Title of Invention

TRIAZINE DERIVATIVE AND METHOD FOR PREPARING THE SAME

Abstract The present invention relates to new compounds of formula R<SUP>1</SUB>, R<SUP>2</SUB>, R<SUP>3</SUB>, R<SUP>4</SUB>, R<SUP>5</SUB>, R<SUP>6</SUB>, R<SUP>7</SUB>,and R<SUB>8</SUB> independently from each other are hydrogen; C<SUB>1</SUB>-C<SUB>18</SUB>lkyl; C<SUB>2</SUB>-C<SUB>18</SUB>alkenyl; C<SUB>5</SUB>-C<SUB>7</SUB>cycloalkyl; Ci<SUB>1</SUB>-C<SUB>6</SUB>alkyiene-C<SUB>5</SUB>-C<SUB>7</SUB>Cycloalkyl; R<SUB>9</SUB>, is hydrogen; C<SUB>1</SUB>-C<SUB>18</SUB> alkyi; C<SUB>2</SUB>-C<SUB>18</SUB>alkenyl; C<SUB>5</SUB>-C<SUB>7</SUB> cycloalkyI; C<SUB>1</SUB>-C<SUB>8</SUB>6 alkylene-C<SUB>5</SUB>-C<SUB>7</SUB>Cycloallyl; C<SUB>6</SUB>-C<SUB>10</SUB> A is-S-; -O- or -NR<SUB>10</SUB>-, wherein R<SUB>8</SUB>10 has the same meanings as R<SUB>9</SUB> X is COOR<SUB>11</SUB>,; CONR<SUB>12</SUB>R<SUB>13</SUB>; SO<SUB>3</SUB> R<SUB>14</SUB>- or SO<SUB>2</SUB> NR<SUB>15</SUB>R<SUB>16</SUB>, wherein R<SUB>11</SUB> R<SUB>12</SUB>, R<SUB>13</SUB> R<SUB>14</SUB> R<SUB>15</SUB> and R<SUB>16</SUB> have independently from each other the same meanings as R<SUB>9</SUB>; to their preparation and to their use as UV absorbers in cosmetic and pharmaceutical formulations.
Full Text

TRIAZINE DERIVATIVES AS UV ABSORBERS Triazinc Dcrivativcs-
The present invention relates to anisyl-bis(arylamino)-triazines, to the preparation of these compounds and to their use as UV absorbers in cosmetic and pharmaceutical formulations.
Depending on their wavelength, UV rays are divided in UV-A rays (320 - 400 nm) and UV-B rays (280-320 nm). The harmful effect, in particular the occurrence of sunburn (erythema), increases not only with the duration of exposure but also with decreasing wavelength and is thus significantly more strongly marked in the case of UV-B radiation than in the case of UV-A radiation. Since erythemas can occur even after short exposure to the sun, in some cases after 20-30 minutes, efficient protection against this radiation is of particular importance.
Ultra violet light absorbing compounds (UV-absorbers) do not absorb the complete spectrum of ultra violet light to the same extent at each wavelength. Characteristics of UV-absorbers are therefore the wavelength at which absorption is largest (in nm), and the absorption percentage at this wavelength (relative, calculated using the law of Lambert-Beer). Both this wavelength and absorption percentage at maximum absorbency can be influenced by other components present together with the UV-absorber.
It was now found that specific anisyl-bis(arylamino)-triazines are very effective UV absorbers.
Therefore, the present invention relates to compounds of formula


0)

R„ R2> Rv R4/ K R6' R7 ancl Ra independently from each other are hydrogen; C,-C18alkyl; C2-Ciaalkenyl; Cs-C7cycloalkyl; or CrC6alkylene-CrC7cycloalkyl;







The reaction is preferably carried out in an inert solvent, for example dioxan.
The reaction temperature is preferably from50 to 100°C, more preferably from 60 to 90°C
The obtained reaction product is purified by conventional methods, such as for example recrystallisation.
The compounds of the formula (1) according to the present invention are particularly suitable as UV filters, i.e. for protecting ultraviolet-sensitive organic materials, in particular the skin and hair of humans and animals, from the harmful effects of UV radiation. These compounds are therefore suitable as sunscreens in cosmetic, pharmaceutical and veterinary medical preparations. These compounds can be used both in dissolved form and in the micronized state.
The UV absorbers according to the present invention can be used either in the dissolved
state (soluble organic filters, solubelized organic filters) or in the micronised state (nanoscalar
organic filters, particulate organic filters, UV-absorber pigments).
Any known process suitable for the preparation of microparticles can be used for the
preparation of the micronised UV absorbers, for example:
wet-milling (low viscous micronisation process for pump-able dispersions), with a hard grinding medium, for example zirconium silicate balls in a ball mill and a protective surfactant or a protective polymer in water or in a suitable organic solvent; wet-kneading (high viscous micronisation process non pump-able pastes) using a continuous or discontinuous (batch) kneader. For a wet-kneading process a solvent (water or cosmetically acceptable oils), a grinding-aid (surfactant, emulsifier) and a polymeric grinding aid may be used. Both processes may be used respectively
spray-drying from a suitable solvent, for example aqueous suspensions or suspensions containing organic solvents, or true solutions in water, ethanol, dichloroethane, toluene or N-methylpyrrolidone etc..
by the expansion according to the RESS process (Rapid Expansion of Supercritical Solutions) of supercritical fluids (e.g. COa) in which the UV filter or filters is/are dissolved,

or the expansion of fluid carbon dioxide together with a solution of one or more UV filters in a suitable organic solvent;
by reprecipitation from suitable solvents, including supercritical fluids (CASR process = Qas Anti-Solvent Eecrystallisation / PCA process = Precipitation with Compressed Anti-solvents).
As milling apparatus for the preparation of the micronised organic UV absorbers there may be used, for example, a jet mill, ball mill, vibratory mill or hammer mill, preferably a highspeed mixing mill. Even more preferably mills are modem ball mills, manufactures of these mill-types are for example Netzsch (LMZ-mill), Drais (DCP-viscoflow or cosmo), Buhler AC (centrifugal mills) or Bachhofer. The grinding is preferably carried out with a grinding aid. As kneading apparatus for the preparation of the micronised organic UV absorbers examples are typical sigma-hook batch kneaders but also serial batch kneaders (lKA-Werke) or continuous kneaders (Contiuna from Werner und Pfleiderer).
Useful low molecular weight grinding aids for all the above micronizing processes are surfactants and emulsifies as disclosed below in the chapters "emulsifiers" and "surfactants*.
Useful polymeric grinding aids for water dispersion are cosmetically acceptable water soluble Polymers with Mw > 5000 g/mol for example: Acrylates (Salcare types), modified or non-modified polysaccharides, polyglucosides or xanthan gum. Furthermore an alkylated vinylpyrrolidone polymer, a vinylpyrrolidone/vinyl acetate copolymer, an acyl glutamate, an alkyl polyglucoside, ceteareth-25 or a phospholipid may be used. Oil dispersions may contain cosmetically acceptable waxy polymers or natural waxes as polymeric grinding aid to adjust viscosity during and after processing.
Useful solvents are water, brine, (poly-)ethylenglycol or glycerine for water-soluble dispersions and also cosmetically acceptable oils like described under "emollients" for oil-soluble dispersions.
The micronised UV absorbers so obtained usually have an average particle size from 0.02 to 2 micrometer, preferably from 0.05 to 1.5 micrometer and more especially from 0.1 to 1.0 micrometer.

The UV absorbers can also be used dry in powder form. For that purpose the UV absorbers are subjected to known grinding methods, such as vacuum atomization, countercurrent spray-drying etc.. Such powders have a particle size of from 0.1 micrometer to 2 micrometer. To avoid the occurrence of agglomeration, the UV absorbers can be coated with a surface-active compound prior to the pulverisation process, for example with an anionic, non-ionic or amphoteric surfactant, e.g. a phospholipid or a known polymer, such as PVP, an acrylate etc.
The cosmetic formulations or pharmaceutical compositions according to the present invention can also contain one or more than one further UV filter as described in table 1-3.
The cosmetic or pharmaceutical preparations can be prepared by physically mixing the UV absorber(s) with the adjuvant using customary methods, for example by simply stirring together the individual components, especially by making use of the dissolution properties of already known cosmetic UV absorbers, for example octyl methoxy cinnamate, salicylic acid isooctyl ester, etc. The UV absorber can be used, for example, without further treatment, or in the micronised state, or in the form of a powder.
Cosmetic or pharmaceutical preparations contain from 0.05-40% by weight, based on the total weight of the composition, of one UV absorber or UV absorber mixtures.
Preference is given to the use of mixing ratios of the UV absorber of formula (1) according to the invention and optionally further light-protective agents (as described in table 1-3) from 1:99 to 99:1, especially from 1:95 to 95:1 and preferably from 10:90 to 90:10, based on weight. Of special interest are mixing ratios of from 20:80 to 80:20, especially from 40:60 to 60:40 and preferably approximately 50:50. Such mixtures can be used, inter alia, to improve solubility or increase UV absorption.
The UV absorbers of formula (1) according to the present invention or combinations of UV filters are useful to protect skin, hair and/or natural or artificial hair color.











Suitable UV filter substances which can be additionally used with the UV absorbers according to the present invention are any UV-A and UV-B filter substances.
The cosmetic or pharmaceutical preparations may be, for example, creams, gels, lotions, alcoholic and aqueous/alcoholic solutions, emulsions, wax/fat compositions, stick preparations, powders or ointments. In addition to the above mentioned UV filters, the cosmetic or pharmaceutical preparations may contain further adjuvants as described below.
As water- and oil-containing emulsions (e.g. W/O, O/W, O/W/O and W/O/W emulsions or microemulsions) the preparations contain, for example, from 0.1 to 30 % by weight, preferably from 0.1 to 15 % by weight and especially from 0.5 to 10 % by weight, based on the total weight of the composition, of one or more UV absorbers, from 1 to 60 % by weight, especially from 5 to 50 % by weight and preferably from 10 to 35 % by weight, based on the total weight of the composition, of at least one oil component, from 0 to 30 % by weight, especially from 1 to 30 % by weight und preferably from 4 to 20 % by weight, based on the total weight of the composition, of at least one emulsifier, from 10 to 90 % by weight, especially from 30 to 90 % by weight, based on the total weight of the composition, of water, and from 0 to 88.9 % by weight, especially from 1 to 50 % by weight, of further cosmetically acceptable adjuvants.
The cosmetic or pharmaceutical compositions/preparations according to the invention may also contain one or one more additional compounds as described below.
Fatty alcohols
Cuerbet alcohols based on fatty alcohols having from 6 to 18, preferably from 8 to 10 carbon atoms including cetyl alcohol, stearyl alcohol, cetearyl alcohol, oleyl alcohol, octyl-dodecanol, benzoate of C12-C15 alcohols, acetylated lanolin alcohol, etc..
Esters of fatty acids
Esters of linear C4-C24 fatty acids with linear C3-C24 alcohols, esters of branched CrC13car-boxylic acids with linear C,-C24 fatty alcohols, esters of linear C6-C24 fatty acids with branched alcohols, especially 2-ethyIhexanol, esters of hydroxycarboxylic acids with linear or branched

C$-CM fatty alcohols, especially dioctyl malates, esters of linear and/or branched fatty acids with polyhydric alcohols (for example propylene glycol, dimer diol or trimer triol) and/or Cuerbet alcohols, for example caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeo-stearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and technical-grade mixtures thereof (obtained, for example, in the pressure removal of natural fats and oils, in the reduction of aldehydes from Roelen's oxosynthesis or in the dimerisation of unsaturated fatty acids) with alcohols, for example, isopropyl alcohol, caproic alcohol, capryl alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linoyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachidyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and technical-grade mixtures thereof (obtained, for example, in the high-pressure hydrogenation of technical-grade methyl esters based on fats and oils or aldehydes from Roelen's oxosynthesis and as monomer fractions in the dimerisation of unsaturated fatty alcohols).
Examples of such ester oils are isopropylmyristate, isopropylpalmitate, isopropylstearate, isopropyl isostearate, isopropyloleate, n-butylstearate, n-hexyllaurate, n-decyloleate, isooctyl-stearate, iso-nonylstearate, isononyl isononanoate, 2-ethylhexylpalmitate, 2-hexyllaurate, 2-hexyldecylstearate, 2-octyldodecylpalmitate, oleyloleate, oleylerucate, erucyloleate, erucyl-erucate, cetearyl octanoate, cetyl palmitate, cetyl stearate, cetyl oleate, cetyl behenate, cetyl acetate, myristyl myristate, myristyl behenate, myristyl oleate, myristyl stearate, myristyl palmitate, myristyl lactate, propylene glycol dicaprylate/caprate, stearyl heptanoate, diisostearyl malate, octyl hydroxystearate, etc..
Other adjuvants
diethylhexyl 2,6- naphthalate, di-n-butyl adipate, di(2-ethylhexyl)-adipate, di(2-ethylhexyl> succinate and diisotridecyl acelaat, and also diol esters, such as ethylene glycol dioleate, ethylene glycol diisotridecanoate, propylene glycol di(2-ethylhexanoate), propylene glycol diisostearate, propylene glycol dipelargonate, butanediol diisostearate and neopentyl glycol dicaprylate. Esters of C6-C24 fatty alcohols and/or Cuerbet alcohols with aromatic carboxylic acids, saturated and/or unsaturated, especially benzoic acid, esters of C2-C12dicarboxylic acids

with linear or branched alcohols having from 1 to 22 carbon atoms or polyols having from 2 to 10 carbon atoms and from 2 to 6 hydroxy groups.
Natural or synthetic triglvceridesincluding glyceryl esters and derivatives Di- or tri-glycerides, based on C,-Cia fatty acids, modified by reaction with other alcohols (caprylic/capric triglyceride, wheat germ glycerides, etc.). Fatty acid esters of polyglycerin (polyglyceryl-n such as polyglyceryl-4 caprate, polyglyceryl-2 isostearate, etc. or castor oil, hydrogenated vegetable oil, sweet almond oil, wheat germ oil, sesame oil, hydrogenated cottonseed oil, coconut oil, avocado oil, corn oil, hydrogenated castor oil, shea butter, cocoa butter, soybean oil, mink oil, sunflower oil, safflower oil, macadamia nut oil, olive oil, hydrogenated tallow, apricot kernel oil, hazelnut oil, borago oil, etc.
Waxes including esters of long-chain acids and alcohols as well as compounds having waxlike properties, e.g., carnauba wax, beeswax (white or yellow), lanolin wax, candellila wax, ozokerite, japan wax, paraffin wax, microcrystalline wax, ceresin, cetearyl esters wax, synthetic beeswax,etc Also, hydrophilic waxes as Cetearyl Alcohol or partial glycerides.
Pearlescent waxes:
Ikylene glycol esters, especially ethylene glycol distearate; fatty acid alkanolamides, especially coco fatty acid diethanolamide; partial glycerides, especially stearic acid monoglyceride; esters of polyvalent, unsubstituted or hydroxy-substituted carboxylic acids with fatty alcohols having from 6 to 22 carbon atoms, especially long-chained esters of tartaric acid; fatty substances, for example fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms, especially laurone and distearyl ether; fatty acids, such as stearic acid, hydroxystearic acid or behenic acid, ring-opening products of olefin epoxides having from 12 to 22 carbon atoms with fatty alcohols having from 12 to 22 carbon atoms and/or polyols having from 2 to 15 carbon atoms and from 2 to 10 hydroxy groups, and mixtures thereof.
Hydrocarbon oils:
Mineral oil (light or heavy), petrolatum (yellow or white), microcrystalline wax, paraffinic and
isoparaffinic compounds, hydrogenated isoparaffinic molecules as polydecenes and polybu-

tene, hydrogenated polyisobutene, squalane, isohexadecane, isododecane and others from plant and animal kingdom.
Silicones or siloxanes (organosubstituted polysiloxanes)
Dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones, and also amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and/or alkyl-modified silicone compounds, which at room temperature may be in either liquid or resinous form. Linear poly-siloxanes, dimethicone (Dow Coming 200 fluid, Rhodia Mirasil DM), dimethiconol, cyclic silicone fluids, cyclopentasiloxanes volatiles (Dow Corning 345 fluid), phenyltrimethicone (Dow Coming 556 fluid). Also suitable are simethicones, which are mixtures of dimethicones having an average chain length of from 200 to 300 dimethylsiloxane units with hydrogenated silicates. A detailed survey by Todd et al. of suitable volatile silicones may in addition be found in Cosm. Toil. 91, 27 (1976).
Fluorinated or perfluorinated oils
Perfluorhexane, dimethylcyclohexane, ethylcyclopentane, polyperfluoromethylisopropyl
ether.
Emulsifiers
Any conventionally usable emulsifier can be used for the compositions. Emulsifier systems may comprise for example: carboxylic acids and their salts: alcalin soap of sodium, potassium and ammonium, metallic soap of calcium or magnesium, organic basis soap such as Laurie, palmitic, stearic and oleic acid etc... Alkyl phosphates or phosphoric acid esters, acid phosphate, diethanolamine phosphate, potassium cetyl phosphate. Ethoxylated carboxylic acids or polyethyleneglycol esters, PEG-n acylates. Linear fatty alcohols having from 8 to 22 carbon atoms, branched from 2 to 30 mol of ethylene oxide and/or from 0 to 5 mol propylene oxide with with fatty acids having from 12 to 22 carbon atoms and with alkylphenols having from 8 to 15 carbon atoms in the alkyl group. Fatty alcohol polyglycolether such as laureth-n, ceteareth-n, steareth-n, oleth-n. Fatty acid polyglycolether such as PEG-n stearate, PEG-n oleate, PEG-n cocoate. Monoglycerides and polyol esters. C12-C22 fatty acid mono- and di-esters of addition products of from 1 to 30 mol of ethylene oxide with polyols. Fatty acid and polyglycerol ester such as monostearate glycerol, diisostearoyl polyglyceryl-3-diisostearates, polyglyceryl-3-diisostearates, triglyceryl diisostearates, polyglyceryl-2-sesquiisostearates or

polyglyceryl dimerates. Mixtures of compounds from a plurality of those substance classes are also suitable. Fatty acid polyglycolesters such as monostearate diethylene glycol, fatty acid and polyethylene glycol esters, fatty acid and saccharose esters such as sucro esters, glycerol and saccharose esters such as sucro glycerides. Sorbitol and sorbitan, sorbitan mono- and di-esters of saturated and unsaturated fatty acids having from 6 to 22 carbon atoms and ethylene oxide addition products. Polysorbate-n series, sorbitan esters such as sesquiisostearate, sorbitan, PEG-(6)-isostearate sorbitan, PEG-(10>sorbitan laurate, PEG-17-dioleate sorbitan. Glucose derivatives, C8-C22 alkyl-mono and oligo-glycosides and ethoxy-lated analogues with glucose being preferred as the sugar component. O/W emulsifiers such as methyl gluceth-20 sesquistearate, sorbitan stearate/sucrose cocoate, methyl glucose sesquistearate, cetearyl alcohol/cetearyl glucoside. W/O emulsifiers such as methyl glucose dioleate/ methyl glucose isostearate. Sulfates and sulfonated derivatives, dialkylsulfo-succinates, dioctyl succinate, alkyl lauryl sulfonate, linear sulfonated parafins, sulfonated tetraproplyne sulfonate, sodium lauryl sulfates, amonium and ethanolamine lauryl sulfates, lauyl ether sulfates, sodium laureth sulfates, sulfosuccinates, aceyl isothionates, alkanolamide sulfates, taurines, methyl taurines, imidazole sulfates. Amine derivatives, amine salts, ethoxy-lated amines, oxide amine with chains containing an heterocycle such as alkyl imidazolines, pyridine derivatives, isoquinoteines, cetyl pyridinium chlorure, cetyl pyridinium bromide, quaternary ammonium such as cetyltrimethylbroide amonium broide (CTBA), stearyl-alkonium. Amide derivatives, alkanolamides such as acylamide DEA, ethoxylated amides such as PEG-n acylamide, oxydeamide. Polysiloxane/polyalkyl/polyether copolymers and derivatives, dimethicone, copolyols, silicone polyethylene oxide copolymer, silicone glycol copolymer. Propoxylated or POE-n ethers (Meroxapols), Polaxamers or poly(oxyethylene)m-block-poly(oxypropylene)n-block(oxyethylene). Zwitterionic surfactants that carry at least one quaternary ammonium group and at least one carboxylate and/or sulfonate group in the molecule. Zwitterionic surfactants that are especially suitable are betaines, such as N-alkyl-N,N-dimethylammonium glycinates, cocoalkyldimethylammonium glycinate, N-acylamino-propyl-N,N-dimethylammonium glycinates, cocoacylaminopropyldimethylammonium glycinate and 2-alkyl-3-carboxymethyl-3-hydroxyethylimidazolines each having from 8 to 18 carbon atoms in the alkyl or acyl group and also cocoacylaminoethylhydroxyethylcarboxy-methylglycinate, N-alkylbetaine, N-alkylaminobetaines. Alkylimidazolines, alkylopeptides, li-poaminoacides, self emulsifying bases and the compounds as described in K.F.DePolo, A short textbook of cosmetology, Chapter 8, Table 8-7, p250-251.

Non ionic bases such as PEC-6 beeswax (and) PEG-6 stearate (and) polyglyceryl -2-iso-stearate [Apifac], glyceryl stearate (and) PEC-100 stearate. [Arlacel 165], PEG-5 glyceryl stearate [arlatone 983 S], sorbitan oleate (and) polyglyceryl-3 ricinoleate.[Arlacel 1689], sorbitan stearate and sucrose cocoate [arlatone 2121], glyceryl stearate and laureth-23 [Cerasynth 945], cetearyl alcohol and ceteth-20 [Cetomacrogol Wax], cetearyl alcohol and colysorbate 60 and PEG-150 and stearate-20[Polawax GP 200, Polawax NF], cetearyl alcohol and cetearyl polyglucoside [Emulgade PL 1618], cetearyl alcohol and ceteareth-20 [Emul-gade 1000NI, Cosmowax], cetearyl alcohol and PEG-40 castor oil [Emulgade F Special], cetearyl alcohol and PEG-40 castor oil and sodium cetearyl sulfate [Emulgade F], stearyl alcohol and steareth-7 and steareth-10 [Emulgator E 2155], cetearyl alcohol and szeareth-7 and steareth-10 [Emulsifying wax U.S.N.F], glyceryl stearate and PEG-75 stearate [Gelot 64], propylene glycol ceteth-3 acetate .[Hetester PCS], propylene glycol isoceth-3 acetate [Hetester PHA], cetearyl alcohol and ceteth-12 and oleth-12 [Lanbritol Wax N 21], PEG -6 stearate and PEG-32 stearate [Tefose 1500], PEG-6 stearate and ceteth-20 and steareth-20 [Tefose 2000], PEG-6 stearate and ceteth-20 and glyceryl stearate and steareth-20 [Tefose 2561], glyceryl stearate and ceteareth-20 [Teginacid H, C, X].
Anionic alkalin bases such as PEG-2 stearate SE, glyceryl stearate SE [Monelgine, Cutina KD], propylene glycol stearate [Tegin P], Anionic acid bases such as cetearyl Alcohol and Sodium cetearyl sulfate [Lanette N, Cutina LE, Crodacol GP], cetearyl alcohol and sodium lauryl sulfate [Lanette W], trilaneth-4 phopshate and glycol stearate and PEG-2 stearate [Sedefos 75], glyceryl stearate and sodium lauryl Sulfate [Teginacid Special]. Cationic acid bases such as cetearyl alcohol and cetrimonium bromide.
The emulsifiers may be used in an amount of, for example, from 1 to 30 % by weight, especially from 4 to 20 % by weight and preferably from 5 to 10 % by weight, based on the total weight of the composition.
When formulated in O/W emulsions, the preferably amount of such emulsifier system could represent 5% to 20% of the oil phase.

Adjuvants and additives
The cosmetic / pharmaceutical preparations, for example creams, gels, lotions, alcoholic and aqueous/alcoholic solutions, emulsions, wax/fat compositions, stick preparations, powders or ointments, may in addition contain, as further adjuvants and additives, mild surfactants, super-fatting agents, consistency regulators, thickeners, polymers, stabilisers, biogenic active ingredients, deodorising active ingredients, anti-dandruff agents, film formers, swelling agents, further UV light-protective factors, antioxidants, hydrotropic agents, preservatives, insect repellents, self-tanning agents, solubilisers, perfume oils, colourants, bacteria-inhibiting agents and the like.
Super-fatting agents
Substances suitable for use as super-fatting agents are, for example, lanolin and lecithin and
also polyethoxylated or acrylated lanolin and lecithin derivatives, polyol fatty acid esters,
monoglycerides and fatty acid alkanolamides, the latter simultaneously acting as foam
stabilisers.
Surfactants
Examples of suitable mild surfactants, that is to say surfactants especially well tolerated by the skin, include fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono-and/or di-alkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid tau-rides, fatty acid glutamates, a-olefin sulfonates, ethercarboxylic acids, alkyl oligoglucosides, fatty acid glucamides, alkylamidobetaines and/or protein fatty acid condensation products, the latter preferably being based on wheat proteins.
Consistency regulators/thickeners and rheoloov modifiers
Silicium dioxide, magnesium silicates, aluminium silicates, polysaccharides or derivatives thereof for example hyaluronic acid, xanthan gum, guar-guar, agar-agar, alginates, carra-ghenan, gellan, pectines, or modified cellulose such as hydroxycellulose, hydroxypropyl-methylcellulose. In addition polyacrylates or homopolymer of reticulated acrylic acids and polyacrylamides, carbomer (carbopol types 980, 981,1382, ETD 2001, ETD2020, Ultrez 10) or Salcare range such as Salcare SC80(steareth-10 allyl ether/acrylates copolymer), Salcare SC81(acrylates copolymer), Salcare SC91 and Salcare AST(sodium acrylates copolymer/PPG-1 trideceth-6), sepigel 305(polyacrylamide/laureth-7), Simulgel NS and Simulgel EC (hydro-

xyethyl acrylate / sodium acryloyldimethyl taurate copolymer), Stabilen 30 (acrylates / vinyl isodecanoate crosspolymer), Pemulen TR-1 (acrylates / CI 0-30 alkyl acrylate crosspolymer), Luvigel EM (sodium acrylates copolymer), Aculyn 28 (acrylates/beheneth-25 methacrylate copolymer), etc.
Polymers
Suitable cationic polymers are, for example, cationic cellulose derivatives, for example a quatemised hydroxymethyl cellulose obtainable under the name Polymer JR 400 from Amerchol, cationic starches, copolymers of diallylammonium salts and acrylamides, quarter-nised vinylpyrrolidone/vinyl imidazole polymers, for example Luviquat* (BASF), condensation products of polyglycols and amines, quatemised collagen polypeptides, for example lauryl-dimonium hydroxypropyl hydrolyzed collagen (Lamequat^L/Criinau), quatemised wheat polypeptides, polyethyleneimine, cationic silicone polymers, for example amidomethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Carta-retin/Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat 550 / Chemviron), polyaminopolyamides, as described, for example, in FR-A-2 252 840, and the crosslinked water-soluble polymers thereof, cationic chitin derivatives, for example of quatemised chitosan, optionally distributed as microcrystals; condensation products of di-haloalkyls, for example dibromobutane, with bisdialkylamines, for example bisdimethyl-amino-1,3-propane, cationic guar gum, for example Jaguar C-17, jaguar C-16 from Cela-nese, quatemised ammonium salt polymers, for example Mirapol A-15, Mirapol AD-1, Mira-pol AZ-1 from Miranol. As anionic, zwitterionic, amphoteric and non-ionic polymers there come into consideration, for example, vinyl acetate / crotonic acid copolymers, vinylpyrro-lidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether/ maleic anhydride copolymers and esters thereof, uncrosslinked polyacrylic acids and polyacrylic acids crosslinked with polyols, acrylamidopropyl-trimethyl-ammonium chloride /acrylate copolymers, octyl acrylamide/methyl methacrylate-tert-butylaminoethyl methacrylate/2-hydroxypropyl methacrylate copolymers, polyvinylpyrrolidone, vinylpyrrolidone/vinyl acetate copolymers, vinylpyrrolidone/dimethylaminoethyl methacrylate/vinyl caprolactam terpolymers and also optionally derivatised cellulose ethers and silicones. Furthermore the polymers as described in EP 1093796 (pages 3-8, paragraphs 17-68) may be used.

Biogenic active ingredients
Biogenic active ingredients are to be understood as meaning, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes.
Deodorising active ingredients
As deodorising active ingredients there come into consideration, for example, anti-perspirants, for example aluminium chlorohydrates (see J, Soc. Cosm. Chem. 24, 281 (1973)). Under the trade mark Locron* of Hoechst AG, Frankfurt (FRG), there is available commercially, for example, an aluminium chlorohydrate corresponding to formula Al2(OH)5CI x 2.5 H20, the use of which is especially preferred (see J. Pharm. Pharmacol. 26, 531 (1975)). Besides the chlorohydrates, it is also possible to use aluminium hydroxyacetates and acidic aluminium/zirconium salts. Esterase inhibitors may be added as further deodorising active ingredients. Such inhibitors are preferably trialkyl citrates, such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and especially triethyl citrate (Hydagen CAT, Henkel), which inhibit enzyme activity and hence reduce odour formation. Further substances that come into consideration as esterase inhibitors are sterol sulfates or phosphates, for example lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and esters thereof, for example glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, adipic acid monoethyl ester, adipic acid diethyl ester, malonic acid and malonic acid diethyl ester and hydroxycarboxylic acids and esters thereof, for example citric acid, malic acid, tartaric acid or tartaric acid diethyl ester. Antibacterial active ingredients that influence the germ flora and kill or inhibit the growth of sweat-decomposing bacteria can likewise be present in the preparations (especially in stick preparations). Examples include chitosan, phenoxyethanol and chlor-hexidine gluconate. 5-chloro-2-(2,4-dichlorophenoxy)-phenol (Triclosan, Irgasan, Ciba Specialty Chemicals Inc.) has also proved especially effective.
Anti-dandruff agents
As anti-dandruff agents there may be used, for example, climbazole, octopirox and zinc pyri-thione. Customary film formers include, for example, chitosan, microcrystalline chitosan, quaternised chitosan, polyvinylpyrrolidone, vinylpyrrolidone/vinyl acetate copolymers,

polymers of quaternary cellulose derivatives containing a high proportion of acrylic acid; collagen, hyaluronic acid and salts thereof and similar compounds.
Antioxidants
In addition to the primary light-protective substances it is also possible to use secondary light-protective substances of the antioxidant kind that interrupt the photochemical reaction chain triggered when UV radiation penetrates the skin or hair. Typical examples of such antioxidants are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and derivatives thereof, imidazoles (e.g. urocanic acid) and derivatives thereof, peptides, such as D,L-carnosine, D-carnosine, L-carnosine and derivatives thereof (e.g. anserine), carotinoids, carotenes, lyco-pene and derivatives thereof, chlorogenic acid and derivatives thereof, lipoic acid and derivatives thereof (e.g. dihydrolipoic acid), aurothioglycose, propylthiouracil and other thiols (e.g. thioredoxin, glutathione, cysteine, cystine, cystamine and the glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl, lauryl, palmitoyl, oleyl, linoleyl, cholesteryl and glyceryl esters thereof) and also salts thereof, dilauryl thiodipropionate, distearyl thiodipropionate, thiodi-propionic acid and derivatives thereof (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) and also sulfoximine compounds (e.g. buthionine sulfoximines, homocysteine sulfoximine, buthionine sulfones, penta-, hexa-, hepta-thionine sulfoximine), also (metal) chelating agents (e.g. hydroxy fatty acids, palmitic acid phytic acid, lactoferrin), hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts, bilirubin, biliverdin, EDTA, EDDS, ECTA and derivatives thereof, unsaturated fatty acids and derivatives thereof (e.g. linolenic acid, linoleic acid, oleic acid), folic acid and derivatives thereof, ubiquinone and ubiquinol and derivatives thereof, vitamin C and derivatives (e.g. ascorbyl palmitate, magnesium ascorbyl phosphate, ascorbyl acetate), tocopherols and derivatives (e.g. vitamin E acetate), vitamin A and derivatives (e.g. vitamin A palmitate) and also coniferyl benzoate of benzoin resin, rutinic acid and derivatives thereof, glycosylrutin, ferulic acid, furfurylidene glucitol, carnosine, butyl hydroxytoluene, butyl hydroxyanisole, nordihydroguaiaretic acid, trihydroxybutyrophenone, uric acid and derivatives thereof, mannose and derivatives thereof, superoxide dismutase, N-[3-(3,5-di-tert-butyl-4-hydroxy-phenyl)propionyl]sulfanilic acid (and salts thereof, for example the disodium salts), zinc and derivatives thereof (e.g. ZnO, ZnS04), selenium and derivatives thereof (e.g. selenium methionine), stilbene and derivatives thereof (e.g. stilbene oxide, trans-stilbene oxide) and the derivatives suitable according to the invention (salts, esters, ethers, sugars, nucleotides,

nucleosides, peptides and lipids) of those mentioned active ingredients. HALS (="Hindered Amine Light Stabilizers") compounds may also be mentioned- The amount of antioxidants present is usually from 0.001 to 30 % by weight, preferably from 0.01 to 3 % by weight, based on the weight of the UV absorber of formula (1).
Hydrotropic agents
To improve the flow behaviour it is also possible to employ hydrotropic agents, for example ethoxylated or non ethoxylated mono-alcohols, diols or polyols with a low number of carbon atoms or their ethers (e.g. ethanol, isopropanol, 1,2-dipropanediol, propyleneglycol, glyerin, ethylene glycol, ethylene glycol monoethylether, ethylene glycol monobutylether, propylene glycol monomethylether, propylene glycol monoethylether, propylene glycol monobutylether, diethylene glycol monomethylether; diethylene glycol monoethylether, diethylene glycol monobutylether and similar products). The polyols that come into consideration for that purpose have preferably from 2 to 15 carbon atoms and at least two hydroxy groups. The polyols may also contain further functional groups, especially amino groups, and/or may be modified with nitrogen. Typical examples are as follows: glycerol, alkylene glycols, for example ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and also polyethylene glycols having an average molecular weight of from 100 to 1000 Dalton; technical oligoglycerol mixtures having an intrinsic degree of condensation of from 1.5 to 10, for example technical diglycerol mixtures having a diglycerol content of from 40 to 50 % by weight; methylol compounds, such as, especially, trimethylolethane, trimethylol-propane, trimethylolbutane, pentaerythritol and dipentaerythritol; lower alkyl-glucosides, especially those having from 1 to 8 carbon atoms in the alkyl radical, for example methyl and butyl glucoside; sugar alcohols having from 5 to 12 carbon atoms, for example sorbitol or mannitol; sugars having from 5 to 12 carbon atoms, for example glucose or saccharose; amino sugars, for example glucamine; dialcohol amines, such as diethanolamine or 2-amino-1,3-propanediol.
Preservatives and Bacteria-inhibiting agents
Suitable preservatives include, for example,Methyl-,Ethyl-, Propyl-, Butyl- parabens, Benzal-konium chloride, 2-Bromo-2-nitro-propane-1,3-diol, Dehydroacetic acid, Diazolidinyl Urea, 2-Dichloro-benzyl alcohol, DMDM hydantoin, Formaldehyde solution, Methyldibromoglu-tanitrile, Phenoxyethanol, Sodium Hydroxymethylglycinate, Imidazolidinyl Urea, Triclosan

and further substance classes listed in the following reference: K.F.DePolo - A short textbook of cosmetology, Chapter 7, Table 7-2, 7-3, 7-4 and 7-5, p210-219.
Bacteria-inhibiting agents
Typical examples of bacteria-inhibiting agents are preservatives that have a specific action against gram-positive bacteria, such as 2,4,4,-trichloro-2'-hydroxydiphenyl ether, chlorhexi-dine (1,6-di(4-chlorophenyl-biguanido)hexane) orTCC (3,4,4'-trichlorocarbanilide). A large number of aromatic substances and ethereal oils also have antimicrobial properties. Typical examples are the active ingredients eugenol, menthol and thymol in clove oil, mint oil and thyme oil, A natural deodorising agent of interest is the terpene alcohol farnesol (3,7,11-tri-methyl-2,6,10-dodecatrien-1-ol), which is present in lime blossom oil. Glycerol monolaurate has also proved to be a bacteriostatic agent The amount of the additional bacteria-inhibiting agents present is usually from 0.1 to 2 % by weight, based on the solids content of the preparations.
Perfume oils
There may be mentioned as perfume oils mixtures of natural and/or synthetic aromatic substances. Natural aromatic substances are, for example, extracts from blossom (lilies, lavender, roses, jasmine, neroli, ylang-ylang), from stems and leaves (geranium, patchouli, petitgrain), from fruit (aniseed, coriander, carraway, juniper), from fruit peel (bergamot, lemons, oranges), from roots (mace, angelica, celery, cardamom, costus, iris, calmus), from wood (pine-wood, sandalwood, guaiacum wood, cedarwood, rosewood), from herbs and grasses (tarragon, lemon grass, sage, thyme), from needles and twigs (spruce, pine, Scots pine, mountain pine), from resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax). Animal raw materials also come into consideration, for example civet and castoreum. Typical synthetic aromatic substances are, for example, products of the ester, ether, aldehyde, ketone, alcohol or hydrocarbon type. Aromatic substance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenyl glycinate, allylcyclohexyl propionate, styrallyl propionate and benzyl salicylate. The ethers include, for example, benzyl ethyl ether; the aldehydes include, for example, the linear alkanals having from 8 to 18 hydrocarbon atoms, citral, citronellal, citro-nellyl oxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal; the ke-

tones include, for example, the ionones, isomethylionone and methyl cedryl ketone; the alcohols include, for example, anethol, citronellol, eugenol, isoeugenol, geraniol, linalool, phenyl ethyl alcohol and terpinol; and the hydrocarbons include mainly the terpenes and balsams. It is preferable, however, to use mixtures of various aromatic substances that together produce an attractive scent Ethereal oils of relatively low volatility, which are chiefly used as aroma components, are also suitable as perfume oils, e.g. sage oil, camomile oil, clove oil, melissa oil, oil of cinnamon leaves, lime blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil, labolanum oil and lavandin oil. Preference is given to the use of bergamot oil, dihydromyrcenol, lilial, lyral, citronellol, phenyl ethyl alcohol, hexyl cinnamal-dehyde, geraniol, benzyl acetone, cyclamen aldehyde, linalool, boisambrene forte, ambro-xan, indole, hedione, sandelice, lemon oil, tangerine oil, orange oil, ally! amyl glycolate, cy-dovcrtal, lavandin oil, muscatel sage oil, damascone, bourbon geranium oil, cyclohexyl salicylate, vertofix coeur, iso-E-Super, Fixolide NP, evemyl, iraldein gamma, phenylacetic acid, geranyl acetate, benzyl acetate, rose oxide, romillat, irotyl and floramat alone or in admixture with one another.
Colourants
There may be used as colourants the substances that are suitable and permitted for cosmetic purposes, as compiled, for example, in the publication "Kosmetische FarbemitteP of the Farbstoffkommission derDeutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, pages 81 to 106. The colourants are usually used in concentrations of from 0.001 to 0.1 % by weight, based on the total mixture.
Other adjuvants
It is furthermore possible for the cosmetic preparations to contain, as adjuvants, anti-foams, such as silicones, structurants, such as maleic acid, solubilisers, such as ethylene glycol, propylene glycol, glycerol or diethylene glycol, opacifies, such as latex, styrene/PVP or sty-rene/acrylamide copolymers, complexing agents, such as EDTA, NTA, alaninediacetic acid or phosphonic acids, propellants, such as propane/butane mixtures, N20, dimethyl ether, C02, N2 or air, so-called coupler and developer components as oxidation dye precursors, reducing agents, such as thioglycolic acid and derivatives thereof, thiolactic acid, cysteamine, thio-malic acid or mercaptoethanesulfonic acid, or oxidising agents, such as hydrogen peroxide, potassium bromate or sodium bromate.

Suitable insect repellents are, for example, N,N-diethyl-m-toluamide, 1,2-pentanedioI or insect repellent 3535; suitable self-tanning agents are, for example, dihydroxyacetone and/or erythrulose or dihydroxy acetone and/or dihydroxy acetone precursors as described in WO 01/85124 and/or erythrulose.
Polymeric beads or hollow spheres as SPF enhancers
The combination of the UV-absorbers and UV-absorber combinations, listed above, with SPF enhancers, such as non-active ingredients like Styrene/acrylates copolymer, silica beads, spheroidal magnesium silicate, crosslinked Polymethylmethacrylates (PMMA; Micopearl M305 Seppic), can maximize better the UV protection of the sun products. Holosphere additives (Sunspheres® ISP, Silica Shells Kobo.) deflect radiation and the effective path length of the photon is therefore increased.( EP0893119). Some beads, as mentioned previously, provide a soft feel during spreading. Moreover, the optical activity of such beads, e.g.Micropearl M305, cans modulate skin shine by eliminating reflection phenomena and indirectly may scatter the UV light. When formulated in O/W emulsions, the preferably amount of such SPF enhancers should represent 1% to 10% of the total amount of the emulsion.
Cosmetic or pharmaceutical preparations
Cosmetic or pharmaceutical formulations are contained in a wide variety of cosmetic
preparations. There come into consideration, for example, especially the following
preparations:
skin-care preparations, e.g. skin-washing and cleansing preparations in the form of
tablet-form or liquid soaps, soapless detergents or washing pastes,
bath preparations, e.g. liquid (foam baths, milks, shower preparations) or solid bath
preparations, e.g. bath cubes and bath salts;
skin-care preparations, e.g. skin emulsions, multi-emulsions or skin oils;
cosmetic personal care preparations, e.g. facial make-up in the form of day creams or
powder creams, face powder (loose or pressed), rouge or cream make-up, eye-care
preparations, e.g. eyeshadow preparations, mascara, eyeliner, eye creams or eye-fix
creams; lip-care preparations, e.g. lipsticks, lip gloss, lip contour pencils, nail-care

preparations, such as nail varnish, nail varnish removers, nail hardeners or cuticle removers;
foot-care preparations, e.g. foot baths, foot powders, foot creams or foot balsams, special deodorants and antiperspirants or callus-removing preparations; light-protective preparations, such as sun milks, lotions, creams or oils, sunblocks or tropicals, pre-tanning preparations or after-sun preparations; skin-tanning preparations, e.g. self-tanning creams;
depigmenting preparations, e.g. preparations for bleaching the skin or skin-lightening preparations;
insect-repellents, e.g. insect-repellent oils, lotions, sprays or sticks; deodorants, such as deodorant sprays, pump-action sprays, deodorant gels, sticks or roll-ons;
antiperspirants, e.g. antiperspirant sticks, creams or roll-ons;
preparations for cleansing and caring for blemished skin, e.g. synthetic detergents (solid or liquid), peeling or scrub preparations or peeling masks;
hair-removal preparations in chemical form (depilation), e.g. hair-removing powders, liquid hair-removing preparations, cream- or paste-form hair-removing preparations, hair-removing preparations in gel form or aerosol foams;
shaving preparations, e.g. shaving soap, foaming shaving creams, non-foaming shaving creams, foams and gels, preshave preparations for dry shaving, aftershaves or aftershave lotions;
fragrance preparations, e.g. fragrances (eau de Cologne, eau de toilette, eau de parfum, parfum de toilette, perfume), perfume oils or perfume creams; cosmetic hair-treatment preparations, e.g. hair-washing preparations in the form of shampoos and conditioners, hair-care preparations, e.g. pretreatment preparations, hair tonics, styling creams, styling gels, pomades, hair rinses, treatment packs, intensive hair treatments, hair-structuring preparations, e.g. hair-waving preparations for permanent waves (hot wave, mild wave, cold wave), hair-straightening preparations, liquid hair-setting preparations, hair foams, hairsprays, bleaching preparations, e.g. hydrogen peroxide solutions, lightening shampoos, bleaching creams, bleaching powders, bleaching pastes or oils, temporary, semi-permanent or permanent hair colourants, preparations containing self-oxidising dyes, or natural hair colourants, such as henna or camomile.

Presentation forms
The final formulations listed may exist in a wide variety of presentation forms, for example:
- in the form of liquid preparations as a W/O, O/W, O/W/O, W/O/W or PIT emulsion and all kinds of microemulsions, in the form of a gel,
in the form of an oil, a cream, milk or lotion, in the form of a powder, a lacquer, a tablet or make-up, in the form of a stick,
in the form of a spray (spray with propellent gas or pump-action spray) or an aerosol, in the form of a foam, or in the form of a paste.
Of special importance as cosmetic preparations for the skin are light-protective preparations, such as sun milks, lotions, creams, oils, sunblocks or tropicals, pretanning preparations or after-sun preparations, also skin-tanning preparations, for example self-tanning creams. Of particular interest are sun protection creams, sun protection lotions, sun protection milk and sun protection preparations in the form of a spray.
Of special importance as cosmetic preparations for the hair are the above-mentioned preparations for hair treatment, especially hair-washing preparations in the form of shampoos, hair conditioners, hair-care preparations, e.g. pretreatment preparations, hair tonics, styling creams, styling gels, pomades, hair rinses, treatment packs, intensive hair treatments, hair-straightening preparations, liquid hair-setting preparations, hair foams and hairsprays. Of special interest are hair-washing preparations in the form of shampoos.
A shampoo has, for example, the following composition: from 0.01 to 5 % by weight of a UV absorber according to the invention, 12.0 % by weight of sodium laureth-2-sulfate, 4.0 % by weight of cocamidopropyl betaine, 3.0 % by weight of sodium chloride, and water ad 100%.
For example, especially the following hair-cosmetic formulations may be used:

a,) spontaneously emulsifying stock formulation, consisting of the UV absorber according to the invention, PEG-6-C10oxoalcohol and sorbitan sesquioleate, to which water and any desired quaternary ammonium compound, for example 4 % minkamidopropyl di-methyl-2-hydroxyethylammonium chloride or Quaternium 80 is added;
a2) spontaneously emulsifying stock formulation consisting of the UV absorber according to the invention, tributyl citrate and PEG-20-sorbitan monooleate, to which water and any desired quaternary ammonium compound, for example 4 % minkamidopropyl dimethyl-2-hydroxyethylammonium chloride or Quaternium 80 is added;
b) quat-doped solutions of the UV absorber according to the invention in butyl triglycol
and tributyl citrate;
c) mixtures or solutions of the UV absorber according to the invention with
n-alkylpyrrolidone.
Other typical ingredients in such formulations are preservatives, bactericides and bacteriostatic agents, perfumes, dyes, pigments, thickening agents, moisturizing agents, humectants, fats, oils, waxes or other typical ingredients of cosmetic and personal care formulations such as alcohols, poly-alcohols, polymers, electrolytes, organic solvents, silicon derivatives, emollients, emulgators or emulsifying surfactants, surfactants, dispersing agents, antioxidants, anti-irritants and anti-inflammatory agents etc.
























Composition
INCI-Name % w/w
fas supplied^
DisodiumEDTA 0.10
Part C Water 20.00
Diazolidinyl Urea (and) lodopropynyl Butylcarbamate 0.15
Propylene Glycol 4.00
Part D Sodium Acrylates Copolymer (and) Paraffinium Liquidum (and) 1.50
PPG-1 Trideceth-6
Cyclopentasiloxane 4.50
PEG-12 Dimethicone 2.00
Tocopheryl Acetate 0.45
Water (and) Citric Acid qs
Part E Fragrance qs
Preparation
Part A and part B are heated separately to 75°C. Part A is poured into part B under continuous stirring. Immediately after the emulsification Cyclopentasiloxane and PEG-12 Dimethicone from part D are incorporated in the mixture. Afterwards the mixture is homogenized with an Ultra Turrax at 11 000 rpm for 30 sec. and is cooled down to 65°C and Sodium Acrylates Copolymer (and) Paraffinium Liquidum (and) PPG-1 Trideceth-6 is incorporated. Part C is added at a temperature
Example 8: UV Day Lotion
Composition
INCI-Name %w/w
fas supplied^
Part A Cetyl Phosphate 1.75
Cu-C15 Alkyl Benzoate 5.00
Cetearyl Alcohol/ PEC-20 Stearate 2.00
Ethoxydiglycol Oleate 2.00
Stearic Acid 1.50
Ethylhexyl Methoxycinnamate 3.00
Isononyl Isononanoate 2.00
PartB Aqua qstolOO
Xanthan Cum 0.35
UV-absorber dispersion as prepared in example 6 5.00
Disodium EDTA 0.20
Propylene Glycol 2.00
Diazolidinyl Urea (and) Methylparaben (and) Propylparaben (and) 0.70
Propylene Glycol
Glycerin 1.50
Part C Cyclopentasiloxane (and) Dimethiconol 1.00
Ethoxydiglycol 3.00
Dimethicone 2.00
Part D Triethanolamine qs
Preparation
Part A is prepared by incorporating all ingredients, then stirred under moderate speed and heated to 75°C Part B is prepared and heated to 75°C. At this temperature part B is poored into part A under progressive stirring speed, then homogenized (30sec, 15000 rpm). Below 55°C the ingredients of part C are incorporated. After cooling down under moderate stirring the pH is checked and adjusted with triethanolamine.

Example 9: Sun Protection Emulsion Composition
INCI-Name %w/w
fas supplied^
Part A Cetearyl Alcohol (and) Dicetyl Phosphate (and) Ceteth-10 Phos- 4.00
phate
C12-15AlkylBenzoate 2.00
Dicaprylyl Ether 3.00
Ethoxydiglycol Oleate 2.00
Stearic Acid 1.00
Ethylhexyl Methoxycinnamate 3.00
Sodium Acrylates Copolymer (and) Glycine Soja (and) PPG-1 0.30
Trideceth-6
Squalane 3.50
PartB Aqua qstolOO
UV-absorber dispersion as prepared in example 6 5.00
Part C Diazolidinyl Urea (and) lodopropynyl Butylcarbamate 0.15
Propylene Glycol 2.50
Aqua 10.00
Part D Cyclopentasiloxane, Dimethiconol 2.00
Ethoxydiglycol 5.00
Cyclopentasiloxane (and) Dimethicone/Vinyl-dimethicone 2.00
Crosspolymer
Part E Sodium Hydroxide 0.10
Preparation
Part A is prepared by incorporating all ingredients, then stirred under moderate speed and heated to 75°C. Part B is prepared and heated to 75°C, At this temperature, part B is poured into part A under progressive stirring speed. Below 65°C, the ingredients of part D are added separately. After cooling down under moderate stirring to 55°C part C is added. Then the pH is checked and adjusted with sodium hydroxide. The formulation is

Composition
INCI-Name %w/w
fas supplied^
homogenized for 30 sec at 16000rpm.
Example 10: Every Day Lotion
Composition
INCI-Name %w/w
(as supplied)
Part A Stearyl Phosphate 5.00
Tricontanyl PVP 1.00
Ethoxydiglycol Oleate 3.00
Squalane 5.00
C12.15Alkyl Benzoate 5.00
Ethylhexyl Methoxycinnamate 3.00
Glyceryl Stearate 2.00
Cetyl Alcohol 2.00
Part B Aqua 20.00
UV-absorber dispersion as prepared in example 6 3.00
PartC Aqua qstolOO
Steareth-10 Allyl Ether/Acrylates Copolymer 0.50
Glycerin 2.50
Diazolidinyl Urea (and) lodopropynyl Butylcarbamate 0.15
Sodium Lauroyl Glutamate 0.70
Part D Cyclopentasiloxane (and) Dimethiconol 1.50
Triethanolamine 1.85
Preparation
Part A is prepared by incorporating all ingredients, then stirred under moderate speed and heated to 75°C. Part C is prepared and heated to 75°C. Part C is poored into part A under moderate stirring. Immediately after the emulsification part B is added, then neutralized

with a part of the triethanolamine. The formulation is homogenized for 30 sec. After cooling down under moderate stirring Cydopentasiloxane (and) Dimethiconol are added. Below 35°C the pH is checked and adjusted with triethanolamine.
Example 11: Sprayable Sunscreen Emulsion
Composition
INCI-Name %w/w
fas supplied")
Part A Ceteareth-15 (and) Glyceryl Stearate 3.00
Stearyl Alcohol 1.00
Cetyl Ricinoleate 0.80
Dicaprylyl Ether 3.00
C12-i5aklyl Benzoate 3.00
Isohexadecane 2.50
Stearyl Dimethicone 1.00
Ethylhexyl Methoxycinnamate 4.00
Cetyl Alcohol 0.80
Di-C1M1 Alkyl Tartrate 3.00
PartB Aqua qstolOO
Steareth-10 Allyl Ether/Acrylates Copolymer 0.45
PEG-7 Glyceryl Cocoate 2.50
Glycerin 2.00
Propylene Glycol 3.00
Part C Diazolidinyl Urea (and) lodopropynyl Butylcarbamate 0.15
Aqua 20.00
UV-absorber dispersion as prepared in example 6 12.00
Titanium Dioxide (and) Silica (and) Sodium Polyacrylate 8.00
Part D Cydopentasiloxane (and) Dimethiconol 0.85
Part E Sodium Hydroxide (and) Water qs to pH 6.50

-7.00
Part F Fragrance qs
Preparation
Part A and part B are heated up to 80°C Part A is blended into part B under stirring and homogenized with an Ultra Turrax by 11 000 rpm for 30 sec Part C is heated to 60°C and added slowly to the emulsion. After cooling down to 40°C part D is incorporated. Parts E and F are added at room temperature.
Example 12: Daily Care Lotion
Composition
INCl-Name % w/w
(as supplied*)
Part A Polyglyceryl Methyl Glucose Distearate 2.50
Cetearyl Alcohol 2.00
Octyl Stearate 3.00
Caprylic/Capric Triglyceride 4.00
Isohexadecane 4.00
Ethylhexyl Methoxycinnamate 2.70
Part B Aqua 64.80
Glycerin 5.00
Phenoxyethanol (and) Methylparaben (and) Butylparaben (and) 0.50 Ethylparaben (and) Propylparaben
UV-absorber dispersion as prepared in example 6 8.00
Part C Cyclomethicone (and) Dimethicone 3.00
Part D Steareth-10 Allyl Ether/Acrylates Copolymer 0.50
Preparation
Part A and B are heated to 75°C Part A is added into part B under continuous stirring and
homogenized with 11000 rpm for one minute. After cooling down to 50°C part C is added

under continuous stirring. After cooling further down to 30°C part D is added. Afterwards the pH is adjusted between 6.00 - 6.50.
Example 13: Daily Care with UV Protection
Composition
INCI-Name % w/w
fas supplied)
Part A Glyceryl Stearate SE 3.00
Glyceryl Stearate and PEG-100 Stearate 3.50
Cetyl Alcohol 1.50
Myristyl Myristate 2.00
Isopropyl Palmitate 2.50
Paraffinum Perliquidum 5.00
Octyl Dimethyl PABA 3.00
PartB Aqua qsto 100
Propylene Glycol 7.50
Phenoxyethanol (and) Methylparaben (and) Butylparaben (and) 1.00 Ethylparaben (and) Propylparaben
Part C Aqua 30.00
UV-absorber dispersion as prepared in example 6 10.00
Part D Sodium Acrylates Copolymer (and) Paraffinium Liquidum (and) 2.00 PPG-1 Trideceth-6
PartE Citric Acid 0.30
Preparation
Part A and B are heated separately to 75°C. After adding part B into part A the mixture is homogenized with Ultra Turrax for one minute at 11000 rpm. After cooling down to 50°C part C is added. Afterwards the formulation is homogenized for one minute at 16000 rpm. Below 40°C part D is added. At room temperature the pH-value is adjusted with part E between 6.00 and 6.50.

Example 14: 0/W Every Dav UV Protection Lotion Composition
INCI-Name % w/w
fas supplied^
Part A Glyceryl Stearate (and) PEG-100 Stearate 5.00
Stearyl Alcohol 1.00
Tripalmitin 0.70
Dimethicone 2.00
C1M4 Alkyl Benzoate 5.00
Isopropyl Palmitate 5.00
Ethylhexyl Methoxycinnamate 3.00
PartB Water qstolOO
Polysorbate 60 0.50
Glycerin 3.00
Parte Water 10.00
UV-absorber dispersion as prepared in example 6 8.00
Part D Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70 Butylparaben (and) Propylparaben (and) Isobutylparaben
Steareth-10 Allyl Ether/Acrylates Copolymer 1.50
Part E Water (and) Sodium Hydroxide qs
Part F Fragrance qs
Preparation
Part A and B are heated separately up to 75°C, part C to 60°C. Afterwards part B is poured into part A under stirring. The mixture is homogenized with an Ultra Turrax for 30 sec. at 11 000 rpm and part C isincorporated. After cooling down to 40°C part D is added. At room temperature the pH-value is adjusted with sodium hydroxide between 6.30 and 6.70 and part F is added.

Example 15: O/W Every Dav UV Protection
Composition
INCl-Name % w/w
(as supplied^
Part A Glyceryl Stearate (and) PEG-100 Stearate 5.00
Stearyl Alcohol 1.00
Tripalmitin 0.70
Dimethicone 2.00
C1WS Alky I Benzoate 5.00
Isopropyl Palmitate 5.00
Ethylhexyl Methoxycinnamate 3.00
PartB Water qsto 100
Polysorbate 60 0.50
Glycerin 3.00
Part C Water 10.00
UV-absorber dispersion as prepared in example 6 8.00
Part D Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70
Butylparaben (and) Propylparaben (and) Isobutylparaben
Steareth-10 Allyl Ether/Acrylates Copolymer 1.50
Part E Water (and) Sodium Hydroxide qs
Part F Fragrance qs
Preparation
Part A and B are heated separately up to 75°C; part C to 60°C. Afterwards part B is poured into part A under stirring. After homogenization with an Ultra Turrax for 30 sec. at 11 000 rpm part C is incorporated. After cooling down to 40°C part D is added. At room temperature the pH-value is adjusted with sodium hydroxide between 6.30 and 6.70 and part F is added.

Example 16: Sunscreen Cream Composition
INCI-Name % w/w
(as supplied)
Part A Cetearyl Alcohol (and) Dicetyl Phosphate (and) Ceteth-10 4.50
Phosphate
C1W5 Alkyl Benzoate 6.00
Caprylic/Capric Triglyceride 7.00
Pentaerythritol Tetraisostearate 2.00
Ethylhexyl Methoxycinnamate 3.00
Isoamyl p-Methoxycinnamate 2.00
Part B Aqua qs to 100
Glycerin 2.00
Propylene Glycol 1.50
Magnesium Aluminium Silicate 1.20
Part C Steareth-10 Allyl Ether/Acrylates Copolymer 0.50
UV-absorber dispersion as prepared in example 6 12.00
Part D Phenyl Trimethicone 1.50
Phenoxyethanol (and) Methylparaben (and) Butylparaben (and) 0.70 Ethylparaben (and) Propylparaben
Part E sodium hydroxide 0.90
Preparation
Part A and part B are heated separately to 75°C. Part B is added into part A under continuous stirring and afterwards homogenized with Ultra Turrax for 30sec at 11000 rpm. After cooling down to 60°C part C is added. At 40°C part C is added and homogenized for 15sec at 11000 rpm. At room temperature the pH-value is adjusted with part E.

Example 17: UVA/UVB Daily Care Lotion, type O/W
Composition
INCI-Name % w/w
(as supplied^
Part A Glyceryl Stearate (and) PEC-100 Stearate 5.00
Stearyl Alcohol 1.00
Tripalmitin 0.70
Mineral Oil 15.00
Part B Water qs to 100
Polysorbate 60 0.50
Glycerin 3.00
Parte Water 10.00
UV-absorber dispersion as prepared in example 6 8.00
Part D Steareth-10 Allyl Ether/Acrylates Copolymer 1.50
Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70 Butylparaben (and) Propylparaben (and) Isobutylparaben
Part E Water (and) Sodium Hydroxide qs
Part F Fragrance qs
Preparation
Part A and B are heated separately to 75°C; part C to 60°C Part B is poured into part A
under stirring. After 1 minute the mixture is homogenized by 11000 rpm add part C is
added to the mixture of A/B. After cooling down to 40°C part D is incorporated. At room
temperature the pH value is adjusted with part E between 6.3 and 7.0. Finally part F is
added.

Example 18: UVA/UVB Daily Care Lotion, type O/W
Composition
INCI-Name %w/w
(as supplied
Part A Oleth-3 Phosphate 0.60
Steareth-21 2.50
Steareth-2 1.00
Cetyl Alcohol 0.80
Stearyl Alcohol 1.50
Tribehenin 0.80
Isohexadecane 8.00
PartB Water qstolOO
Glycerin 2.00
Disodium EDTA 0.10
Part C Cyclopentasiloxane 4.50
PEC-12 Dimethicone 2.00
Part D Sodium Acrylates Copolymer (and) Mineral Oil (and) PPG-1 1.50
Trideceth-6
Part E UV-absorber dispersion as prepared in example 6 10.00
Part F Tocopheryl Acetate 0.45
DMDM Hydantoin (and) lodopropynyl Butylcarbamate (and) 0.85
Aqua (and) Butylene Glycol
Part G Water (and) Citric Acid qs
Fragrance qs
Preparation
Part A and part B are heated separately to 75°C. Part A is poured into part B under stirring. Immediately after the emulsification, part C is added to the mixture and homogenized with an Ultra Turrax by 11000 rpm for 30 sec. After cooling down to 65°C Sodium Acrylates

Copolymer (and) Mineral Oil (and) PPG-1 Trideceth-6 is added. At 50°C Part E is slowly added. At 35-30°C part F is incorporated. The pH is addjusted with part G between 5.5 and 6.5.
Example 19: UV-A/UV-B Every Dav Protection Lotion O/W
Composition
INCI-Name %w/w
fas supplied^
Part A Glyceryl Dilaurate 2.00
Ethylhexyl Palmitate 6.00
Cetyl Alcohol 1.00
Glyceryl Stearate 2.00
Laureth-23 1.00
Isopropyl Palmitate 2.00
Tribehenin 0.80
Beeswax 1.50
Lanolin Oil 1.00
Part B Water qs to 100
Propylene Glycol 4.00
Water (and) Titanium Dioxide (and) Alumina (and) Sodium 4.00
Metaphosphate (and) Phenoxyethanol (and) Sodium Methyl-paraben
Part C Steareth-10 Allyl Ether/Acrylates Copolymer 1.00
Part D Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 1.00
Butylparaben (and) Propylparaben (and) Isobutylparaben
UV-absorber dispersion as prepared in example 6 8.00
Part E Water (and) Sodium Hydroxide qs
Preparation
Part A and part B are heated separately up to 80°C Part A is poured into part B while
stirring and homogenized with an Ultra Turrax by 11000 rpm for 30 sec. After cooling

down to 60°C part C is incorporated. At 40°C part D is added slowly under continuous stirring. The pH is adjusted with part E between 6.50 - 7.00.
Example 20: Sprayable Sunscreen Lotion
Composition
INCI-Name %w/w
fas supplied^
Part A Potassium Cetyl Phosphate 0.20
Isohexadecane 7.00
VP/Eicosene Copolymer 1.50
Di-C12.n Alkyl Tartrate 6.00
Ethylhexyl Triazone 2.50
c12-15 Alky' Benzoate 4.50
PartB Water qstolOO
Sorbeth-30 2.00
Sorbitan Stearate (and) Sucrose Cocoate 4.00
Titanium Dioxide (and) Alumina (and) Silica (and) Sodium 2.50
Polyacrylate
Part C Water 30.00
UV-absorber dispersion as prepared in example 6 12.00
Part D Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70 Butylparaben (and) Propylparaben (and) Isobutylparaben
Part E Water (and) Citric Acid qs
Preparation
Part A and part B are heated separately up to 80°C, part C to 50°C Part B is poured into part A and homogenized with an Ultra Turrax for 1 minute by 11000 rpm. After cooling down to 50°C part C is added under continuous stirring. At 40°C part D is incorporated and homogenized again for 10 sec. by 11000 rpm. The pH is adjusted with part E.

Example 21: O/W Every Day UV Protection Lotion
Composition
INCI-Name %w/w
fas supplied^
Part A Glyceryl Stearate (and) PEG-100 Stearate 5.00
Stearyl Alcohol 1.00
Tripalmitin 0.70
Dimethicone 2.00
Caprylic/Capric Triglyceride 5.00
Isopropyl Palmitate 5.00
Ethylhexyl Methoxycinnamate 3.00
Part B Water qs to 100
Polysorbate 60 0.50
Glycerin 3.00
PartC Water 10.00
UV-absorber dispersion as prepared in example 6 8.00
Part D Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70 Butylparaben (and) Propylparaben (and) Isobutylparaben
Steareth-10 Allyl Ether/Acrylates Copolymer 1.50
Part E Water (and) sodium hydroxide qs
Part F Fragrance qs
Preparation
Part A and B are heated separately up to 75°C; part C to 60°C. Afterwards part B is poured into part A under stirring. The mixture is homogenized with an Ultra Turrax for 30 sec. at 11 000 rpm and part C is incorporated. After cooling down to 40°C part D is added. At room temperature the pH-value is adjusted with Sodium Hydroxide between 6.30 and 6.70 and part F is added.

Example 22: Water resistant Sunscreen Emulsion Composition
INCI-Name % vv/w
(as supplied^
Part A Polyglyceryl-10 Pentastearate (and) Behenyl Alcohol (and) 2.50
Sodium Stearoyl Lactylate
VP/Eicosene Copolymer 1.50
Stearyl Alcohol 1.50
Squalane 4.00
c12-15 alky Benzoate 7.50
Octocrylene 1.50
4-MethyIbenzyIidene Camphor 3.00
Ethylhexyl Methoxycinnamate 2.00
Part B Water qs to 100
Glycerin 1.80
Steareth-10 Allyl Ether/Acrylates Copolymer 0.80
Part C UV-absorber dispersion as prepared in example 6 9.00
Part D VP/Hexadecene Copolymer 2.70
Cydomethicone 1.50
Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70
Butylparaben (and) Propylparaben (and) Isobutylparaben
Part E Aqua (and) Tocopheryl Acetate (and) Caprylic/Capric 3.50
Triglyceride (and) Polysorbate 80 (and) Lecithin
Part F Fragrance qs
Water (and) sodium hydroxide qs
Preparation
Part A and part B are heated separately to 80°C. Part A is poured into part B under continuous stirring. Afterwards the mixture is homogenized with an Ultra Turrax by 11 000 rpm for 1 min. After cooling down to 60°C part C is incorporated. At 40°C part D is added,

and homogenized for a short time again. At 35°C part E is added. Fragrance is added at
room temperature. Finally the pH is adjusted with sodium hydroxide.
Example 23: UVA/UVB Sun Protection Lotion, O/W type
Composition
INCI-Name % w/w
(as supplied^
Part A Potassium Cetyl Phosphate 2.00
Tricontanyl PVP 1.00
Caprylic/Capric Triglyceride 5.00
C12-15 Alkyl Benzoate 5.00
Cetearyl Isononanoate 5.00
Glyceryl Stearate 3.00
Cetyl Alcohol 1.00
Dimethicone 0.10
Ethylhexyl Methoxycinnamate 5.00
PartB Water qsto100
Glycerin 3.00
Part C Steareth-10 Allyl Ether/Acrylates Copolymer 0.50
Part D UV-absorber dispersion as prepared in example 6 8.00
Part E Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 1.00
Butylparaben (and) Propylparaben (and) Isobutylparaben
Part F Water (and) Sodium Hydroxide qs to pH 7.00
Part G Fragrance qs
Preparation
Part A and part B are heated separately up to 80°C. Part B is poured into part A under
moderate stirring. The mixture is homogenized with an Ultra Turrax at 11000 rpm for 1

minute. After cooling down to 70°C part C is added under stirring. After further cooling down to 50°C part D is incorporated very slowly. At 40°C part E is added. At room temperature the pH is adjusted with part F to 7.00 and part C is added.
Example 24: UVA/UVB Sun Protection Lotion. O/W type
Composition
INCI-Name % w/w
fas supplied^
Part A Potassium Cetyl Phosphate 2.00
Tricontanyl PVP 1.00
Caprylic/Capric Triglyceride 5,00
CtW5 Alkyl Benzoate 5.00
Cetearyl Isononanoate 5.00
Glyceryl Stearate 3.00
Cetyl Alcohol 1.00
Dimethicone 0.10
Ethylhexyl Methoxycinnamate 5.00
Part B Water qs to 100
Glycerin 3.00
Part C Steareth-10 Allyl Ether/Acrylates Copolymer 0.50
Part D UV-absorber dispersion as prepared in example 6 20.00
Part E Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 1.00
Butylparaben (and) Propylparaben (and) Isobutylparaben
Part F Water (and) Sodium Hydroxide qs to pH 7.00
PartG Fragrance qs

Preparation
Part A and part B are heated separately up to 80°C. Part B is poured into part A under moderate stirring. The mixture is homogenized with an Ultra Turrax at 11000 rpm for 1 minute. After cooling down to 70°C part C is added under stirring. After further cooling down to 50°C part D is incorporated very slowly. At 40°C part E is added. At room temperature the pH is adjusted with part F to 7.00 and part G is added.
Example 25: Sunscreen Lotion Composition
INCI-Name %w/w
fas supplied^
Part A Cetearyl Alcohol (and) Dicetyl Phosphate (and) Ceteth»1 0 4.00
Phosphate
c12-15 Alky' Benzoate - 2.00
Dicaprylyl Ether 3.00
Ethoxydiglycol Oleate 2.00
Stearic Acid 1.00
Ethylhexyl Methoxycinnamate 3.00
Sodium Acrylates Copolymer (and) Glycine Soja (and) PPG-1 0.30
Trideceth-6
Squalane 3.50
VP/Eicosene Copolymer 2.00
PartB Water qstolOO
UV-absorber dispersion as prepared in example 6 5.00
Part C Diazolidinyl Urea (and) lodopropynyl Butylcarbamate 0.15
Propylene Glycol 2.50
Water 10.00
Part D Cyclopentasiloxane (and) Dimethiconol 2.00
Ethoxydiglycol 5.00
Cyclopentasiloxane (and) Dimethicone/Vinyl Dimethicone 2.00
Crosspolymer

Part E Aqua (and) Sodium Hydroxide qs
Part F Fragrance qs
Preparation
Part A and part B are heated separately up to 75°C Part B is poured into part A under progressive stirring speed. Below 65°C the ingredients of part D are added separately. After cooling down to 55°C under moderate stirring part C is added. At a temperature below 35°C the pH is checked and adjusted with Sodium Hydroxide and homogenized with an Ultra Turrax for 30 sec. at 11 000 rpm. At room temperature part F is added.
Example 26: W/O Sunscreen Lotion
Composition
iNCI-Name % w/w
fas supplied1)
Part A PEG-7 Hydrogenated Castor Oil 3.00
Polyglyceryl-3 Diisostearate 4.00
Microcrystalline Wax 1.00
Magnesium Stearate 1.50
Propylparaben 0.10
Mineral Oil 15.00
Octyldodecanol 8.00
Ethylhexyl Triazone 1.00
Ethylhexyl Methoxycinnamate 2.00
Part B Water qs to 100
Water (and) Citric Acid 0.05
Methylparaben 0.15
Magnesium Sulfate 0.50
Part C UV-absorber dispersion as prepared in example 6 9.00
Fragrance qs

Preparation
Part A is heated to 80°C whilst stirring. Part B is added into part A and homogenized with
an Ultra Turrax by 11 000 rpm for one minute. After cooling down to 30°C part C is incor
porated.
Example 27: Skin Protection Sunscreen Lotion W/Q
Composition
INCI-Name %w/w
(as supplied^
Part A Polyglyceryl-2 Dipolyhydroxystearate 3.00
Glyceryl Oleate 3.00
Cetearyl Isononanoate 7.00
Hexyl Laurate 6.00
Dicaprylyl Ether 6.00
Propylparaben 0.10
Hexyldecanol 3.00
Magnesium Stearate 1.00
Beeswax 1.00
Ethylhexyl Methoxycinnamate 4.00
Part B Water qs to 100
Methylparaben 0.15
Magnesium Sulfate 1.00
Part C UV-absorber dispersion as prepared in example 6 6.00
Preparation
Part A is heated separately to 80°C under gentle stirring. Part B is added to part A and
homogenized for one minute by 11000 rpm. After cooling down to 30°C part C is added
under continuous stirring.











TRIAZINE DERIVATIVES AS UV ABSORBERS Triazinc Dcrivativcs-
The present invention relates to anisyl-bis(arylamino)-triazines, to the preparation of these compounds and to their use as UV absorbers in cosmetic and pharmaceutical formulations.
Depending on their wavelength, UV rays are divided in UV-A rays (320 - 400 nm) and UV-B rays (280-320 nm). The harmful effect, in particular the occurrence of sunburn (erythema), increases not only with the duration of exposure but also with decreasing wavelength and is thus significantly more strongly marked in the case of UV-B radiation than in the case of UV-A radiation. Since erythemas can occur even after short exposure to the sun, in some cases after 20-30 minutes, efficient protection against this radiation is of particular importance.
Ultra violet light absorbing compounds (UV-absorbers) do not absorb the complete spectrum of ultra violet light to the same extent at each wavelength. Characteristics of UV-absorbers are therefore the wavelength at which absorption is largest (in nm), and the absorption percentage at this wavelength (relative, calculated using the law of Lambert-Beer). Both this wavelength and absorption percentage at maximum absorbency can be influenced by other components present together with the UV-absorber.
It was now found that specific anisyl-bis(arylamino)-triazines are very effective UV absorbers.
Therefore, the present invention relates to compounds of formula


0)

R„ R2> Rv R4/ K R6' R7 ancl Ra independently from each other are hydrogen; C,-C18alkyl; C2-Ciaalkenyl; Cs-C7cycloalkyl; or CrC6alkylene-CrC7cycloalkyl;







The reaction is preferably carried out in an inert solvent, for example dioxan.
The reaction temperature is preferably from50 to 100°C, more preferably from 60 to 90°C
The obtained reaction product is purified by conventional methods, such as for example recrystallisation.
The compounds of the formula (1) according to the present invention are particularly suitable as UV filters, i.e. for protecting ultraviolet-sensitive organic materials, in particular the skin and hair of humans and animals, from the harmful effects of UV radiation. These compounds are therefore suitable as sunscreens in cosmetic, pharmaceutical and veterinary medical preparations. These compounds can be used both in dissolved form and in the micronized state.
The UV absorbers according to the present invention can be used either in the dissolved
state (soluble organic filters, solubelized organic filters) or in the micronised state (nanoscalar
organic filters, particulate organic filters, UV-absorber pigments).
Any known process suitable for the preparation of microparticles can be used for the
preparation of the micronised UV absorbers, for example:
wet-milling (low viscous micronisation process for pump-able dispersions), with a hard grinding medium, for example zirconium silicate balls in a ball mill and a protective surfactant or a protective polymer in water or in a suitable organic solvent; wet-kneading (high viscous micronisation process non pump-able pastes) using a continuous or discontinuous (batch) kneader. For a wet-kneading process a solvent (water or cosmetically acceptable oils), a grinding-aid (surfactant, emulsifier) and a polymeric grinding aid may be used. Both processes may be used respectively
spray-drying from a suitable solvent, for example aqueous suspensions or suspensions containing organic solvents, or true solutions in water, ethanol, dichloroethane, toluene or N-methylpyrrolidone etc..
by the expansion according to the RESS process (Rapid Expansion of Supercritical Solutions) of supercritical fluids (e.g. COa) in which the UV filter or filters is/are dissolved,

or the expansion of fluid carbon dioxide together with a solution of one or more UV filters in a suitable organic solvent;
by reprecipitation from suitable solvents, including supercritical fluids (CASR process = Qas Anti-Solvent Eecrystallisation / PCA process = Precipitation with Compressed Anti-solvents).
As milling apparatus for the preparation of the micronised organic UV absorbers there may be used, for example, a jet mill, ball mill, vibratory mill or hammer mill, preferably a highspeed mixing mill. Even more preferably mills are modem ball mills, manufactures of these mill-types are for example Netzsch (LMZ-mill), Drais (DCP-viscoflow or cosmo), Buhler AC (centrifugal mills) or Bachhofer. The grinding is preferably carried out with a grinding aid. As kneading apparatus for the preparation of the micronised organic UV absorbers examples are typical sigma-hook batch kneaders but also serial batch kneaders (lKA-Werke) or continuous kneaders (Contiuna from Werner und Pfleiderer).
Useful low molecular weight grinding aids for all the above micronizing processes are surfactants and emulsifies as disclosed below in the chapters "emulsifiers" and "surfactants*.
Useful polymeric grinding aids for water dispersion are cosmetically acceptable water soluble Polymers with Mw > 5000 g/mol for example: Acrylates (Salcare types), modified or non-modified polysaccharides, polyglucosides or xanthan gum. Furthermore an alkylated vinylpyrrolidone polymer, a vinylpyrrolidone/vinyl acetate copolymer, an acyl glutamate, an alkyl polyglucoside, ceteareth-25 or a phospholipid may be used. Oil dispersions may contain cosmetically acceptable waxy polymers or natural waxes as polymeric grinding aid to adjust viscosity during and after processing.
Useful solvents are water, brine, (poly-)ethylenglycol or glycerine for water-soluble dispersions and also cosmetically acceptable oils like described under "emollients" for oil-soluble dispersions.
The micronised UV absorbers so obtained usually have an average particle size from 0.02 to 2 micrometer, preferably from 0.05 to 1.5 micrometer and more especially from 0.1 to 1.0 micrometer.

The UV absorbers can also be used dry in powder form. For that purpose the UV absorbers are subjected to known grinding methods, such as vacuum atomization, countercurrent spray-drying etc.. Such powders have a particle size of from 0.1 micrometer to 2 micrometer. To avoid the occurrence of agglomeration, the UV absorbers can be coated with a surface-active compound prior to the pulverisation process, for example with an anionic, non-ionic or amphoteric surfactant, e.g. a phospholipid or a known polymer, such as PVP, an acrylate etc.
The cosmetic formulations or pharmaceutical compositions according to the present invention can also contain one or more than one further UV filter as described in table 1-3.
The cosmetic or pharmaceutical preparations can be prepared by physically mixing the UV absorber(s) with the adjuvant using customary methods, for example by simply stirring together the individual components, especially by making use of the dissolution properties of already known cosmetic UV absorbers, for example octyl methoxy cinnamate, salicylic acid isooctyl ester, etc. The UV absorber can be used, for example, without further treatment, or in the micronised state, or in the form of a powder.
Cosmetic or pharmaceutical preparations contain from 0.05-40% by weight, based on the total weight of the composition, of one UV absorber or UV absorber mixtures.
Preference is given to the use of mixing ratios of the UV absorber of formula (1) according to the invention and optionally further light-protective agents (as described in table 1-3) from 1:99 to 99:1, especially from 1:95 to 95:1 and preferably from 10:90 to 90:10, based on weight. Of special interest are mixing ratios of from 20:80 to 80:20, especially from 40:60 to 60:40 and preferably approximately 50:50. Such mixtures can be used, inter alia, to improve solubility or increase UV absorption.
The UV absorbers of formula (1) according to the present invention or combinations of UV filters are useful to protect skin, hair and/or natural or artificial hair color.











Suitable UV filter substances which can be additionally used with the UV absorbers according to the present invention are any UV-A and UV-B filter substances.
The cosmetic or pharmaceutical preparations may be, for example, creams, gels, lotions, alcoholic and aqueous/alcoholic solutions, emulsions, wax/fat compositions, stick preparations, powders or ointments. In addition to the above mentioned UV filters, the cosmetic or pharmaceutical preparations may contain further adjuvants as described below.
As water- and oil-containing emulsions (e.g. W/O, O/W, O/W/O and W/O/W emulsions or microemulsions) the preparations contain, for example, from 0.1 to 30 % by weight, preferably from 0.1 to 15 % by weight and especially from 0.5 to 10 % by weight, based on the total weight of the composition, of one or more UV absorbers, from 1 to 60 % by weight, especially from 5 to 50 % by weight and preferably from 10 to 35 % by weight, based on the total weight of the composition, of at least one oil component, from 0 to 30 % by weight, especially from 1 to 30 % by weight und preferably from 4 to 20 % by weight, based on the total weight of the composition, of at least one emulsifier, from 10 to 90 % by weight, especially from 30 to 90 % by weight, based on the total weight of the composition, of water, and from 0 to 88.9 % by weight, especially from 1 to 50 % by weight, of further cosmetically acceptable adjuvants.
The cosmetic or pharmaceutical compositions/preparations according to the invention may also contain one or one more additional compounds as described below.
Fatty alcohols
Cuerbet alcohols based on fatty alcohols having from 6 to 18, preferably from 8 to 10 carbon atoms including cetyl alcohol, stearyl alcohol, cetearyl alcohol, oleyl alcohol, octyl-dodecanol, benzoate of C12-C15 alcohols, acetylated lanolin alcohol, etc..
Esters of fatty acids
Esters of linear C4-C24 fatty acids with linear C3-C24 alcohols, esters of branched CrC13car-boxylic acids with linear C,-C24 fatty alcohols, esters of linear C6-C24 fatty acids with branched alcohols, especially 2-ethyIhexanol, esters of hydroxycarboxylic acids with linear or branched

C$-CM fatty alcohols, especially dioctyl malates, esters of linear and/or branched fatty acids with polyhydric alcohols (for example propylene glycol, dimer diol or trimer triol) and/or Cuerbet alcohols, for example caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeo-stearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and technical-grade mixtures thereof (obtained, for example, in the pressure removal of natural fats and oils, in the reduction of aldehydes from Roelen's oxosynthesis or in the dimerisation of unsaturated fatty acids) with alcohols, for example, isopropyl alcohol, caproic alcohol, capryl alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linoyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachidyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and technical-grade mixtures thereof (obtained, for example, in the high-pressure hydrogenation of technical-grade methyl esters based on fats and oils or aldehydes from Roelen's oxosynthesis and as monomer fractions in the dimerisation of unsaturated fatty alcohols).
Examples of such ester oils are isopropylmyristate, isopropylpalmitate, isopropylstearate, isopropyl isostearate, isopropyloleate, n-butylstearate, n-hexyllaurate, n-decyloleate, isooctyl-stearate, iso-nonylstearate, isononyl isononanoate, 2-ethylhexylpalmitate, 2-hexyllaurate, 2-hexyldecylstearate, 2-octyldodecylpalmitate, oleyloleate, oleylerucate, erucyloleate, erucyl-erucate, cetearyl octanoate, cetyl palmitate, cetyl stearate, cetyl oleate, cetyl behenate, cetyl acetate, myristyl myristate, myristyl behenate, myristyl oleate, myristyl stearate, myristyl palmitate, myristyl lactate, propylene glycol dicaprylate/caprate, stearyl heptanoate, diisostearyl malate, octyl hydroxystearate, etc..
Other adjuvants
diethylhexyl 2,6- naphthalate, di-n-butyl adipate, di(2-ethylhexyl)-adipate, di(2-ethylhexyl> succinate and diisotridecyl acelaat, and also diol esters, such as ethylene glycol dioleate, ethylene glycol diisotridecanoate, propylene glycol di(2-ethylhexanoate), propylene glycol diisostearate, propylene glycol dipelargonate, butanediol diisostearate and neopentyl glycol dicaprylate. Esters of C6-C24 fatty alcohols and/or Cuerbet alcohols with aromatic carboxylic acids, saturated and/or unsaturated, especially benzoic acid, esters of C2-C12dicarboxylic acids

with linear or branched alcohols having from 1 to 22 carbon atoms or polyols having from 2 to 10 carbon atoms and from 2 to 6 hydroxy groups.
Natural or synthetic triglvceridesincluding glyceryl esters and derivatives Di- or tri-glycerides, based on C,-Cia fatty acids, modified by reaction with other alcohols (caprylic/capric triglyceride, wheat germ glycerides, etc.). Fatty acid esters of polyglycerin (polyglyceryl-n such as polyglyceryl-4 caprate, polyglyceryl-2 isostearate, etc. or castor oil, hydrogenated vegetable oil, sweet almond oil, wheat germ oil, sesame oil, hydrogenated cottonseed oil, coconut oil, avocado oil, corn oil, hydrogenated castor oil, shea butter, cocoa butter, soybean oil, mink oil, sunflower oil, safflower oil, macadamia nut oil, olive oil, hydrogenated tallow, apricot kernel oil, hazelnut oil, borago oil, etc.
Waxes including esters of long-chain acids and alcohols as well as compounds having waxlike properties, e.g., carnauba wax, beeswax (white or yellow), lanolin wax, candellila wax, ozokerite, japan wax, paraffin wax, microcrystalline wax, ceresin, cetearyl esters wax, synthetic beeswax,etc Also, hydrophilic waxes as Cetearyl Alcohol or partial glycerides.
Pearlescent waxes:
Ikylene glycol esters, especially ethylene glycol distearate; fatty acid alkanolamides, especially coco fatty acid diethanolamide; partial glycerides, especially stearic acid monoglyceride; esters of polyvalent, unsubstituted or hydroxy-substituted carboxylic acids with fatty alcohols having from 6 to 22 carbon atoms, especially long-chained esters of tartaric acid; fatty substances, for example fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms, especially laurone and distearyl ether; fatty acids, such as stearic acid, hydroxystearic acid or behenic acid, ring-opening products of olefin epoxides having from 12 to 22 carbon atoms with fatty alcohols having from 12 to 22 carbon atoms and/or polyols having from 2 to 15 carbon atoms and from 2 to 10 hydroxy groups, and mixtures thereof.
Hydrocarbon oils:
Mineral oil (light or heavy), petrolatum (yellow or white), microcrystalline wax, paraffinic and
isoparaffinic compounds, hydrogenated isoparaffinic molecules as polydecenes and polybu-

tene, hydrogenated polyisobutene, squalane, isohexadecane, isododecane and others from plant and animal kingdom.
Silicones or siloxanes (organosubstituted polysiloxanes)
Dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones, and also amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and/or alkyl-modified silicone compounds, which at room temperature may be in either liquid or resinous form. Linear poly-siloxanes, dimethicone (Dow Coming 200 fluid, Rhodia Mirasil DM), dimethiconol, cyclic silicone fluids, cyclopentasiloxanes volatiles (Dow Corning 345 fluid), phenyltrimethicone (Dow Coming 556 fluid). Also suitable are simethicones, which are mixtures of dimethicones having an average chain length of from 200 to 300 dimethylsiloxane units with hydrogenated silicates. A detailed survey by Todd et al. of suitable volatile silicones may in addition be found in Cosm. Toil. 91, 27 (1976).
Fluorinated or perfluorinated oils
Perfluorhexane, dimethylcyclohexane, ethylcyclopentane, polyperfluoromethylisopropyl
ether.
Emulsifiers
Any conventionally usable emulsifier can be used for the compositions. Emulsifier systems may comprise for example: carboxylic acids and their salts: alcalin soap of sodium, potassium and ammonium, metallic soap of calcium or magnesium, organic basis soap such as Laurie, palmitic, stearic and oleic acid etc... Alkyl phosphates or phosphoric acid esters, acid phosphate, diethanolamine phosphate, potassium cetyl phosphate. Ethoxylated carboxylic acids or polyethyleneglycol esters, PEG-n acylates. Linear fatty alcohols having from 8 to 22 carbon atoms, branched from 2 to 30 mol of ethylene oxide and/or from 0 to 5 mol propylene oxide with with fatty acids having from 12 to 22 carbon atoms and with alkylphenols having from 8 to 15 carbon atoms in the alkyl group. Fatty alcohol polyglycolether such as laureth-n, ceteareth-n, steareth-n, oleth-n. Fatty acid polyglycolether such as PEG-n stearate, PEG-n oleate, PEG-n cocoate. Monoglycerides and polyol esters. C12-C22 fatty acid mono- and di-esters of addition products of from 1 to 30 mol of ethylene oxide with polyols. Fatty acid and polyglycerol ester such as monostearate glycerol, diisostearoyl polyglyceryl-3-diisostearates, polyglyceryl-3-diisostearates, triglyceryl diisostearates, polyglyceryl-2-sesquiisostearates or

polyglyceryl dimerates. Mixtures of compounds from a plurality of those substance classes are also suitable. Fatty acid polyglycolesters such as monostearate diethylene glycol, fatty acid and polyethylene glycol esters, fatty acid and saccharose esters such as sucro esters, glycerol and saccharose esters such as sucro glycerides. Sorbitol and sorbitan, sorbitan mono- and di-esters of saturated and unsaturated fatty acids having from 6 to 22 carbon atoms and ethylene oxide addition products. Polysorbate-n series, sorbitan esters such as sesquiisostearate, sorbitan, PEG-(6)-isostearate sorbitan, PEG-(10>sorbitan laurate, PEG-17-dioleate sorbitan. Glucose derivatives, C8-C22 alkyl-mono and oligo-glycosides and ethoxy-lated analogues with glucose being preferred as the sugar component. O/W emulsifiers such as methyl gluceth-20 sesquistearate, sorbitan stearate/sucrose cocoate, methyl glucose sesquistearate, cetearyl alcohol/cetearyl glucoside. W/O emulsifiers such as methyl glucose dioleate/ methyl glucose isostearate. Sulfates and sulfonated derivatives, dialkylsulfo-succinates, dioctyl succinate, alkyl lauryl sulfonate, linear sulfonated parafins, sulfonated tetraproplyne sulfonate, sodium lauryl sulfates, amonium and ethanolamine lauryl sulfates, lauyl ether sulfates, sodium laureth sulfates, sulfosuccinates, aceyl isothionates, alkanolamide sulfates, taurines, methyl taurines, imidazole sulfates. Amine derivatives, amine salts, ethoxy-lated amines, oxide amine with chains containing an heterocycle such as alkyl imidazolines, pyridine derivatives, isoquinoteines, cetyl pyridinium chlorure, cetyl pyridinium bromide, quaternary ammonium such as cetyltrimethylbroide amonium broide (CTBA), stearyl-alkonium. Amide derivatives, alkanolamides such as acylamide DEA, ethoxylated amides such as PEG-n acylamide, oxydeamide. Polysiloxane/polyalkyl/polyether copolymers and derivatives, dimethicone, copolyols, silicone polyethylene oxide copolymer, silicone glycol copolymer. Propoxylated or POE-n ethers (Meroxapols), Polaxamers or poly(oxyethylene)m-block-poly(oxypropylene)n-block(oxyethylene). Zwitterionic surfactants that carry at least one quaternary ammonium group and at least one carboxylate and/or sulfonate group in the molecule. Zwitterionic surfactants that are especially suitable are betaines, such as N-alkyl-N,N-dimethylammonium glycinates, cocoalkyldimethylammonium glycinate, N-acylamino-propyl-N,N-dimethylammonium glycinates, cocoacylaminopropyldimethylammonium glycinate and 2-alkyl-3-carboxymethyl-3-hydroxyethylimidazolines each having from 8 to 18 carbon atoms in the alkyl or acyl group and also cocoacylaminoethylhydroxyethylcarboxy-methylglycinate, N-alkylbetaine, N-alkylaminobetaines. Alkylimidazolines, alkylopeptides, li-poaminoacides, self emulsifying bases and the compounds as described in K.F.DePolo, A short textbook of cosmetology, Chapter 8, Table 8-7, p250-251.

Non ionic bases such as PEC-6 beeswax (and) PEG-6 stearate (and) polyglyceryl -2-iso-stearate [Apifac], glyceryl stearate (and) PEC-100 stearate. [Arlacel 165], PEG-5 glyceryl stearate [arlatone 983 S], sorbitan oleate (and) polyglyceryl-3 ricinoleate.[Arlacel 1689], sorbitan stearate and sucrose cocoate [arlatone 2121], glyceryl stearate and laureth-23 [Cerasynth 945], cetearyl alcohol and ceteth-20 [Cetomacrogol Wax], cetearyl alcohol and colysorbate 60 and PEG-150 and stearate-20[Polawax GP 200, Polawax NF], cetearyl alcohol and cetearyl polyglucoside [Emulgade PL 1618], cetearyl alcohol and ceteareth-20 [Emul-gade 1000NI, Cosmowax], cetearyl alcohol and PEG-40 castor oil [Emulgade F Special], cetearyl alcohol and PEG-40 castor oil and sodium cetearyl sulfate [Emulgade F], stearyl alcohol and steareth-7 and steareth-10 [Emulgator E 2155], cetearyl alcohol and szeareth-7 and steareth-10 [Emulsifying wax U.S.N.F], glyceryl stearate and PEG-75 stearate [Gelot 64], propylene glycol ceteth-3 acetate .[Hetester PCS], propylene glycol isoceth-3 acetate [Hetester PHA], cetearyl alcohol and ceteth-12 and oleth-12 [Lanbritol Wax N 21], PEG -6 stearate and PEG-32 stearate [Tefose 1500], PEG-6 stearate and ceteth-20 and steareth-20 [Tefose 2000], PEG-6 stearate and ceteth-20 and glyceryl stearate and steareth-20 [Tefose 2561], glyceryl stearate and ceteareth-20 [Teginacid H, C, X].
Anionic alkalin bases such as PEG-2 stearate SE, glyceryl stearate SE [Monelgine, Cutina KD], propylene glycol stearate [Tegin P], Anionic acid bases such as cetearyl Alcohol and Sodium cetearyl sulfate [Lanette N, Cutina LE, Crodacol GP], cetearyl alcohol and sodium lauryl sulfate [Lanette W], trilaneth-4 phopshate and glycol stearate and PEG-2 stearate [Sedefos 75], glyceryl stearate and sodium lauryl Sulfate [Teginacid Special]. Cationic acid bases such as cetearyl alcohol and cetrimonium bromide.
The emulsifiers may be used in an amount of, for example, from 1 to 30 % by weight, especially from 4 to 20 % by weight and preferably from 5 to 10 % by weight, based on the total weight of the composition.
When formulated in O/W emulsions, the preferably amount of such emulsifier system could represent 5% to 20% of the oil phase.

Adjuvants and additives
The cosmetic / pharmaceutical preparations, for example creams, gels, lotions, alcoholic and aqueous/alcoholic solutions, emulsions, wax/fat compositions, stick preparations, powders or ointments, may in addition contain, as further adjuvants and additives, mild surfactants, super-fatting agents, consistency regulators, thickeners, polymers, stabilisers, biogenic active ingredients, deodorising active ingredients, anti-dandruff agents, film formers, swelling agents, further UV light-protective factors, antioxidants, hydrotropic agents, preservatives, insect repellents, self-tanning agents, solubilisers, perfume oils, colourants, bacteria-inhibiting agents and the like.
Super-fatting agents
Substances suitable for use as super-fatting agents are, for example, lanolin and lecithin and
also polyethoxylated or acrylated lanolin and lecithin derivatives, polyol fatty acid esters,
monoglycerides and fatty acid alkanolamides, the latter simultaneously acting as foam
stabilisers.
Surfactants
Examples of suitable mild surfactants, that is to say surfactants especially well tolerated by the skin, include fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono-and/or di-alkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid tau-rides, fatty acid glutamates, a-olefin sulfonates, ethercarboxylic acids, alkyl oligoglucosides, fatty acid glucamides, alkylamidobetaines and/or protein fatty acid condensation products, the latter preferably being based on wheat proteins.
Consistency regulators/thickeners and rheoloov modifiers
Silicium dioxide, magnesium silicates, aluminium silicates, polysaccharides or derivatives thereof for example hyaluronic acid, xanthan gum, guar-guar, agar-agar, alginates, carra-ghenan, gellan, pectines, or modified cellulose such as hydroxycellulose, hydroxypropyl-methylcellulose. In addition polyacrylates or homopolymer of reticulated acrylic acids and polyacrylamides, carbomer (carbopol types 980, 981,1382, ETD 2001, ETD2020, Ultrez 10) or Salcare range such as Salcare SC80(steareth-10 allyl ether/acrylates copolymer), Salcare SC81(acrylates copolymer), Salcare SC91 and Salcare AST(sodium acrylates copolymer/PPG-1 trideceth-6), sepigel 305(polyacrylamide/laureth-7), Simulgel NS and Simulgel EC (hydro-

xyethyl acrylate / sodium acryloyldimethyl taurate copolymer), Stabilen 30 (acrylates / vinyl isodecanoate crosspolymer), Pemulen TR-1 (acrylates / CI 0-30 alkyl acrylate crosspolymer), Luvigel EM (sodium acrylates copolymer), Aculyn 28 (acrylates/beheneth-25 methacrylate copolymer), etc.
Polymers
Suitable cationic polymers are, for example, cationic cellulose derivatives, for example a quatemised hydroxymethyl cellulose obtainable under the name Polymer JR 400 from Amerchol, cationic starches, copolymers of diallylammonium salts and acrylamides, quarter-nised vinylpyrrolidone/vinyl imidazole polymers, for example Luviquat* (BASF), condensation products of polyglycols and amines, quatemised collagen polypeptides, for example lauryl-dimonium hydroxypropyl hydrolyzed collagen (Lamequat^L/Criinau), quatemised wheat polypeptides, polyethyleneimine, cationic silicone polymers, for example amidomethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Carta-retin/Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat 550 / Chemviron), polyaminopolyamides, as described, for example, in FR-A-2 252 840, and the crosslinked water-soluble polymers thereof, cationic chitin derivatives, for example of quatemised chitosan, optionally distributed as microcrystals; condensation products of di-haloalkyls, for example dibromobutane, with bisdialkylamines, for example bisdimethyl-amino-1,3-propane, cationic guar gum, for example Jaguar C-17, jaguar C-16 from Cela-nese, quatemised ammonium salt polymers, for example Mirapol A-15, Mirapol AD-1, Mira-pol AZ-1 from Miranol. As anionic, zwitterionic, amphoteric and non-ionic polymers there come into consideration, for example, vinyl acetate / crotonic acid copolymers, vinylpyrro-lidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether/ maleic anhydride copolymers and esters thereof, uncrosslinked polyacrylic acids and polyacrylic acids crosslinked with polyols, acrylamidopropyl-trimethyl-ammonium chloride /acrylate copolymers, octyl acrylamide/methyl methacrylate-tert-butylaminoethyl methacrylate/2-hydroxypropyl methacrylate copolymers, polyvinylpyrrolidone, vinylpyrrolidone/vinyl acetate copolymers, vinylpyrrolidone/dimethylaminoethyl methacrylate/vinyl caprolactam terpolymers and also optionally derivatised cellulose ethers and silicones. Furthermore the polymers as described in EP 1093796 (pages 3-8, paragraphs 17-68) may be used.

Biogenic active ingredients
Biogenic active ingredients are to be understood as meaning, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes.
Deodorising active ingredients
As deodorising active ingredients there come into consideration, for example, anti-perspirants, for example aluminium chlorohydrates (see J, Soc. Cosm. Chem. 24, 281 (1973)). Under the trade mark Locron* of Hoechst AG, Frankfurt (FRG), there is available commercially, for example, an aluminium chlorohydrate corresponding to formula Al2(OH)5CI x 2.5 H20, the use of which is especially preferred (see J. Pharm. Pharmacol. 26, 531 (1975)). Besides the chlorohydrates, it is also possible to use aluminium hydroxyacetates and acidic aluminium/zirconium salts. Esterase inhibitors may be added as further deodorising active ingredients. Such inhibitors are preferably trialkyl citrates, such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and especially triethyl citrate (Hydagen CAT, Henkel), which inhibit enzyme activity and hence reduce odour formation. Further substances that come into consideration as esterase inhibitors are sterol sulfates or phosphates, for example lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and esters thereof, for example glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, adipic acid monoethyl ester, adipic acid diethyl ester, malonic acid and malonic acid diethyl ester and hydroxycarboxylic acids and esters thereof, for example citric acid, malic acid, tartaric acid or tartaric acid diethyl ester. Antibacterial active ingredients that influence the germ flora and kill or inhibit the growth of sweat-decomposing bacteria can likewise be present in the preparations (especially in stick preparations). Examples include chitosan, phenoxyethanol and chlor-hexidine gluconate. 5-chloro-2-(2,4-dichlorophenoxy)-phenol (Triclosan, Irgasan, Ciba Specialty Chemicals Inc.) has also proved especially effective.
Anti-dandruff agents
As anti-dandruff agents there may be used, for example, climbazole, octopirox and zinc pyri-thione. Customary film formers include, for example, chitosan, microcrystalline chitosan, quaternised chitosan, polyvinylpyrrolidone, vinylpyrrolidone/vinyl acetate copolymers,

polymers of quaternary cellulose derivatives containing a high proportion of acrylic acid; collagen, hyaluronic acid and salts thereof and similar compounds.
Antioxidants
In addition to the primary light-protective substances it is also possible to use secondary light-protective substances of the antioxidant kind that interrupt the photochemical reaction chain triggered when UV radiation penetrates the skin or hair. Typical examples of such antioxidants are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and derivatives thereof, imidazoles (e.g. urocanic acid) and derivatives thereof, peptides, such as D,L-carnosine, D-carnosine, L-carnosine and derivatives thereof (e.g. anserine), carotinoids, carotenes, lyco-pene and derivatives thereof, chlorogenic acid and derivatives thereof, lipoic acid and derivatives thereof (e.g. dihydrolipoic acid), aurothioglycose, propylthiouracil and other thiols (e.g. thioredoxin, glutathione, cysteine, cystine, cystamine and the glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl, lauryl, palmitoyl, oleyl, linoleyl, cholesteryl and glyceryl esters thereof) and also salts thereof, dilauryl thiodipropionate, distearyl thiodipropionate, thiodi-propionic acid and derivatives thereof (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) and also sulfoximine compounds (e.g. buthionine sulfoximines, homocysteine sulfoximine, buthionine sulfones, penta-, hexa-, hepta-thionine sulfoximine), also (metal) chelating agents (e.g. hydroxy fatty acids, palmitic acid phytic acid, lactoferrin), hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts, bilirubin, biliverdin, EDTA, EDDS, ECTA and derivatives thereof, unsaturated fatty acids and derivatives thereof (e.g. linolenic acid, linoleic acid, oleic acid), folic acid and derivatives thereof, ubiquinone and ubiquinol and derivatives thereof, vitamin C and derivatives (e.g. ascorbyl palmitate, magnesium ascorbyl phosphate, ascorbyl acetate), tocopherols and derivatives (e.g. vitamin E acetate), vitamin A and derivatives (e.g. vitamin A palmitate) and also coniferyl benzoate of benzoin resin, rutinic acid and derivatives thereof, glycosylrutin, ferulic acid, furfurylidene glucitol, carnosine, butyl hydroxytoluene, butyl hydroxyanisole, nordihydroguaiaretic acid, trihydroxybutyrophenone, uric acid and derivatives thereof, mannose and derivatives thereof, superoxide dismutase, N-[3-(3,5-di-tert-butyl-4-hydroxy-phenyl)propionyl]sulfanilic acid (and salts thereof, for example the disodium salts), zinc and derivatives thereof (e.g. ZnO, ZnS04), selenium and derivatives thereof (e.g. selenium methionine), stilbene and derivatives thereof (e.g. stilbene oxide, trans-stilbene oxide) and the derivatives suitable according to the invention (salts, esters, ethers, sugars, nucleotides,

nucleosides, peptides and lipids) of those mentioned active ingredients. HALS (="Hindered Amine Light Stabilizers") compounds may also be mentioned- The amount of antioxidants present is usually from 0.001 to 30 % by weight, preferably from 0.01 to 3 % by weight, based on the weight of the UV absorber of formula (1).
Hydrotropic agents
To improve the flow behaviour it is also possible to employ hydrotropic agents, for example ethoxylated or non ethoxylated mono-alcohols, diols or polyols with a low number of carbon atoms or their ethers (e.g. ethanol, isopropanol, 1,2-dipropanediol, propyleneglycol, glyerin, ethylene glycol, ethylene glycol monoethylether, ethylene glycol monobutylether, propylene glycol monomethylether, propylene glycol monoethylether, propylene glycol monobutylether, diethylene glycol monomethylether; diethylene glycol monoethylether, diethylene glycol monobutylether and similar products). The polyols that come into consideration for that purpose have preferably from 2 to 15 carbon atoms and at least two hydroxy groups. The polyols may also contain further functional groups, especially amino groups, and/or may be modified with nitrogen. Typical examples are as follows: glycerol, alkylene glycols, for example ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and also polyethylene glycols having an average molecular weight of from 100 to 1000 Dalton; technical oligoglycerol mixtures having an intrinsic degree of condensation of from 1.5 to 10, for example technical diglycerol mixtures having a diglycerol content of from 40 to 50 % by weight; methylol compounds, such as, especially, trimethylolethane, trimethylol-propane, trimethylolbutane, pentaerythritol and dipentaerythritol; lower alkyl-glucosides, especially those having from 1 to 8 carbon atoms in the alkyl radical, for example methyl and butyl glucoside; sugar alcohols having from 5 to 12 carbon atoms, for example sorbitol or mannitol; sugars having from 5 to 12 carbon atoms, for example glucose or saccharose; amino sugars, for example glucamine; dialcohol amines, such as diethanolamine or 2-amino-1,3-propanediol.
Preservatives and Bacteria-inhibiting agents
Suitable preservatives include, for example,Methyl-,Ethyl-, Propyl-, Butyl- parabens, Benzal-konium chloride, 2-Bromo-2-nitro-propane-1,3-diol, Dehydroacetic acid, Diazolidinyl Urea, 2-Dichloro-benzyl alcohol, DMDM hydantoin, Formaldehyde solution, Methyldibromoglu-tanitrile, Phenoxyethanol, Sodium Hydroxymethylglycinate, Imidazolidinyl Urea, Triclosan

and further substance classes listed in the following reference: K.F.DePolo - A short textbook of cosmetology, Chapter 7, Table 7-2, 7-3, 7-4 and 7-5, p210-219.
Bacteria-inhibiting agents
Typical examples of bacteria-inhibiting agents are preservatives that have a specific action against gram-positive bacteria, such as 2,4,4,-trichloro-2'-hydroxydiphenyl ether, chlorhexi-dine (1,6-di(4-chlorophenyl-biguanido)hexane) orTCC (3,4,4'-trichlorocarbanilide). A large number of aromatic substances and ethereal oils also have antimicrobial properties. Typical examples are the active ingredients eugenol, menthol and thymol in clove oil, mint oil and thyme oil, A natural deodorising agent of interest is the terpene alcohol farnesol (3,7,11-tri-methyl-2,6,10-dodecatrien-1-ol), which is present in lime blossom oil. Glycerol monolaurate has also proved to be a bacteriostatic agent The amount of the additional bacteria-inhibiting agents present is usually from 0.1 to 2 % by weight, based on the solids content of the preparations.
Perfume oils
There may be mentioned as perfume oils mixtures of natural and/or synthetic aromatic substances. Natural aromatic substances are, for example, extracts from blossom (lilies, lavender, roses, jasmine, neroli, ylang-ylang), from stems and leaves (geranium, patchouli, petitgrain), from fruit (aniseed, coriander, carraway, juniper), from fruit peel (bergamot, lemons, oranges), from roots (mace, angelica, celery, cardamom, costus, iris, calmus), from wood (pine-wood, sandalwood, guaiacum wood, cedarwood, rosewood), from herbs and grasses (tarragon, lemon grass, sage, thyme), from needles and twigs (spruce, pine, Scots pine, mountain pine), from resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax). Animal raw materials also come into consideration, for example civet and castoreum. Typical synthetic aromatic substances are, for example, products of the ester, ether, aldehyde, ketone, alcohol or hydrocarbon type. Aromatic substance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenyl glycinate, allylcyclohexyl propionate, styrallyl propionate and benzyl salicylate. The ethers include, for example, benzyl ethyl ether; the aldehydes include, for example, the linear alkanals having from 8 to 18 hydrocarbon atoms, citral, citronellal, citro-nellyl oxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal; the ke-

tones include, for example, the ionones, isomethylionone and methyl cedryl ketone; the alcohols include, for example, anethol, citronellol, eugenol, isoeugenol, geraniol, linalool, phenyl ethyl alcohol and terpinol; and the hydrocarbons include mainly the terpenes and balsams. It is preferable, however, to use mixtures of various aromatic substances that together produce an attractive scent Ethereal oils of relatively low volatility, which are chiefly used as aroma components, are also suitable as perfume oils, e.g. sage oil, camomile oil, clove oil, melissa oil, oil of cinnamon leaves, lime blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil, labolanum oil and lavandin oil. Preference is given to the use of bergamot oil, dihydromyrcenol, lilial, lyral, citronellol, phenyl ethyl alcohol, hexyl cinnamal-dehyde, geraniol, benzyl acetone, cyclamen aldehyde, linalool, boisambrene forte, ambro-xan, indole, hedione, sandelice, lemon oil, tangerine oil, orange oil, ally! amyl glycolate, cy-dovcrtal, lavandin oil, muscatel sage oil, damascone, bourbon geranium oil, cyclohexyl salicylate, vertofix coeur, iso-E-Super, Fixolide NP, evemyl, iraldein gamma, phenylacetic acid, geranyl acetate, benzyl acetate, rose oxide, romillat, irotyl and floramat alone or in admixture with one another.
Colourants
There may be used as colourants the substances that are suitable and permitted for cosmetic purposes, as compiled, for example, in the publication "Kosmetische FarbemitteP of the Farbstoffkommission derDeutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, pages 81 to 106. The colourants are usually used in concentrations of from 0.001 to 0.1 % by weight, based on the total mixture.
Other adjuvants
It is furthermore possible for the cosmetic preparations to contain, as adjuvants, anti-foams, such as silicones, structurants, such as maleic acid, solubilisers, such as ethylene glycol, propylene glycol, glycerol or diethylene glycol, opacifies, such as latex, styrene/PVP or sty-rene/acrylamide copolymers, complexing agents, such as EDTA, NTA, alaninediacetic acid or phosphonic acids, propellants, such as propane/butane mixtures, N20, dimethyl ether, C02, N2 or air, so-called coupler and developer components as oxidation dye precursors, reducing agents, such as thioglycolic acid and derivatives thereof, thiolactic acid, cysteamine, thio-malic acid or mercaptoethanesulfonic acid, or oxidising agents, such as hydrogen peroxide, potassium bromate or sodium bromate.

Suitable insect repellents are, for example, N,N-diethyl-m-toluamide, 1,2-pentanedioI or insect repellent 3535; suitable self-tanning agents are, for example, dihydroxyacetone and/or erythrulose or dihydroxy acetone and/or dihydroxy acetone precursors as described in WO 01/85124 and/or erythrulose.
Polymeric beads or hollow spheres as SPF enhancers
The combination of the UV-absorbers and UV-absorber combinations, listed above, with SPF enhancers, such as non-active ingredients like Styrene/acrylates copolymer, silica beads, spheroidal magnesium silicate, crosslinked Polymethylmethacrylates (PMMA; Micopearl M305 Seppic), can maximize better the UV protection of the sun products. Holosphere additives (Sunspheres® ISP, Silica Shells Kobo.) deflect radiation and the effective path length of the photon is therefore increased.( EP0893119). Some beads, as mentioned previously, provide a soft feel during spreading. Moreover, the optical activity of such beads, e.g.Micropearl M305, cans modulate skin shine by eliminating reflection phenomena and indirectly may scatter the UV light. When formulated in O/W emulsions, the preferably amount of such SPF enhancers should represent 1% to 10% of the total amount of the emulsion.
Cosmetic or pharmaceutical preparations
Cosmetic or pharmaceutical formulations are contained in a wide variety of cosmetic
preparations. There come into consideration, for example, especially the following
preparations:
skin-care preparations, e.g. skin-washing and cleansing preparations in the form of
tablet-form or liquid soaps, soapless detergents or washing pastes,
bath preparations, e.g. liquid (foam baths, milks, shower preparations) or solid bath
preparations, e.g. bath cubes and bath salts;
skin-care preparations, e.g. skin emulsions, multi-emulsions or skin oils;
cosmetic personal care preparations, e.g. facial make-up in the form of day creams or
powder creams, face powder (loose or pressed), rouge or cream make-up, eye-care
preparations, e.g. eyeshadow preparations, mascara, eyeliner, eye creams or eye-fix
creams; lip-care preparations, e.g. lipsticks, lip gloss, lip contour pencils, nail-care

preparations, such as nail varnish, nail varnish removers, nail hardeners or cuticle removers;
foot-care preparations, e.g. foot baths, foot powders, foot creams or foot balsams, special deodorants and antiperspirants or callus-removing preparations; light-protective preparations, such as sun milks, lotions, creams or oils, sunblocks or tropicals, pre-tanning preparations or after-sun preparations; skin-tanning preparations, e.g. self-tanning creams;
depigmenting preparations, e.g. preparations for bleaching the skin or skin-lightening preparations;
insect-repellents, e.g. insect-repellent oils, lotions, sprays or sticks; deodorants, such as deodorant sprays, pump-action sprays, deodorant gels, sticks or roll-ons;
antiperspirants, e.g. antiperspirant sticks, creams or roll-ons;
preparations for cleansing and caring for blemished skin, e.g. synthetic detergents (solid or liquid), peeling or scrub preparations or peeling masks;
hair-removal preparations in chemical form (depilation), e.g. hair-removing powders, liquid hair-removing preparations, cream- or paste-form hair-removing preparations, hair-removing preparations in gel form or aerosol foams;
shaving preparations, e.g. shaving soap, foaming shaving creams, non-foaming shaving creams, foams and gels, preshave preparations for dry shaving, aftershaves or aftershave lotions;
fragrance preparations, e.g. fragrances (eau de Cologne, eau de toilette, eau de parfum, parfum de toilette, perfume), perfume oils or perfume creams; cosmetic hair-treatment preparations, e.g. hair-washing preparations in the form of shampoos and conditioners, hair-care preparations, e.g. pretreatment preparations, hair tonics, styling creams, styling gels, pomades, hair rinses, treatment packs, intensive hair treatments, hair-structuring preparations, e.g. hair-waving preparations for permanent waves (hot wave, mild wave, cold wave), hair-straightening preparations, liquid hair-setting preparations, hair foams, hairsprays, bleaching preparations, e.g. hydrogen peroxide solutions, lightening shampoos, bleaching creams, bleaching powders, bleaching pastes or oils, temporary, semi-permanent or permanent hair colourants, preparations containing self-oxidising dyes, or natural hair colourants, such as henna or camomile.

Presentation forms
The final formulations listed may exist in a wide variety of presentation forms, for example:
- in the form of liquid preparations as a W/O, O/W, O/W/O, W/O/W or PIT emulsion and all kinds of microemulsions, in the form of a gel,
in the form of an oil, a cream, milk or lotion, in the form of a powder, a lacquer, a tablet or make-up, in the form of a stick,
in the form of a spray (spray with propellent gas or pump-action spray) or an aerosol, in the form of a foam, or in the form of a paste.
Of special importance as cosmetic preparations for the skin are light-protective preparations, such as sun milks, lotions, creams, oils, sunblocks or tropicals, pretanning preparations or after-sun preparations, also skin-tanning preparations, for example self-tanning creams. Of particular interest are sun protection creams, sun protection lotions, sun protection milk and sun protection preparations in the form of a spray.
Of special importance as cosmetic preparations for the hair are the above-mentioned preparations for hair treatment, especially hair-washing preparations in the form of shampoos, hair conditioners, hair-care preparations, e.g. pretreatment preparations, hair tonics, styling creams, styling gels, pomades, hair rinses, treatment packs, intensive hair treatments, hair-straightening preparations, liquid hair-setting preparations, hair foams and hairsprays. Of special interest are hair-washing preparations in the form of shampoos.
A shampoo has, for example, the following composition: from 0.01 to 5 % by weight of a UV absorber according to the invention, 12.0 % by weight of sodium laureth-2-sulfate, 4.0 % by weight of cocamidopropyl betaine, 3.0 % by weight of sodium chloride, and water ad 100%.
For example, especially the following hair-cosmetic formulations may be used:

a,) spontaneously emulsifying stock formulation, consisting of the UV absorber according to the invention, PEG-6-C10oxoalcohol and sorbitan sesquioleate, to which water and any desired quaternary ammonium compound, for example 4 % minkamidopropyl di-methyl-2-hydroxyethylammonium chloride or Quaternium 80 is added;
a2) spontaneously emulsifying stock formulation consisting of the UV absorber according to the invention, tributyl citrate and PEG-20-sorbitan monooleate, to which water and any desired quaternary ammonium compound, for example 4 % minkamidopropyl dimethyl-2-hydroxyethylammonium chloride or Quaternium 80 is added;
b) quat-doped solutions of the UV absorber according to the invention in butyl triglycol
and tributyl citrate;
c) mixtures or solutions of the UV absorber according to the invention with
n-alkylpyrrolidone.
Other typical ingredients in such formulations are preservatives, bactericides and bacteriostatic agents, perfumes, dyes, pigments, thickening agents, moisturizing agents, humectants, fats, oils, waxes or other typical ingredients of cosmetic and personal care formulations such as alcohols, poly-alcohols, polymers, electrolytes, organic solvents, silicon derivatives, emollients, emulgators or emulsifying surfactants, surfactants, dispersing agents, antioxidants, anti-irritants and anti-inflammatory agents etc.
























Composition
INCI-Name % w/w
fas supplied^
DisodiumEDTA 0.10
Part C Water 20.00
Diazolidinyl Urea (and) lodopropynyl Butylcarbamate 0.15
Propylene Glycol 4.00
Part D Sodium Acrylates Copolymer (and) Paraffinium Liquidum (and) 1.50
PPG-1 Trideceth-6
Cyclopentasiloxane 4.50
PEG-12 Dimethicone 2.00
Tocopheryl Acetate 0.45
Water (and) Citric Acid qs
Part E Fragrance qs
Preparation
Part A and part B are heated separately to 75°C. Part A is poured into part B under continuous stirring. Immediately after the emulsification Cyclopentasiloxane and PEG-12 Dimethicone from part D are incorporated in the mixture. Afterwards the mixture is homogenized with an Ultra Turrax at 11 000 rpm for 30 sec. and is cooled down to 65°C and Sodium Acrylates Copolymer (and) Paraffinium Liquidum (and) PPG-1 Trideceth-6 is incorporated. Part C is added at a temperature
Example 8: UV Day Lotion
Composition
INCI-Name %w/w
fas supplied^
Part A Cetyl Phosphate 1.75
Cu-C15 Alkyl Benzoate 5.00
Cetearyl Alcohol/ PEC-20 Stearate 2.00
Ethoxydiglycol Oleate 2.00
Stearic Acid 1.50
Ethylhexyl Methoxycinnamate 3.00
Isononyl Isononanoate 2.00
PartB Aqua qstolOO
Xanthan Cum 0.35
UV-absorber dispersion as prepared in example 6 5.00
Disodium EDTA 0.20
Propylene Glycol 2.00
Diazolidinyl Urea (and) Methylparaben (and) Propylparaben (and) 0.70
Propylene Glycol
Glycerin 1.50
Part C Cyclopentasiloxane (and) Dimethiconol 1.00
Ethoxydiglycol 3.00
Dimethicone 2.00
Part D Triethanolamine qs
Preparation
Part A is prepared by incorporating all ingredients, then stirred under moderate speed and heated to 75°C Part B is prepared and heated to 75°C. At this temperature part B is poored into part A under progressive stirring speed, then homogenized (30sec, 15000 rpm). Below 55°C the ingredients of part C are incorporated. After cooling down under moderate stirring the pH is checked and adjusted with triethanolamine.

Example 9: Sun Protection Emulsion Composition
INCI-Name %w/w
fas supplied^
Part A Cetearyl Alcohol (and) Dicetyl Phosphate (and) Ceteth-10 Phos- 4.00
phate
C12-15AlkylBenzoate 2.00
Dicaprylyl Ether 3.00
Ethoxydiglycol Oleate 2.00
Stearic Acid 1.00
Ethylhexyl Methoxycinnamate 3.00
Sodium Acrylates Copolymer (and) Glycine Soja (and) PPG-1 0.30
Trideceth-6
Squalane 3.50
PartB Aqua qstolOO
UV-absorber dispersion as prepared in example 6 5.00
Part C Diazolidinyl Urea (and) lodopropynyl Butylcarbamate 0.15
Propylene Glycol 2.50
Aqua 10.00
Part D Cyclopentasiloxane, Dimethiconol 2.00
Ethoxydiglycol 5.00
Cyclopentasiloxane (and) Dimethicone/Vinyl-dimethicone 2.00
Crosspolymer
Part E Sodium Hydroxide 0.10
Preparation
Part A is prepared by incorporating all ingredients, then stirred under moderate speed and heated to 75°C. Part B is prepared and heated to 75°C, At this temperature, part B is poured into part A under progressive stirring speed. Below 65°C, the ingredients of part D are added separately. After cooling down under moderate stirring to 55°C part C is added. Then the pH is checked and adjusted with sodium hydroxide. The formulation is

Composition
INCI-Name %w/w
fas supplied^
homogenized for 30 sec at 16000rpm.
Example 10: Every Day Lotion
Composition
INCI-Name %w/w
(as supplied)
Part A Stearyl Phosphate 5.00
Tricontanyl PVP 1.00
Ethoxydiglycol Oleate 3.00
Squalane 5.00
C12.15Alkyl Benzoate 5.00
Ethylhexyl Methoxycinnamate 3.00
Glyceryl Stearate 2.00
Cetyl Alcohol 2.00
Part B Aqua 20.00
UV-absorber dispersion as prepared in example 6 3.00
PartC Aqua qstolOO
Steareth-10 Allyl Ether/Acrylates Copolymer 0.50
Glycerin 2.50
Diazolidinyl Urea (and) lodopropynyl Butylcarbamate 0.15
Sodium Lauroyl Glutamate 0.70
Part D Cyclopentasiloxane (and) Dimethiconol 1.50
Triethanolamine 1.85
Preparation
Part A is prepared by incorporating all ingredients, then stirred under moderate speed and heated to 75°C. Part C is prepared and heated to 75°C. Part C is poored into part A under moderate stirring. Immediately after the emulsification part B is added, then neutralized

with a part of the triethanolamine. The formulation is homogenized for 30 sec. After cooling down under moderate stirring Cydopentasiloxane (and) Dimethiconol are added. Below 35°C the pH is checked and adjusted with triethanolamine.
Example 11: Sprayable Sunscreen Emulsion
Composition
INCI-Name %w/w
fas supplied")
Part A Ceteareth-15 (and) Glyceryl Stearate 3.00
Stearyl Alcohol 1.00
Cetyl Ricinoleate 0.80
Dicaprylyl Ether 3.00
C12-i5aklyl Benzoate 3.00
Isohexadecane 2.50
Stearyl Dimethicone 1.00
Ethylhexyl Methoxycinnamate 4.00
Cetyl Alcohol 0.80
Di-C1M1 Alkyl Tartrate 3.00
PartB Aqua qstolOO
Steareth-10 Allyl Ether/Acrylates Copolymer 0.45
PEG-7 Glyceryl Cocoate 2.50
Glycerin 2.00
Propylene Glycol 3.00
Part C Diazolidinyl Urea (and) lodopropynyl Butylcarbamate 0.15
Aqua 20.00
UV-absorber dispersion as prepared in example 6 12.00
Titanium Dioxide (and) Silica (and) Sodium Polyacrylate 8.00
Part D Cydopentasiloxane (and) Dimethiconol 0.85
Part E Sodium Hydroxide (and) Water qs to pH 6.50

-7.00
Part F Fragrance qs
Preparation
Part A and part B are heated up to 80°C Part A is blended into part B under stirring and homogenized with an Ultra Turrax by 11 000 rpm for 30 sec Part C is heated to 60°C and added slowly to the emulsion. After cooling down to 40°C part D is incorporated. Parts E and F are added at room temperature.
Example 12: Daily Care Lotion
Composition
INCl-Name % w/w
(as supplied*)
Part A Polyglyceryl Methyl Glucose Distearate 2.50
Cetearyl Alcohol 2.00
Octyl Stearate 3.00
Caprylic/Capric Triglyceride 4.00
Isohexadecane 4.00
Ethylhexyl Methoxycinnamate 2.70
Part B Aqua 64.80
Glycerin 5.00
Phenoxyethanol (and) Methylparaben (and) Butylparaben (and) 0.50 Ethylparaben (and) Propylparaben
UV-absorber dispersion as prepared in example 6 8.00
Part C Cyclomethicone (and) Dimethicone 3.00
Part D Steareth-10 Allyl Ether/Acrylates Copolymer 0.50
Preparation
Part A and B are heated to 75°C Part A is added into part B under continuous stirring and
homogenized with 11000 rpm for one minute. After cooling down to 50°C part C is added

under continuous stirring. After cooling further down to 30°C part D is added. Afterwards the pH is adjusted between 6.00 - 6.50.
Example 13: Daily Care with UV Protection
Composition
INCI-Name % w/w
fas supplied)
Part A Glyceryl Stearate SE 3.00
Glyceryl Stearate and PEG-100 Stearate 3.50
Cetyl Alcohol 1.50
Myristyl Myristate 2.00
Isopropyl Palmitate 2.50
Paraffinum Perliquidum 5.00
Octyl Dimethyl PABA 3.00
PartB Aqua qsto 100
Propylene Glycol 7.50
Phenoxyethanol (and) Methylparaben (and) Butylparaben (and) 1.00 Ethylparaben (and) Propylparaben
Part C Aqua 30.00
UV-absorber dispersion as prepared in example 6 10.00
Part D Sodium Acrylates Copolymer (and) Paraffinium Liquidum (and) 2.00 PPG-1 Trideceth-6
PartE Citric Acid 0.30
Preparation
Part A and B are heated separately to 75°C. After adding part B into part A the mixture is homogenized with Ultra Turrax for one minute at 11000 rpm. After cooling down to 50°C part C is added. Afterwards the formulation is homogenized for one minute at 16000 rpm. Below 40°C part D is added. At room temperature the pH-value is adjusted with part E between 6.00 and 6.50.

Example 14: 0/W Every Dav UV Protection Lotion Composition
INCI-Name % w/w
fas supplied^
Part A Glyceryl Stearate (and) PEG-100 Stearate 5.00
Stearyl Alcohol 1.00
Tripalmitin 0.70
Dimethicone 2.00
C1M4 Alkyl Benzoate 5.00
Isopropyl Palmitate 5.00
Ethylhexyl Methoxycinnamate 3.00
PartB Water qstolOO
Polysorbate 60 0.50
Glycerin 3.00
Parte Water 10.00
UV-absorber dispersion as prepared in example 6 8.00
Part D Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70 Butylparaben (and) Propylparaben (and) Isobutylparaben
Steareth-10 Allyl Ether/Acrylates Copolymer 1.50
Part E Water (and) Sodium Hydroxide qs
Part F Fragrance qs
Preparation
Part A and B are heated separately up to 75°C, part C to 60°C. Afterwards part B is poured into part A under stirring. The mixture is homogenized with an Ultra Turrax for 30 sec. at 11 000 rpm and part C isincorporated. After cooling down to 40°C part D is added. At room temperature the pH-value is adjusted with sodium hydroxide between 6.30 and 6.70 and part F is added.

Example 15: O/W Every Dav UV Protection
Composition
INCl-Name % w/w
(as supplied^
Part A Glyceryl Stearate (and) PEG-100 Stearate 5.00
Stearyl Alcohol 1.00
Tripalmitin 0.70
Dimethicone 2.00
C1WS Alky I Benzoate 5.00
Isopropyl Palmitate 5.00
Ethylhexyl Methoxycinnamate 3.00
PartB Water qsto 100
Polysorbate 60 0.50
Glycerin 3.00
Part C Water 10.00
UV-absorber dispersion as prepared in example 6 8.00
Part D Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70
Butylparaben (and) Propylparaben (and) Isobutylparaben
Steareth-10 Allyl Ether/Acrylates Copolymer 1.50
Part E Water (and) Sodium Hydroxide qs
Part F Fragrance qs
Preparation
Part A and B are heated separately up to 75°C; part C to 60°C. Afterwards part B is poured into part A under stirring. After homogenization with an Ultra Turrax for 30 sec. at 11 000 rpm part C is incorporated. After cooling down to 40°C part D is added. At room temperature the pH-value is adjusted with sodium hydroxide between 6.30 and 6.70 and part F is added.

Example 16: Sunscreen Cream Composition
INCI-Name % w/w
(as supplied)
Part A Cetearyl Alcohol (and) Dicetyl Phosphate (and) Ceteth-10 4.50
Phosphate
C1W5 Alkyl Benzoate 6.00
Caprylic/Capric Triglyceride 7.00
Pentaerythritol Tetraisostearate 2.00
Ethylhexyl Methoxycinnamate 3.00
Isoamyl p-Methoxycinnamate 2.00
Part B Aqua qs to 100
Glycerin 2.00
Propylene Glycol 1.50
Magnesium Aluminium Silicate 1.20
Part C Steareth-10 Allyl Ether/Acrylates Copolymer 0.50
UV-absorber dispersion as prepared in example 6 12.00
Part D Phenyl Trimethicone 1.50
Phenoxyethanol (and) Methylparaben (and) Butylparaben (and) 0.70 Ethylparaben (and) Propylparaben
Part E sodium hydroxide 0.90
Preparation
Part A and part B are heated separately to 75°C. Part B is added into part A under continuous stirring and afterwards homogenized with Ultra Turrax for 30sec at 11000 rpm. After cooling down to 60°C part C is added. At 40°C part C is added and homogenized for 15sec at 11000 rpm. At room temperature the pH-value is adjusted with part E.

Example 17: UVA/UVB Daily Care Lotion, type O/W
Composition
INCI-Name % w/w
(as supplied^
Part A Glyceryl Stearate (and) PEC-100 Stearate 5.00
Stearyl Alcohol 1.00
Tripalmitin 0.70
Mineral Oil 15.00
Part B Water qs to 100
Polysorbate 60 0.50
Glycerin 3.00
Parte Water 10.00
UV-absorber dispersion as prepared in example 6 8.00
Part D Steareth-10 Allyl Ether/Acrylates Copolymer 1.50
Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70 Butylparaben (and) Propylparaben (and) Isobutylparaben
Part E Water (and) Sodium Hydroxide qs
Part F Fragrance qs
Preparation
Part A and B are heated separately to 75°C; part C to 60°C Part B is poured into part A
under stirring. After 1 minute the mixture is homogenized by 11000 rpm add part C is
added to the mixture of A/B. After cooling down to 40°C part D is incorporated. At room
temperature the pH value is adjusted with part E between 6.3 and 7.0. Finally part F is
added.

Example 18: UVA/UVB Daily Care Lotion, type O/W
Composition
INCI-Name %w/w
(as supplied
Part A Oleth-3 Phosphate 0.60
Steareth-21 2.50
Steareth-2 1.00
Cetyl Alcohol 0.80
Stearyl Alcohol 1.50
Tribehenin 0.80
Isohexadecane 8.00
PartB Water qstolOO
Glycerin 2.00
Disodium EDTA 0.10
Part C Cyclopentasiloxane 4.50
PEC-12 Dimethicone 2.00
Part D Sodium Acrylates Copolymer (and) Mineral Oil (and) PPG-1 1.50
Trideceth-6
Part E UV-absorber dispersion as prepared in example 6 10.00
Part F Tocopheryl Acetate 0.45
DMDM Hydantoin (and) lodopropynyl Butylcarbamate (and) 0.85
Aqua (and) Butylene Glycol
Part G Water (and) Citric Acid qs
Fragrance qs
Preparation
Part A and part B are heated separately to 75°C. Part A is poured into part B under stirring. Immediately after the emulsification, part C is added to the mixture and homogenized with an Ultra Turrax by 11000 rpm for 30 sec. After cooling down to 65°C Sodium Acrylates

Copolymer (and) Mineral Oil (and) PPG-1 Trideceth-6 is added. At 50°C Part E is slowly added. At 35-30°C part F is incorporated. The pH is addjusted with part G between 5.5 and 6.5.
Example 19: UV-A/UV-B Every Dav Protection Lotion O/W
Composition
INCI-Name %w/w
fas supplied^
Part A Glyceryl Dilaurate 2.00
Ethylhexyl Palmitate 6.00
Cetyl Alcohol 1.00
Glyceryl Stearate 2.00
Laureth-23 1.00
Isopropyl Palmitate 2.00
Tribehenin 0.80
Beeswax 1.50
Lanolin Oil 1.00
Part B Water qs to 100
Propylene Glycol 4.00
Water (and) Titanium Dioxide (and) Alumina (and) Sodium 4.00
Metaphosphate (and) Phenoxyethanol (and) Sodium Methyl-paraben
Part C Steareth-10 Allyl Ether/Acrylates Copolymer 1.00
Part D Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 1.00
Butylparaben (and) Propylparaben (and) Isobutylparaben
UV-absorber dispersion as prepared in example 6 8.00
Part E Water (and) Sodium Hydroxide qs
Preparation
Part A and part B are heated separately up to 80°C Part A is poured into part B while
stirring and homogenized with an Ultra Turrax by 11000 rpm for 30 sec. After cooling

down to 60°C part C is incorporated. At 40°C part D is added slowly under continuous stirring. The pH is adjusted with part E between 6.50 - 7.00.
Example 20: Sprayable Sunscreen Lotion
Composition
INCI-Name %w/w
fas supplied^
Part A Potassium Cetyl Phosphate 0.20
Isohexadecane 7.00
VP/Eicosene Copolymer 1.50
Di-C12.n Alkyl Tartrate 6.00
Ethylhexyl Triazone 2.50
c12-15 Alky' Benzoate 4.50
PartB Water qstolOO
Sorbeth-30 2.00
Sorbitan Stearate (and) Sucrose Cocoate 4.00
Titanium Dioxide (and) Alumina (and) Silica (and) Sodium 2.50
Polyacrylate
Part C Water 30.00
UV-absorber dispersion as prepared in example 6 12.00
Part D Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70 Butylparaben (and) Propylparaben (and) Isobutylparaben
Part E Water (and) Citric Acid qs
Preparation
Part A and part B are heated separately up to 80°C, part C to 50°C Part B is poured into part A and homogenized with an Ultra Turrax for 1 minute by 11000 rpm. After cooling down to 50°C part C is added under continuous stirring. At 40°C part D is incorporated and homogenized again for 10 sec. by 11000 rpm. The pH is adjusted with part E.

Example 21: O/W Every Day UV Protection Lotion
Composition
INCI-Name %w/w
fas supplied^
Part A Glyceryl Stearate (and) PEG-100 Stearate 5.00
Stearyl Alcohol 1.00
Tripalmitin 0.70
Dimethicone 2.00
Caprylic/Capric Triglyceride 5.00
Isopropyl Palmitate 5.00
Ethylhexyl Methoxycinnamate 3.00
Part B Water qs to 100
Polysorbate 60 0.50
Glycerin 3.00
PartC Water 10.00
UV-absorber dispersion as prepared in example 6 8.00
Part D Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70 Butylparaben (and) Propylparaben (and) Isobutylparaben
Steareth-10 Allyl Ether/Acrylates Copolymer 1.50
Part E Water (and) sodium hydroxide qs
Part F Fragrance qs
Preparation
Part A and B are heated separately up to 75°C; part C to 60°C. Afterwards part B is poured into part A under stirring. The mixture is homogenized with an Ultra Turrax for 30 sec. at 11 000 rpm and part C is incorporated. After cooling down to 40°C part D is added. At room temperature the pH-value is adjusted with Sodium Hydroxide between 6.30 and 6.70 and part F is added.

Example 22: Water resistant Sunscreen Emulsion Composition
INCI-Name % vv/w
(as supplied^
Part A Polyglyceryl-10 Pentastearate (and) Behenyl Alcohol (and) 2.50
Sodium Stearoyl Lactylate
VP/Eicosene Copolymer 1.50
Stearyl Alcohol 1.50
Squalane 4.00
c12-15 alky Benzoate 7.50
Octocrylene 1.50
4-MethyIbenzyIidene Camphor 3.00
Ethylhexyl Methoxycinnamate 2.00
Part B Water qs to 100
Glycerin 1.80
Steareth-10 Allyl Ether/Acrylates Copolymer 0.80
Part C UV-absorber dispersion as prepared in example 6 9.00
Part D VP/Hexadecene Copolymer 2.70
Cydomethicone 1.50
Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 0.70
Butylparaben (and) Propylparaben (and) Isobutylparaben
Part E Aqua (and) Tocopheryl Acetate (and) Caprylic/Capric 3.50
Triglyceride (and) Polysorbate 80 (and) Lecithin
Part F Fragrance qs
Water (and) sodium hydroxide qs
Preparation
Part A and part B are heated separately to 80°C. Part A is poured into part B under continuous stirring. Afterwards the mixture is homogenized with an Ultra Turrax by 11 000 rpm for 1 min. After cooling down to 60°C part C is incorporated. At 40°C part D is added,

and homogenized for a short time again. At 35°C part E is added. Fragrance is added at
room temperature. Finally the pH is adjusted with sodium hydroxide.
Example 23: UVA/UVB Sun Protection Lotion, O/W type
Composition
INCI-Name % w/w
(as supplied^
Part A Potassium Cetyl Phosphate 2.00
Tricontanyl PVP 1.00
Caprylic/Capric Triglyceride 5.00
C12-15 Alkyl Benzoate 5.00
Cetearyl Isononanoate 5.00
Glyceryl Stearate 3.00
Cetyl Alcohol 1.00
Dimethicone 0.10
Ethylhexyl Methoxycinnamate 5.00
PartB Water qsto100
Glycerin 3.00
Part C Steareth-10 Allyl Ether/Acrylates Copolymer 0.50
Part D UV-absorber dispersion as prepared in example 6 8.00
Part E Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 1.00
Butylparaben (and) Propylparaben (and) Isobutylparaben
Part F Water (and) Sodium Hydroxide qs to pH 7.00
Part G Fragrance qs
Preparation
Part A and part B are heated separately up to 80°C. Part B is poured into part A under
moderate stirring. The mixture is homogenized with an Ultra Turrax at 11000 rpm for 1

minute. After cooling down to 70°C part C is added under stirring. After further cooling down to 50°C part D is incorporated very slowly. At 40°C part E is added. At room temperature the pH is adjusted with part F to 7.00 and part C is added.
Example 24: UVA/UVB Sun Protection Lotion. O/W type
Composition
INCI-Name % w/w
fas supplied^
Part A Potassium Cetyl Phosphate 2.00
Tricontanyl PVP 1.00
Caprylic/Capric Triglyceride 5,00
CtW5 Alkyl Benzoate 5.00
Cetearyl Isononanoate 5.00
Glyceryl Stearate 3.00
Cetyl Alcohol 1.00
Dimethicone 0.10
Ethylhexyl Methoxycinnamate 5.00
Part B Water qs to 100
Glycerin 3.00
Part C Steareth-10 Allyl Ether/Acrylates Copolymer 0.50
Part D UV-absorber dispersion as prepared in example 6 20.00
Part E Phenoxyethanol (and) Methylparaben (and) Ethylparaben (and) 1.00
Butylparaben (and) Propylparaben (and) Isobutylparaben
Part F Water (and) Sodium Hydroxide qs to pH 7.00
PartG Fragrance qs

Preparation
Part A and part B are heated separately up to 80°C. Part B is poured into part A under moderate stirring. The mixture is homogenized with an Ultra Turrax at 11000 rpm for 1 minute. After cooling down to 70°C part C is added under stirring. After further cooling down to 50°C part D is incorporated very slowly. At 40°C part E is added. At room temperature the pH is adjusted with part F to 7.00 and part G is added.
Example 25: Sunscreen Lotion Composition
INCI-Name %w/w
fas supplied^
Part A Cetearyl Alcohol (and) Dicetyl Phosphate (and) Ceteth»1 0 4.00
Phosphate
c12-15 Alky' Benzoate - 2.00
Dicaprylyl Ether 3.00
Ethoxydiglycol Oleate 2.00
Stearic Acid 1.00
Ethylhexyl Methoxycinnamate 3.00
Sodium Acrylates Copolymer (and) Glycine Soja (and) PPG-1 0.30
Trideceth-6
Squalane 3.50
VP/Eicosene Copolymer 2.00
PartB Water qstolOO
UV-absorber dispersion as prepared in example 6 5.00
Part C Diazolidinyl Urea (and) lodopropynyl Butylcarbamate 0.15
Propylene Glycol 2.50
Water 10.00
Part D Cyclopentasiloxane (and) Dimethiconol 2.00
Ethoxydiglycol 5.00
Cyclopentasiloxane (and) Dimethicone/Vinyl Dimethicone 2.00
Crosspolymer

Part E Aqua (and) Sodium Hydroxide qs
Part F Fragrance qs
Preparation
Part A and part B are heated separately up to 75°C Part B is poured into part A under progressive stirring speed. Below 65°C the ingredients of part D are added separately. After cooling down to 55°C under moderate stirring part C is added. At a temperature below 35°C the pH is checked and adjusted with Sodium Hydroxide and homogenized with an Ultra Turrax for 30 sec. at 11 000 rpm. At room temperature part F is added.
Example 26: W/O Sunscreen Lotion
Composition
iNCI-Name % w/w
fas supplied1)
Part A PEG-7 Hydrogenated Castor Oil 3.00
Polyglyceryl-3 Diisostearate 4.00
Microcrystalline Wax 1.00
Magnesium Stearate 1.50
Propylparaben 0.10
Mineral Oil 15.00
Octyldodecanol 8.00
Ethylhexyl Triazone 1.00
Ethylhexyl Methoxycinnamate 2.00
Part B Water qs to 100
Water (and) Citric Acid 0.05
Methylparaben 0.15
Magnesium Sulfate 0.50
Part C UV-absorber dispersion as prepared in example 6 9.00
Fragrance qs

Preparation
Part A is heated to 80°C whilst stirring. Part B is added into part A and homogenized with
an Ultra Turrax by 11 000 rpm for one minute. After cooling down to 30°C part C is incor
porated.
Example 27: Skin Protection Sunscreen Lotion W/Q
Composition
INCI-Name %w/w
(as supplied^
Part A Polyglyceryl-2 Dipolyhydroxystearate 3.00
Glyceryl Oleate 3.00
Cetearyl Isononanoate 7.00
Hexyl Laurate 6.00
Dicaprylyl Ether 6.00
Propylparaben 0.10
Hexyldecanol 3.00
Magnesium Stearate 1.00
Beeswax 1.00
Ethylhexyl Methoxycinnamate 4.00
Part B Water qs to 100
Methylparaben 0.15
Magnesium Sulfate 1.00
Part C UV-absorber dispersion as prepared in example 6 6.00
Preparation
Part A is heated separately to 80°C under gentle stirring. Part B is added to part A and
homogenized for one minute by 11000 rpm. After cooling down to 30°C part C is added
under continuous stirring.


Documents:

1941-chenp-2005-abstract.pdf

1941-chenp-2005-claims.pdf

1941-chenp-2005-correspondnece-others.pdf

1941-chenp-2005-correspondnece-po.pdf

1941-chenp-2005-description(complete).pdf

1941-chenp-2005-form 1.pdf

1941-chenp-2005-form 18.pdf

1941-chenp-2005-form 26.pdf

1941-chenp-2005-form 3.pdf

1941-chenp-2005-form 5.pdf

1941-chenp-2005-pct.pdf

1941.jpg


Patent Number 228011
Indian Patent Application Number 1941/CHENP/2005
PG Journal Number 10/2009
Publication Date 06-Mar-2009
Grant Date 27-Jan-2009
Date of Filing 17-Aug-2005
Name of Patentee CIBA HOLDING INC
Applicant Address Klybeckstrasse 141, CH-4057 Basel,
Inventors:
# Inventor's Name Inventor's Address
1 HUGLIN, Dietmar Blasiring 1, 79576 Weil am Rhein,
2 BORSOS, Elek Muttenzerstrasse 137, CH-4127 Birsfelden,
3 EHLIS, Thomas Harriet-Straub-Strasse 23, 79100 Freiburg,
PCT International Classification Number A61K 7/42
PCT International Application Number PCT/EP2004/000164
PCT International Filing date 2004-01-13
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 03405018.7 2003-01-20 EUROPEAN UNION