency at such points of injection. The controller further assures that the mixed concentration of reactants and oxygen is kept above an upper flammability limit (UFL) of the mixture. An acceptable safety margin of at least 10%, and preferably 25%, should be maintained.

The direct injection of oxygen with the reactants enables a concentration of oxygen at the region of feed injection which enables both a yield improvement and lifetime extension. Air flow into reactor 36, via conduit 38 also is adjusted to assure that the proper amount of oxygen is entrained within the reactor fluidized bed to enable optimum reaction conditions to be achieved. It is vital to the invention that plural oxygen supplies be provided to fluidized bed reactor 36, one supply assuring a proper oxygen concentration at the immediate regions of feed injection and the second oxygen supply assuring overall appropriate oxygen availability within the fluidized bed to enable proper reaction conditions to be achieved.
As indicated above, the feed flow of oxygen through sparger 26 is maintained at a level to assure that the upper flammability limit of the mixed reactant gas stream is exceeded. The upper and lower flammability limits (UFL and LFL) for a butane feed stream in 100% oxygen is about 49.0 and 1.8, respectively, at 3.1 kgf/cm2g, 440°C.
Sparger 26 is shaped to allow its injectors to be arranged in pattern that achieves effective oxygen distribution throughout the reactant gas flow. The injectors are further positioned so as to prevent interaction of flammable mixtures which occur within the feed stream. In Fig. 2, sparger 26 is positioned within conduit 30 and is preferably shaped in the form of a single ring 50 that is positioned normal to the feed gas flow. To achieve good gas distribution, the inner and outer diameters of ring 50 are set so that there is substantially equal gas flow in regions 52 and 54, respectively. This arrangement assures that a low

pressure area is not formed in the feed pipe within the ring of injectors (which would draw together the jets, cause a coalescence thereof and create a severe problem in the event of an ignition of one of the jets). Thus, the effective cross-sectional areas of regions 52 and 54 are made approximately equal by appropriate sizing of ring 50.
Within ring 50 is .a channel 56 which communicates with valve 28 (see Fig. 1) via inlet 58. A plurality of fixed jets 60 are positioned about ring 50 and are oriented so as to direct oxygen outflow from channel 56 in a downstream direction within conduit 30.
A sectional view of a pair of jets 60' and 60" is shown in Fig. 3. Oxygen flows out of jets 60' and 60" and creates substantially pure oxygen regions 70 and 72. The mixed reactant feed gas is present in regions 74, 74' and 74". Within regions 76 and 78 (cross-hatched), a mixture of oxygen and reactants occurs which is within the flammable ranges. Further downstream (regions 80 and 82), the gaseous mixture is non-flammable, even though oxygen bearing.
The spacing D between adjacent jets 60" and 60" is adjusted so that the flammable regions 76 and 78 do not interact. The limitation of jet-to-jet interaction reduces the probability of a once ignited jet causing ignition of another jet and of the jets coalescing to form a single jet with a large flame volume. The orifices of adjacent jets are thus placed so that neighboring regions of flammable gas mixture do not interact. Further, the mixed gas regions from adjacent jets intersect at a point beyond the farthest extent of the flammable regions. The risk of ignition is further reduced by lowering the total combined flammable volume

contained within each oxygen jet. This is accomplished by minimizing the orifice diameter of each jet which, in turn, tends to maximize the number of orifices to accomplish a desired oxygen flow level.
The distance between a center of one orifice to the center of an adjacent orifice is given by:
D > d0{258.7-UFL)/(100-UFL) }
where: D = center - center distance between orifices; d0=orifice diameter; UFL = upper flammability limit (in percent).
A risk of sustained jet deflagration is further reduced by insuring that the oxygen jet velocity is appreciably greater than both the velocity of the gaseous feed reactants and the flame velocity of a flammable oxygen reactant mixture. Such a jet velocity promotes flame blowoff, should flaming occur. To encourage blowoff, the initial oxygen jet velocity is preferably at least twice either the feed velocity of the reactant stream or flame velocity, which ever is greater. Further, the sparger is not to be constructed out of square shaped tube or to be supported with angle iron. Such structures include sharp angles which create eddies that can enhance flame stability.
Returning to Fig. 1, controller 40 operates valves 12, 20 and 28 to provide about four parts butane and ninty-six parts of air to fluidized bed reactor 36. The injection of oxygen, via valve 28 and sparger 26, enables a modest reduction in air flow via conduit 28. In addition to assuring that the combined

reactant/oxygen flow in conduit 30 is in excess of the upper flammability level, it is preferred that the volumetric outflow from sparger 26 does not exceed a relative volumetric flow of 38% oxygen and 62% butane, more preferably, the volumetric outflow does not exceed a relative volumetric flow of 32% oxygen and 68% butane.
Rather than decreasing the air flow when the oxygen is added to the butane system, the air flow can be maintained at the pre-oxygen addition level. The butane feed rate can be increased without reducing yield. In this manner, direct oxygen injection can be used to boost maleic anhydride production.
Direct oxygen injection can also be coupled with air enrichment so that oxygen is added to both the butane feed stream and the air stream. The air flow can either be reduced or maintained at the pre-oxygen addition level. Doing so maximizes the yield and production improvements obtained by oxygen addition.
If oxygen flow is suddenly increased or the reactant feed flow suddenly decreased, it is possible that the output from sparger 26 may move into a detonatable region. To control a sudden increase in oxygen flow, valve 28 is provided with a critical flow orifice which limits the possible oxygen flow. The orifice is sized so that even if valve 28 fails in the full-open state, the amount of oxygen required to produce a detonation under normal minimum feed flow rates cannot be supplied.
During emergency process shutdown, so long as the oxygen flow to sparger 26 is shut down simultaneously with the process reactants, the oxygen flow will be stopped simultaneously with the stoppage of reactant

flow. Since oxygen valve 28 is significantly smaller than either of feed valves 12 and 20, the oxygen flow will stop before the flow of reactants - thereby preventing a feed concentration build-up to a detonatable level.
Controller 40 is operated to shut the oxygen flow to sparger 26 if the feed reactant pressures drop below a certain level. This is because a significant drop in feedflow can be brought about by feed blockage and a pressure-based shut-down response of valve 28 prevents a possible subsequent detonatable mixture from entering conduit 30.
Additionally, controller 40 is operated to shut the oxygen flow to sparger 26 if the temperature of the mixed oxygen reactant stream goes above a certain level. This is because a significant increase in gas mixture temperature can be brought about by a deflagration near the sparger and a temperature-based shut-down response of valve 28 will extinguish such a deflagration.
Valve 28 is also controlled by controller 40 to assure certain minimum oxygen flows to sparger 26. In operation, reactant feed must be prevented from backstreaming into sparger 26. This is prevented by: maintaining an oxygen flow through each sparger jet 60; maintaining a jet velocity that is great enough to prevent a convective or diffusive flow of the reactant feed into sparger 26; and placing the jets on the downstream side of sparger 26. The maintenance of oxygen flow through each sparger jet 60 is accomplished by insuring that the pressure drop across the jets 60 is significantly greater than the pressure drop within sparger 26. To prevent the reactant feed from

diffusing into sparger 26, it is preferred that a minimum pressure drop across each jet 60 be at least 1 psi and preferably 10 psi.
Finally, during startup, a nitrogen purge is used to flush sparger 26 of reactants before oxygen flow begins. During shutdown, sparger 26 is flushed of oxygen with a nitrogen purge while maintaining a high enough pressure drop to prevent backstreaming. This is necessary because reactants will flow into sparger 26 after shutdown.
While sparger 26 has been shown in the shape of a ring, other shapes such as concentric rings, crossed straight sections and straight tubing are acceptable. However, each such structure must meet the requirements set forth above with respect to the most preferred embodiment, i.e., the circular sparger configuration shown in Fig. 2. Rather than placing the jets directly on the downstream edge of sparger 26, they can be placed off center, but still on the downstream side. This may be beneficial as it allows for a greater number of jets to be employed.
While the above description has focused on use of the invention in a maleic anhydride production process, other gas phase oxidations that use fluidized beds may also employ the invention (e.g., processes for the production of acrylonitrile, phthalic anhydride synthesis, etc.).
Gaseous reactant stream, such as naphthalene or orthoxylene in the form of a gaseous stream, may be used for the oxidative production of phthalic anhydride using the inventive system and process as described herein.

In other embodiments, the production of nicotinonitrile may be produced by reacting 3-methyl pyridine with ammonia in the presence of a catalyst. In yet another embodiment, isophthalonitrile may be produced by reacting metaxylene and ammonia in the presence of a catalyst.
In certain cases, inert gases may be added to either the oxygen or the reactant feed streams to lower the upper fire limit and thus increase the maximum concentration of oxygen allowed in the feed stream.
It should be understood that the foregoing description is only illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.




WE CLAIM:
1. An apparatus for providing a mixture of an oxygen-bearing gas and a gaseous reactant stream selected from the group consisting of butane, butane and benzene to a reactor having fluidized beds to produce a maleic anhydride, comprising:
a) a source of a first oxygen-bearing gas coupled to said
reactor;
b) said gaseous reactant stream;

c) a sparger means for entraining a second oxygen-bearing
gas into said gaseous reactant stream;
d) a feed means which couples said sparger means to said
fluidized bed of said reactor, for introducing said reactant
gas stream and entrained second oxygen-bearing gas
directly into contact with said fluidized bed; and
e) a control means for controlling feed of said second
oxygen-bearing gas to said sparger means so as to entrain
sufficient oxygen into said gaseous reactant stream at a
point of feed injection to maintain an effective amount of
oxygen for producing said maleic anhydride.

2. The apparatus as claimed in claim 1, wherein said first oxygen-
bearing gas is air.
3. The apparatus as claimed in claim 1, wherein said second
oxygen- bearing gas is oxygen.
4. The apparatus as claimed in claim 1, wherein said fluidized bed
has a catalyst for converting said gaseous reactant stream and
oxygen-bearing gas into a maleic anhydride.
5. The apparatus as claimed in claim 1, wherein said control
means adjusts feed of gaseous reactants to said gaseous
reactant stream and said second oxygen-bearing gas to assure

that a combined stream of said gaseous reactant gas stream and second oxygen-bearing gas is maintained above an upper flammability limit.
6. A method carried out in the apparatus as claimed in claim 1 for
providing a mixture of an oxygen-bearing gas and a gaseous
reactant stream selected from the group consisting of butane,
butane and benzene to a fluidized bed reactor to produce maleic
anhydride, comprising the steps of:
a) entraining an oxygen-bearing gas into said gaseous
reactant stream;
b) feeding said gaseous reactant stream and entrained
second oxygen-bearing gas directly into contact with said
fluidized bed reactor; and
c) controlling feed of said oxygen-bearing gas so as to
entrain sufficient oxygen into said gaseous reactant
stream at a point to feed injection for maintaining an
effective amount of oxygen directed to produce said maleic
anhydride.

7. The method as claimed in claim 6, wherein said gaseous
reactant stream has butane, said oxygen-bearing gas is oxygen,
said method includes adding a catalyst for converting said
butane and oxygen into a maleic anhydride.
8. The method as claimed in claim 6, wherein said controlling step
maintains said feed of said gaseous reactant stream and oxygen
above an upper flammability limit.
9. The method as claimed in claim 6, wherein said controlling step
maintains a combined stream of said oxygen and gaseous
reactant stream above an upper flammability limit.

10. An apparatus for providing a mixture of an oxygen-bearing gas
and a gaseous reactant stream substantially as herein before
described with reference to the accompanying drawings.
11. A method for providing a mixture of an oxygen-bearing gas and
a gaseous reactant stream substantially as herein before
described with reference to the accompanying drawings.

Documents:

1701-del-1998-abstract.pdf

1701-del-1998-claims.pdf

1701-del-1998-correspondence-others.pdf

1701-del-1998-correspondence-po.pdf

1701-del-1998-description (complete).pdf

1701-del-1998-drawings.pdf

1701-del-1998-form-1.pdf

1701-del-1998-form-19.pdf

1701-del-1998-form-2.pdf

1701-del-1998-form-3.pdf

1701-del-1998-form-4.pdf

1701-del-1998-gpa.pdf


Patent Number 232729
Indian Patent Application Number 1701/DEL/1998
PG Journal Number 13/2009
Publication Date 27-Mar-2009
Grant Date 20-Mar-2009
Date of Filing 18-Jun-1998
Name of Patentee PRAXAIR TECHNOLOGY, INC.
Applicant Address 39 OLD RIDGEBURY ROAD, DANBURY 06810-5113, STATE OF CONNECTICUT , UNITED STATES AO AMERICA.
Inventors:
# Inventor's Name Inventor's Address
1 MATTHEW LINCOLN WAGNER 259 FISHER AVENUE, WHITE PLAINS, NEW YORK 10606, U.S.A.
PCT International Classification Number C07D 211/40
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA