Title of Invention

A DEVICE AND METHOD FOR PRODUCTING SILK YARNS

Abstract A device (31) for producing silk yams from silk cocoons, the device comprising: a boiling unit (60), for receiving cocoons, boiling the cocoons and for filling the cocoons with water; a control unit (280), electricaly coupled to a plurality of thread processing stations, for controlling the thickness of silk yams being produced by thread processing stations (300); characterized by comprising a thread catching station (90), for automatically receiving cocoons from the boiling unit, finding cocoon thread ends and catching the cocoon thread ends; a cleaning and transporting mechanism (333), for automatically receiving cocoon threads from the thread catching station (90) for removing dirt from the cocoons and for automatically transporting the cocoon threads to a plurality of thread processing units; and a plurality of thread processing stations (300), whereas each thread processing unit out of the plurality of thread processing stations is adapted to automatically receive a plurality of cocoon threads and to produce a silk yam out of the plurality of the cocoon threads, and for winding the silk yam on bobbins; whereas each thread processing station has a monitor for monitoring the thickness of a silk yam being produced by the thread processing unit.
Full Text A DEVICE AND METHOD FOR PRODUCING SiLK YARNS
FIELD OF THE INVENTION
The present invention retain to a device and a method for producing silk yarns, and
especially a device and method for producing high quality silk yarns from silk cocoon of
varying quality.
BACKGROUND OF THE INVENTION
Silk yarns are produced from solk cocoons. During the production silk cocoons are
boiled, filled with water, a cocoon thread end is recognized and caught, the silk thread is
unreeled and combined with other threads to form a silk yarm.
Prior art devices usually haadled only some of the above mentioned stages, and were
tailored to work with cocoons of a predetermmed quality. The prior art devices have large
external dimensions, and a production line of silk yams which is size, power and labor
consuming.
Prior art machines could exploit only up to 70% of a cocoon thread was exploited to
produce a yarn. Prior art silk yam production devices did not control the thickness of each
yam.
There is a need for a highly efficient device and a method for producing silk yams
from silk cocookm, a device and method that enables to exploit almost all the cocooa thread, a
device and a method that are adapted to produce silk out of cocoons of differnet quality and
breed, to provide a concise device for producing silk yarm, to reduce the labor involved in the
production of silk yarns, to control the thickness of each silk yarn that is produced by the
device aad to produce high quality silk yarns.
SHORT DESCRIPTION OF THE DRAWINGS
While the invention is pointed out with particularity in the sppended claims, other
features of the invention are disclosed by the following detailed description taken in
conjunction with the accompanying drawings in which:
FIG 1 isaside view ofa device for producing silk yaens, according to a preferred
embodiment of the invention;
FIG. 2 is a top view of ft device for producing silk yarm, according to a preferred
embodiment of the invention;
FIG. 3 it a cross sectional view of a device for producing silk yams, according to a
preferred embodiment of the invention;
FIG. 4 it a top view of a water bath, according to a preferred embodiment of the
invention;
FIG. 5 is a top view of a portion of boiling unit, according to a prefule embodiments
of the invention;
FIG. 6 is a top view of a portion of a cocoon selection unit, according to a preferred
FIG. 7 is a croat sectional view of a carousel type thread catching station, according
to a preferred embodiment of the nvention;
FIG. 8 is a top view of a carousel type thread catching station, according to a
prenrred embodiment of the invention;
FIG. 9 is a cross sectional view of a portion of a thread catching device arm,
according to a preferred embodiment of the invention;
FIG. 10 is a top view of a trittle base, according to a preferred embodiments of the
invention;
FIG. 11 is a top view of mechanism for forcing a thread catching device arms to
perform a return rotary motion, according to a preferred embodiment of the invention;
FIG. 12 is a top view of a liner conveyor station, according to a preferred
emobodiment of the invention;
FIG. 13 is a cross section view of a linear toothhed convey and is sloped bar
according to a preferred embodiment of the invention;
FIG. 14 it a side view of a linear conveyor station, according to a preferred
embodiment of the invention;
FIG. 15 is a top view of a cocoon oscillating bar, according to a preferred
embodiment of the invention;
FIG. 16 is a cross sectional view ofa thread guiding shaft, according to a preferred
embodiment of the invention;
FIG. 17 is a top view of a jagged carousel and carousel catchers, according to a
preferred embodiment of the invention;
FIG. 18 is a top view of an intermediate catcher base, according to a preferred
embodiment of the invention;
FIG. 19 is a cross section view of a carousel catcher, according to a preferred
embodiment of the invention;
FIG. 20 is a top view of an intermediate thread catcher, according to a preferred
embodiment of the invention;
FIG. 21 u a side view showmg an intermediate thread catcher and a pneumetic driven
rod, according to a preferred embodiment of the invention;
FIG. 22 is a side view of a yam defect detector, according to a preferred embodiment
of the invention;
FIG. 23 is a top view of a yam defect detector, accordmg to a preferred embodiment
of the invention;
FIG. 24 is a side view of a yam thickness monitor, according to a preferred
embodiment of the invention;
FIG. 25 is a top view of a yam thickness monitor, according to a preferred
embodiment of the invention;
FIG. 26 is a side view of a yam twisting and guiding unit, according to a preferred
embodiment of the invention;
FIG. 27 is a side view of a winding yarn guide, according to a preferred embodiment
of the invention;
FIG. 28 is a partial sectional view of a winding station, according to a preferred
embodiment of the invention;
FIG. 29 is a cross sectional view of a grooved drive roller, according to a preferred
embodiment of the invention; and
FIG. 30 is a cross sectional view of a yarn drying unit, accordmg to a preferred
embodiment of the invention.
DETAILED DESCRIPTION OF THE DRAWINGS
It should be noted that the particular terms and expressions employed and the
particular structural and operational details disclosed in the detailed description and
accompanying drawings are for illustrative purposes only and are not intended to m any way
limit the scope of die invention as described in the appended claims.
The invention provides a device and a method for producing silk yams, the device is
configured to receive silk cocoons, to boil the cocoons, fill the cocoons with water, recognia
a thread end and catch it, and unreel the cocoon, while controlling die quality of a silk yam
made of a plurality of silk threads.
The invention provides a highly efficient device and method for producing silk
threads, in which almost all of die cocoon thread is extracted. The device has a thread
catching station that does not damage a cocoon during a step of finding a cocoon thread end
and catching it. Furthermore, cocoons that do not give an end of a thread or that have dteir
thread broke during me production are directed to a thread catching station for repeat
treatment.
The invention provides a device that has a waste removing and transporting
mechanism, far receiving cocoon threads from the thread catching station, for removing dirt
and untangle tangled cocoon threads and for transporting die cocoon threads to a plurality of
thread processing units. Especially, die waist removing and transporting mechanism
comprising a linear conveyor station and a carousel type conveyor.
The invention provides a compact device for producing silk thread ant can be used in
a considerably more limited amount of space than prior art devices for producing silk yams.
The invention provides a device for producing a plurality of high quality silk yarns,
wherein dte device controls die quality of each silk yam being produced by it Especially, a
yarn thickness is monitored in a manner such dwt when die sift yam is too thick (i.e.- is
above a second predetermined threshold), die yarn is not bemg winded around a bobbin.
When one or more dtreads break die velocity of die yam winding is duninisaed, until new
threads are joined to die yam. When die yam is too dun (i.e.- is below a first predetermined
threshold) die winding speed of mat yam is decreased and if the yam remains too thin for
predetermined period ft is further decreased. The winding process can stop if die yam
remains too dun for anodier predetermined period. Controlling the quality of each silk yam
allows the device to produce a silk yam of cocoon threads of different quality and breeding.
The invention provides a device that has an almost tension free winding station,
allowing silk yarns to be wound at more than 250 meters per minute.
The invention provides a device for producing silk yam in which the various steps of
silk yam production are synchronized in a manner that optimizes the device performances.
Especially, provision rate of cocoons to the a boiling unit within the dance, the temperature
of water within the boiling unit, the duration of the cocoons within the boiling unit, the
rotational speed of a plurality of brashes that are configured to recognize a cocoon thread end
and catch it, are synchronized to the rate in which cocoons threads are being winded.
FIGS. 1-3 are a side, top and cross sectional views of device 31 for producing silk
yarns, according to a preferred embodiment of the invention. The various pats of device 31
are shown in further details in FIG. 4-30. FIGS. 1-3 illustrate some portions of device 31 such
as base 32, boiling unit 60, cocoon selection unit 70, first selection unit axis 74, second
selection unit axis 75,76, cocoon sprayer 77, waist unit 80, thread catching station 90,
wadding collector 100, linear conveyor station 109, cocoon oscillating bar 110, thread
guiding shaft 120, jagged carousel 130, intermediate thread catcher 140, carousel catcher 150,
rod 160, yam defect detector 170, yam thickness monitor 180, yam twisting and guiding
station 190, winding unit 200, winding station motor 207, yam drying unit 210, central pole
230, two supporting members 231 and 232 that are connected to central pole support various
portions of a plurality of thread processing stations, bath 250, bath bottom 251, soaking unit
260, control panel 270, cocoon chamber 616, two ends of flipping lever 952 and 955
Water bath 250 is adapted to be partially filled with water, in which cocoons are
transferred during the yam production. Bath 250 is mounted on base 32. Base 32 supports a
plurality of motors, such as boiling unit motor 66, selection unit motor 76, catching device
axis motor 9123, and also supports control unit 280 (not shown). Control unit 280 preferably
comprising of at least one processor.
Referring to FIG. 4, water bath 250 comprises of several sections, such as annular
channel 99 in which cocoons are transferred while thread catching unit 90 (shown in greater
detail in FIG. 7-8) detects and finds a thread end; a conveyance section 258 in which cocoons
are conveyed by linear toothed conveyer 102 and have dirt, tangled threads and external
cover being removed so that a single continuously unreeled cocoon is provided to a plurality
of thread catchers cooperable with a plurality of yam processing stations; and circular duct
256 in which cocoons are unreeled.
Water bam 250 comprising horizontal bath bottom 251, bath external vertical wail
252, first to third bath internal vertical walls 253,254 and 255, bath inlet 256 and bath outlet
257. Horizontal bath bottom 251 supports bath external vertical side wall and first to third
bath internal vertical walls 253,254 and 255. First bath internal vertical wall 253 is circular
and surrounds catching device sleeve 93. A first portion 2521 of external vertical wall 252 is
curved in a manner that it, bottom 251 and first bath internal wall 253 form annular channel
99.
Annular channel 99 is partly filled with water in which cocoons from cocoon
selection unit 70 are transferred while a plurality of brushes detect and catch cocoon thread
ends.
Second internal vertical wall 254 is rectangular shaped, and surrounds rectangular
base 101, being a part of linear conveyor station 109. Conveyance section 258 is formed
between a facet of internal vertical wall 254 and a portion of bath external vertical wall 252.
Third bath internal vertical wall 255 is circular and surrounds central vertical pole
230. A second portion 2522 of external vertical wall 252, opposed to first portion 2521 of
external vertical wall 252 is curved in a manner mat it, bottom 251 and third bam internal
wall 254 form a circular duct 256.
A water pump (not shown) forces water to go through bath water inlet 256 and to flow
within circular duct 256, in a manner mat cocoons that do not give an end of a thread or that
have their thread broke during the unreeling process are directed to thread catching station 90
for repeat treatment Conveniently, water flows from bath outlet 257 through a water
filtering unit (not shown) and return to bath 250 through bath inlet 256.
A perforated pipe (not shown) is placed below the water level within bam 250 and
surrounds third internal vertical wall 255. Air flows from an air pump (not shown) that is
connected to an input of the perforated pipe and through a plurality of holes within the pipe,
thus preventing cocoons to stick to third vertical wall 255.
Boiling unit 60 is adapted to receive cocoons from soaking unit 260, to boil the
cocoons and fill diem with water. Referring to FIG. 5, boiling unit 60 comprises of boiling
unit housing 61, boiling unit heating element 62, boiling unit conveyor 63, boiling unit water
inlet 65 and boiling unit motor 66. Housing 61 has a boiling unit cocoon inlet 610 and a
boiling unit cocoon outlet 611. Boding unit cocoon inlet 610 is fixed to a cocoon chamber
616 mat is adapted to receive cocoons from soaking unit cocoon outlet 261. Cocoon chamber
616 has a rectangular cross section and is oriented at about 60 degrees to the horizon. Boiling
unit heating element 62 is located within boiling unit housing 61, near a lower portion of
boiling unit housing 61. Boiling unit heating element 62 is configured to heat water (i.c-
heated water) within boiling unit housing 62 and to remove sericin from the cocoon. The
water is heated to 85-95 degrees centigrade.
Boiling unit conveyor 63 comprising of boiling unit conveyor belt 631 and a pair of
boiling unit conveyor axis 632. Boiling unit conveyor belt 631 is driven by pair of boiling
unit conveyor axis 632 that are driven by boiling unk motor 66. The revolution speed of
boiling unit motor is controlled by BUM_SPEED signals sent from control unit 90. A
plurality of 6ns 634 are integrally fixed to boiling unit conveyor belt 631, to form a plurality
of cocoon boiling unit holders. Cocoons that are provided from soaking unit 260 fall by
gravity to the cocoon boiling unit holders, and are conveyed along a elliptical path through
the heated water to cocoon boiling unit outlet 611, to be provided to cocoon selection unit 70.
Boiling unit conveyor belt 631 also plays a role of a cover intended for forced sinking
cocoons into the heated water.
A waist unit 80 and a cocoon selection unit 70 are located near boiling unit cocoon
outlet 611 in a manner such that cocoons that exit boiling unit 60 are provided to cocoon
selection unit 70, to be selected by the latter. Selected cocoons are provided to thread
catching station 90 and the remainmg cocoons are provided to waist unit 80.
Referring to FIG. 6, cocoon selecting unit 70 comprising a plurality of parallel
selecting unit bars 71 displaced at a fixed distance CSU1 from each other (each selecting unit
bar having two ends) a first and second selection unit drive chants 72 and 73, first and second
selection unit axis 74 and 75, selection unit motor 76 and a cocoon sprayer 77. A first end of
each bar of selecting unit ban 71 is fixed to first selection unit drive chain 72 and an opposite
end of each bar of selecting unit ban 71 is fixed to second selection unit drive chain 73.
Cocoon selecting unit 70 selects cocoon mat are wider than predetermined threshold
CSUi. Cocoons mat are narrower man CSUI fall between parallel selecting unit bars, to be
provided to waist unit 80.
Each of selection unit axis 74 and 75 has two chain wheels, a first chain wheel is fixed
to one end of a selection unit axis and a second chain wheel is fixed to an opposite end of the
selection unit axis. First chain wheel of both selection unit axis 74 and 75 is configured to
receive first selection unit drive chain 72 and to drive it, when first and second selection unit
axis 74 and 75 are driven by selection unit motor 76. Second chain wheel of first and second
selection unit axis 74 and 75 are configured to receive second selection unit drive chain 73
and to drive it, when first and second selection unit axis 74 and 75 are driven by selection
unit motor 76.
First selection wit axis 74 is placed beneath the surface of water within water bath
250, second selection unit axis 75 is placed above this surface, and near thread catching
station 90.
Cocoons that are provided by boiling unit 60 fail by gravity to a location near an
emerging point EP in whkh selecting unit bars 71 emerge from under the water within water
bath 250. These cocoons are conveyed by selecting unit bars 71 from emerging point EP
along a sloped linear path to pass over second selection unit axis 75 and to be fed to thread
catching unit 90. Cocoon selection unit 70 also receives and accordingly selects cocoons from
circular duct 256.
The cocoons are healed while they pass through boiling unit 60, thus softening the
sericin within the cocoons. The healed sericin can cause cocoons to stick to each other. In
order to separate the cocoons from each other and in order to strengthen the cocoons before
passing through thread catching station 90, there is a need to cool the cocoons. While
cocoons are being conveyed by selecting unit bars they are washed by relatively cold water
(about 10-25 degrees centigrade) from cocoon sprayer 77. Cocoon sprayer 77 is located
above second selection unit axis 75 and faces selection unit bars 71.
Thread catching station 90 is occupied by carousd-type catching device 9i and
annular channel 99. Thread catching station 90 is configured for finding ends of cocoon
threads without damaging die cocoon, and providing the found ends to linear conveyor
station 109. Catching device 91 is comprising a plurality of brushes (collectively denoted
901) that pa form reciprocal motion around their axis and also a progressive displacement
along annular channel 99.
Brushes 901 are configured to contact an upper portion of the cocoons that are within
annular channel 99, to find a cocoon thread end and to catch it without damaging the cocoon.
The return rotary motion of brashes 901 cause cocoons that contact the brushes to stay within
annular channel 99 for a relative long period, thus increasing the probability that a thread end
is found and caught The return rotary movement drives a cocoon to move from a brush to a
consecutive brush and vice verse. Usually, the cocoon is sunken in water, its upper end is
located near the surface of the water and brushes 901 enter the water and make contact with
the upper end of the cocoon.
Annular channel 99 is closed by cover 991 along its length, cover 991 is provided
win a split in which the catching device arms are able to move. Brushes are fastened on the
edges of the split and reduce losses of heat in the surroundings and reduce the energy
consumption for the water heating.
Referring to FIG. 7-11, catching device circular upper part 911 is connected for rotary
movement to vertical catching device axis 912, being surrounded by vertical catching device
sleeve 93. Catching device sleeve 93 is fixed to bottom 2S01 of water bath 250 and is
perpendicular to the latter. An upper end of vertical ecatching device axis 912 is fixed to
circular upper part 911 and a lower end of vertical catching device axis 912 is fixed to a
vertical catching device axis disc 9121, adapted to receive a catching device axis belt 9122.
Vertical catching device 912 is driven by friction by catching device axis belt 9122, driven by
catching device axis motor 9123.
A plurality of radially extending catching device arms having a forked shaped end, are
pivotally mounted to catching device upper part 911 by means of a plurality of catching
device shafts.
Catching device shaft 921 pisses through a forked shaped end of a first element 922
of catching device arm 92, and through radially extending element 9111 fixed to catching
device circular upper part 911. An opposite end of first element 922 of catching device arm
92 is fixed to catching device arm sleeve 924, in which catching device arm axis 925
revolves. Catching device arm sleeve 924 and catching device arm axis 925 are perpendicular
to first element 922 of catching device arm 92. Catching device arm disc 926 is fixed to
catching device arm axis 925, and is used, in accordance with horizontal guide groove 941 to
control the revolution of catching device arm axis 925.
An end of catching device arm axis 925 is fixed to brush 9271, brush 9271 comprising
concave bristle base 927 and a plurality of elastic bristles 929. A plurality of elastic bristles
929 are fixed to bristle base 927. Bristles 929 are fabricated of polymer mono-fibers with
high ability of catching threads. Conveniently, a plurality of cavities 928 are formed within
bristle base 927, whereas each cavity is adapted to hold several bristles. Cavities 9281-9289
and accordingly bristles that are held by them are oriented at about 35 degrees to catching
device arm axis 925. Cavities 9271-9273 and accordingly bristles that are held by them are
parallel to catching device arm axis 925. Cavities 9281-9286, cavities 9287-9299 and cavities
9291-9293 are angularly positioned at a first distance Rl, second distance R2 and third
distance R3 respectively from catching device arm axis 925. R1 Catching device member 95 is connected for rotary movement to vertical catching
device sleeve 93. An upper part of catching device member 95 is shaped as ring, whereas
catching device member groove 951 is formed at a circumference of the ring. Catching
device member groove 951 is adapted to contact catching arm disc 926 in a manner such that
a rotation of catching device member 95 forces catching device arm disc 926 to revolve.
A radially extending catching device member lever 951 has one end fixed to a lower
part of catching device member 93 and another end pivotally mounted to one end of flipping
lever 952. An opposite end of flipping lever 952 is engaged to a flipping pin 953. Flipping
pin 953 is fixed to flipping disc 954 in a manner that it is subjected to angular movement by
flipping disc 954. Flipping disc 954 is driven angularly by flipping motor 955.
The angular movement of flipping disc 954 forces catching device member 95 to
perform an alternating angular movement. When flipping pin 953 moves away from catching
device member 95, catching device member 95 rotates counterclockwise. When flipping pin
moves towards catching device member 95, catching device member 95 rotates clockwise.
The rotation of catching device circular upper part 911 cause catching device arms
such as catching device arm 92, bristle base 927, catching device arm axis 924, and bristles
959 to move in a circular path. When catching device arm disc 926 contacts horizontal guide
groove 941 brashes such as brush 9271 comprising bristle base 927 and bristles 929 further
perform an alternating circular movement around catching device arm axis 924.
A curved track 94 is fixed to a horizontal disc 98, connected to catching device sleeve
93. Curved track 94, contacted by hollow catching device sleeve 924, is adapted to lift each
catching device arm after the brush connected to the catching device arm exits annular
channel 99 and to lower it before entering curved chamber 99. Catching device arm 93 is
being lifted and lowered after exiting annular chamber 99 to enable a thread that is caught by
brush 9271 to be placed upon wadding collector 100, installed on the way of the lowered
catching device arm 93 in a manner that brush 9271 will roll one third
of the perimeter of the face plane of wadding collector 100. By this means reliable
catch of the cocoons thread and their winding on wadding collector 100 are executed.
Catching device arm 92 is forced to descend relatively fast so that the found ends of the
cocoon threads remain caught by catching device arm 92 until being transferred to wadding
collector 100. Conveniently, a forked shaped cleaning device (not shown) is placed in the
way of the lowered catching device arm in a manner such that a portion of dirt and tangled
cocoon threads are caught by it before a cocoon thread is provided to wadding collector 100.
Referring to FIGS. 12-14, linear conveyor station 109 of cleaning and importing
mechanism 333 is occupied by base 101, linear toothed conveyor 102, sloped bar 103,
hexahedral-shaped wadding collector 100, thread cutting device 104 and cocoon oscillating
bar 110. Linear conveyor station 109 is configured to receive a thread from thread finding
station 90 and to remove dirt, untangle and remove tangled threads and a cover of a cocoon,
and to provide a single continuous cocoon thread to thread guiding shaft 120.
A lower toothed conveyor disc 1021 is connected for rotary movement to a sloped
lower toothed conveyor axis 1202, passing through sloped lower toothed conveyor cylinder
1203 and base 101. An upper toothed conveyor disc 1029 is connected for rotary movement
to a sloped upper toothed conveyor axis 1208, passing through sloped upper toothed
conveyor cylinder 1207 and base 101. Sloped upper toothed conveyor axis 1208 is parallel to
sloped lower toothed conveyor axis 1202, bom are oriented at about one hundred degrees to
base 101. Lower toothed conveyor disc 1021 faces thread catching station 109, while upper
toothed conveyor disc 1029 faces thread guiding shaft 120 and center pole 230.
A ciicumference of upper toomed conveyor disc 1029 is bigger man a circumference
of lower toothed conveyor disc 1021. A groove is formed in each of these circumferences and
is configured to receive an inner portion of toothed conveyor belt 1205. Upper toothed
conveyor disc 1029 is higher than lower toothed conveyor disc 1021.
Smooth sloped bar 103 is configured to prevent a thread mat is being conveyed by a
portion of toothed conveyor belt 1205 in the direction of thread guiding shaft 120 from
making contact with another portion of toothed conveyor bdt 1205 that advances to the
opposite direction. Smooth sloped bar 103 has a sloped portion 1031 fixed to base 101 by two
vertical bar portions 1031 and 1033. Smoothed sloped bar 103 is surrounded by toomed
conveyor belt 1025. Vertical bar portion 103 lfaces sloped lower toothed conveyor cylinder
1203 and vertical bar portion 1033 faces sloped upper toothed conveyor cylinder 1207.
Sloped portion 1031 U located above both upper and lower toomed conveyor discs 1029 and
1201.
Wadding collector 100 comprising a horizontal wadding collector axis 1001, that is
connected for rotary movement to a pair of horizontal wadding station supporters 1002, that
are positioned at a right angle to wadding collector axis 1001 and are fixed to base 101. A
wadding connector sleeve 1003 surrounds wadding collector axis 1001 and is fixed to
wadding collector axis 1001 and to a plurality of radially extending fins 1004. Radially
extending fins 1004 are fixed to wadding collector axis 1001 to form a hexahedral. Wadding
collector 100 can be shaped in other form such as a cylinder. A wadding nation groove 1005
is formed at one end of wadding collector axis 1001 and is configured to receive a wadding
axis belt 1006. Wadding collector axis 1001 is driven by friction by wadding axis bek 1006,
driven by wadding collector motor 1007. A plurality of radially extending pins 1008 are fixed
to a circumference of the radially extending fins.
Wadding collector axis 1001 is parallel to base 101 and is parallel to a horizontal
projection of smooth sloped bar 103. A first end 10001 of wadding collector 100 frees
catching device member 90 and a second opposite end 10002 of wadding collector 100 frees
central pole 230. Three radially extending pins are located near first end 10001 and a fourth
pin is located near second end 10002.
The phirality of radially extending fins 1004 undergo a circular path. The highest
point in the path is referred to as top of wadding collector path. Wadding collector 100 and
smoothed sloped bar 103 are configured so mat most of smoothed sloped bar 103 is lower
man the top of the wadding collector path. The height of sloped portion 1031 of smoothed
sloped bar 103 equals the height of the top of wadding collector 100 near second end 10002
of wadding collector 100. Thread cutting device 104 is located near second end 10002, and is
configured to make contact with a thread mat is being conveyed by linear toothed conveyor
102, to cut it near its end and to allow the cocoon thread to be handled to thread guiding shaft
120. The remaining portion of die thread is wrapped around wadding station 100. Thread
cutting device 104 comprising vertical thread cutting device supporter 1041 and a horizontal
heating element 1042.
cocoon oscillating bar 110 oscillating in a manner such that prevent cocoon having
their threads being wound around wadding collector 100 from being drawn to wadding
collector 100 and from sticking to cocoon oscillating bar 110. Cocoon oscillating bar 110
expose cocoons to impact actions that help to remove dirt, untangle and remove tangled
cocoons and a cover of a cocoon from the cocoon.
Referring to FIG. 15, cocoon oscillating bar 110 is pivotally mounted to base 101 by
means of oscillating bar axis 114 passing through two clops 113 fixed to base 101. Cocoon
oscillating bar 110 is forced to move upwards and downwards by oscillating arm 115. One
end of oscillating arm 115 is fixed to clip 113 arid an opposite end of oscillating arm 115 is
engaged to a oscillating pin 116. Oscillating pin 116 is fixed to oscillating due 117ina
manner that it is subjected to angular movement by oscillating disc 117. Oscillatmg disc 117
is driven angularly by oscillating motor 118. The angular movement of oscillatmg disc 117
forces cocoon oscillating bar 11 to perform an alternating angular movement When
oscillating pin 118 moves downwards, cocoon oscillating bar moves downwarle, and vice
verse.
Cocoon oscillating bar 110 and a horizontal shield 112 form a slot in which threads
that are being conveyed by linear toothed conveyer 102 can move. Cocoon oscillating bar
110 prevents a cocoon from being drawn to wadding collector 100
Carousel type conveyor 334 of cleaning and transporting mechanism comprising of
thread guiding shaft 120 and jagged carousel 130. Carousel type conveyor 334 is adapted to
receive a cocoon thread end from linear conveyor station 109 and to provide it to one of the
thread processing stations.
Conical shaped thread guiding shaft 120 is configured to receive a single continuously
unreeled cocoon thread from linear toothed conveyor 109, after the cocoon thread end is cut
by thread cutting device 104 and to provide the cocoon thread to jagged carousel 130 and to a
carousel catcher 150. Thread guiding shaft 120 places an upper end of the cocoon thread
above jagged carousel 130 so that the cocoon thread is placed in the way of jagged carousel
-130 circumference paasage and in the way of carousel catcher ISO passage.
Referring to FIG. 16 thread guiding shaft 120 has one narrow end 121 facing wadding
collector 100 and a larger opposite end 122 facing central pole 230. A mread guiding shaft
groove 124 is formed near opposite end 123 of thread guiding shaft 120 and is configured to
receive a thread guiding shaft belt 12S. Thread guiding shaft 120 is driven by friction by
thread guiding shaft belt 125 driven by thread guiding shaft motor 126.
Referring to FIG. 17 and 19, jagged carousel 130 is mounted for rotary movement to
central pole 230. lagged carousel 130 rotates clockwise and is adapted to receive a plurality
of threads from thread guiding shaft 120 and to provide the threads to a phurality of carousel
thread catchers such as carousel catcher 150 angularly positioned above jagged carousel 130.
Jagged carousel 130 is toothed at its imference and the nuniberofteem is over the
number of thread processing station at least twice.
Each of carousel thread catchers is connected for rotary movement to jagged carousel
130 and is placed near the coxumference of jagged carousel 130 in a manner such that a
thread that is received by jagged carousel 130 is caught by one of the carousel thread
catchers.
Carousel catcher 150 comprising vertical carousel catcher cylinder 151 oat surround
a vertical carousel catcher axis 152, a lower end of vertical carousel catcher axis 152 passes
through jagged caroutd 130, pair of horizontal radially extending carousel casher arms
154 fixed to vertical carousel catcher cylinder 151, and a horizontal oriented carousel catcher
groove 155, adapted to receive a carousel catcher bek 156 that forces the plurality of carousel
catchers to rotate around their axis.
Carousel catcher arms 154 are configured to catch a cocoon thread, being held by
thread guiding shaft 120 and a tooth out of a group of the tooth that is formed at the
circumference of jagged carousel 130, the group being located near carousel catcher 150. The
rotation of carousel catcher arms 154 force mis cocoon thread to be wrapped on carousel
catcher cylinder 151.
The circular path mat is undergone by a pair of carousel catcher arms of a carousel
catcher partly overlaps a circular path that is undergone by a pair of carousel catcher arms of
a consecutive carousel catcher. In order to prevent these two pair of arms from colliding, one
pair of carousel catcher arms is positioned at a higher location than the other pair of carousel
catcher arms.
A plurality of thread processing stations are located around center pole 230. Each
thread processing station is configured to receive a plurality of cocoon thread from jagged
carousel 130 and to getgerte a silk armsi having a predetrminedthickness. Each thread
processing station comprises of a processing station thread catcher {conveniently, each
processing station thread catcher comprises of a rod and a mtennediate thread catcher), a yarn
defect detector, a yam thickness monitor, a yam twisting and guiding unh, a winding unit and
a drying unit.
For convenience of explanation thread processing station 300 is referred to. Thread
processing station 300 comprising processing thread catcher 301 (conveniently comprising of
rod 160 and intermediate thread catcher 140), yarn defect detector 170, yam thickness
monitor 180, yarn twisting and guiding unit 190, winding unit 200 and drying unit 210.
A horizontal, disc shaped rod base 161 is fixed to central pole 230. Rod base 161 is
positioned below jagged carousel 130 and is configured to support a plurality of rods,
angulary positioned near the circumference of rod base 161. Radially extending horizontal
oriented rod 160 undergoes a linear paw after receiving a PUSH_1 control signal. Referring
to FIG. 21, the linear path starts above the circumference of rod base 161, crosses over the
circumference of jagged carousel 130 and ends near intermediate thread catcher 140,
positioned in front of rodl60. Rod 160 is preferably driven by a pneumatically driven.
When tod 160 receives • PUSH_1 control signal from control wit 280 it undergoes a
linear path that ends near intermediate thread catcher 142 positioned in front otrod 160. If a
thread Chat is held by one of die plurality of carousel catchers passes through the linear path
undergone by rod 160, the Oread is fed to intermediate thread catcher 140.
Referring to FIG. 18,20 and 21, intermediate thread catcher 140 comprising of a
propellor shaped lower part (i.e.- propeller) 141, that is fixed to an intermediate thread
catcher disc 143, both connected for rotary movement to a split ring shaped intermediate
thread catcher base 142. Intermediate catcher base 142 internal side laces ttie circumference
of jagged disk 130. An intermediate thread catcher groove 144 is formed at the circumference
of intermediate thread catcher disc 143 and is adapted to receive a intermediate thread catcher
belt 146, mat is used to drive the plurality of intermediate thread catchers.
A vertical oriented intermediate thread catcher groove 147 passes through a center of
propeller 141, through intermediate thread catcher disc 143 and through intermediate thread
catcher base 142.
Intermediate thread catcher 140 is configured to receive a cocoon thread from rodl60,
to join the cocoon thread to other threads being driven through intermediate thread catcher
groove 146, to spin these threads and provide mem to yarn defect detector 170.
Yam defect detector 170 is adapted to sense when a yam is too thick and accordingly
to send a TH1CKJ signal to control unit 280 mat accordingly stops the winding of the yam
by winding unit 200. Referring to FIG. 22-23, yarn defect detector 170 comprising defect
detector arm 171, vertically oriented defect detector supporter 172, defect detector axis 173
and defect detector arm location detector 174. Defect detector arm 171 is pivotally mounted
to defect detector supporter 172 by means of defect detector axis 173. A slot is formed at one
end of defect detector arm 171 arid is conf^ured to allow a yam to pass through it as long as
the yam is not too thick. As long as me yam is not to thick defect detector arm 171 is in a
first position. When the yam is too thick it gets stuck in the slot and causes defect detector
arm 171 to rotate upwards and to be in a second position. Defect detector arm location
detector 174 detects that defect detector arm 171 is positioned at the second position and
sends a THICK_1 signal to control unit 280.
Yam thickness monitor 180 is adapted to sense when a yarn is too thin and
accordingly to send a THIN_1 signal to control unit 280 mat accordingly sends a series of
PUSH_1 signals to rodl60, in order to catch further cocoon threads and to join mem to the
yam.
Referring to FIG. 24-25, yam thickness monitor 180 comprising thkknets monitor
arm 181, vertically oriented thickness monitor supporter 182, thickness monitor axis 183,
thickness monitor arm location detector 184 and thickness detector weight 185. Thickness
monitor arm 181 is pivotally mounted to thickness monitor supporter 182 by means of
thickness monitor axis 183. Thickness monitor weight 185 forces thickness monitor arm 181
to fall by gravity to a first position. A txapezoid shaped slot 185 is formed at an opposite end
of thickness monitor arm 181 and is configured to allow a yam within a predetermined range
of thickness to force thickness monitor arm 181 to beheld in a second position by friction. As
long as the yam is thick enough it forces thickness monitor arm 181 to be positioned in the
first position. When the yam is too thin, mere is not enough friction to overcome the effect of
thickness detector weight 185 and thickness monitor arm 181 pivots out from me second
position. Thickness monitor arm location detector 185 detects that thickness monitor arm 181
in not located at the second position and sends a THIN_1 signal to control unit 280.
Thickness monitor weight 185 comprises of a bolt and a nut, and is configured to be
calibrated by the screwing or unscrewing the nut
Referring to FIG. 26, yarn twisting and guiding unit 190 comprises of three guiding
wheels 191-193 and eccentric guidmg wheel 194. First guiding wheel 191 is connected for
rotary movement to defect detector supporter 172, and is located above defect detector axis
173. Second and third guiding wheels 192 and 194 eccentric guidmg wheels are each
connected for rotary movement to thickness monitor supporter 182. Second guidmg wheel
192 is positioned above first guiding wheel 191 and below thickness monitor arm location
detector 184. Eccentric guiding wheel 194 is located below trapezofd shaped slot 185, third
guiding wheel is located above the trapezoid shaped slot 185. Eccentric guidmg wheel 194
and third guiding wheel 193 are configured to receive a yam, guide it through trapezoid
shaped slot 185 and provide the yam to a winding yam guide 202.
Eccentric guiding wheel 194 is configured to receive a yam and force it to swivel
back and fourth, so that some of the water absorbed in the yam is forced to leave the yam.
Eccentric guiding wheel 194 has a disc shaped exterior in which an eccentric shaped groove
is formed, the eccentric shaped groove is adapted to receive the yam.
Yam from intermediate thread catcher 140 is guided to second guiding wheel 192
man to first guiding wheel 191, is twisted around the yam that is guided from intermediate
thread catcher 140 to second guidmg wheel 191, men is guided to eccentric guiding wheel
194, through trapezoid shaped slot 185, third guidmg wheel 193 and to winding unit 200.
Referring to FIGS. 27-29, winding unit 200 is occupied by grooved drive roller 203,
bobbin 205, winding yam guide 202, winding station belt 206 and winding station motor 207.
Winding unit 200 is cooperative with yarn drying unit 210. Winding unit 200 is configured
to receive a yam from third guiding wheel 193 and wind the yam around bobbin 203. The
rotation speed of winding station motor 207 is controlled by WSM_SP£ED_1 signals from
control unit 290. Preferably, control unit 280 receives a WSM_SPEED_1* signal from a
winding station motor detector that monitors the speed of winding station motor 207.
Grooved drive roller 203 is connected for rotary movement to a horizontal grooved drive axis
2031, passing through vertical winding station supporters 2012. Grooved drive roller 203
former comprising helically arranged guiding groove 2032 and belt groove 2032.
Conveniently, guiding groove is oriented at about 30 degrees to horizontal grooved drive axis
2031. Belt groove 2032 is adapted to receive belt 206.
Winding yarn guide 202 is pivotally connected to horizontal winding station base
2011 by means of winding yarn guide axis 204. One end of winding yam guide axis 204
passes through slot 202S formed within first horizontal portion 2024 of winding yam guide
202 and is fixed to the latter. An opposite end of winding yarn guide axis 204 passes through
horizontal winding station base 2011. One end of first horizontal portion 2024 is turned
upwardly and is fixed to a contact element, such as a winging yarn guide roller 2026.
Winding yarn guide roller 2026 is adapted to move within guiding groove 2032, in a manner
such that a rotation of grooved drive roller 203 forces winding yarn guide rolkr 2026 and
accordingly winding yarn guide 202 to perform a horizontal reciprocal movement An
opposite end of first horizontal portion 2024 of winding yarn guide 202 is fixed to an end of a
sloped and upwardly extending yam guide element 2023, having an opposite end fixed to a
second vertical portion 2021 of winding yam guide 202.
A yam guiding slot 2022 is formed within an opposite end of second vertical portion.
Yam guiding slot 2022 is adapted to receive a yam and to guide the yarn to bobbin 205.
Bobbin further comprising a bobbin belt groove 2053 that is adapted to receive belt 206.
Bobbin 205 is connected for rotary movement to horizontal bobbin axis 2051, passing
through vertical winding station supporters 2012. Horizontal bobbin axis 2051 is parallel to
horizontal grooved drive axis 2031. Winding yam guide 202 is disposed upstream of bobbin
205 in the running direction of the yarn. Bobbin 205 can be of many shapes, such as a
cylinder. Bobbin 205 can also comprise of a plurality of radially extending fins fixed to
horizontal bobbin axis 2051.
Bobbin 20S and grooved drive roller we driven by friction by belt 206, driven by
bobbin motor 207. A rotational speed of bobbin motor 207 is controlled by control unit.
Preferably, belt 206 contacts an inner portion of bobbin bek groove 2053, being
central pole 230. Horizontal bobbin axis 2051 passes through a pair of open ended winding
station supporter grooves 2013 formed within a circumference of vertical winding station
supporters 2012. Thus, bobbin 205 can be drawn out of winding station and be put into the
winding station in a swift manner, without interrupting the rotation of belt 206, and groove
drive roller 203.
Referring to FIG. 30, yam drying unit 210 is comprised of a yam drying heating
element 211, mat faces bobbin 205 and a drying motor 212 for forcing air to flow from yarn
drying element 211 to bobbin 205. Drying heating element 211 is activated by DRY_1
signals from control unit 280 when a yarn is winded around bobbin 205.
Control unit 280 controls the production of silk yam. it receives information about the
current parameters of the silk yam production process and R adjusts them on die optimal
level. Especially, control unit controls the thickness of the silk yam and synchronizes the
various elements of the device. Control unit 280 comprises a central processing unit and a
plurality of input/output interfaces adapted to receive and transmkcontrol signals, such as a
plurality of THINJ signals, 0 plurality of THIC_1 signals from a plurality (N I) of yarn defect detectors, a plurality of
WSM_SPEEDJ and WSM_SPEED_1 signals from a plurality (Nl) of winding station
motors and a plurality (Nl) of winding station motor monitors, and various signal mat control
the speed of the various motors of the device.
Control unit 280 receives data regarding the radial velocity of the plurality of winding
stations and accordingly regulates the feeding of cocoons from soaking unit 260, the duration
of cocoons within boiling unit 60 and temperature of the healed water within boiling unit 60,
the retum-rotary movement and progressive displacement of brushes 901 of thread catching
station 90, the rotation of wadding collector 100 and linear conveyor belt 120, the rotation of
thread guiding shaft 120, the rotation of jagged carousel 130 and carousel catchers 150.
Control unit 280 activates the rods, when mere is a need to add a cocoon thread to a
silk yam, and according to the thickness of the yam accelerates or decelerates the winding
process.
For example, when control unit 280 receives a TH1CKI signal from defect detector
arm location detector 174 is stops the winding of yam at winding station 200 by sending to

winding station motor 207 control signal WSM_SPEED_l indicating that winding station
motor has to stop.
When the yam becomes too thin (for example, when one or move threads break or
expires) thickness monitor arm location detector 185 sends a THIN_1 signal to control unit
280. The THIN_I signals are sent until recovery of the thickness of the yarn. When control
unit receives THIN_1 signal it sends a WSM_SPEED_1 signal to winding station motor 207
in order to reduce the velocity of the yam winding, with the aim to reduce the length of the
section where the yam becomes thin in large measure. Control unit 280 also sends PUSH1
signals to rod 160 in order to catch new threads to be integrated in the yam. If threads are not
caught within a predetermined period of time, control unit 208 sends WSMSPEED1
signals in order to further reduce the velocity of the yam winding. In a case of sharp
thickening of the yam control unit 280 stops winding station motor 207 completely. After
recovery of the required thickness of yam THIN_1 signals are not generated and die velocity
of the yarn winding is restored to an optimal level.
A control panel 270 is connected to an upper part of winding station base 2011.
Control panel 270 has a screen and a concise keyboard, and allows to determine the process
parameters such as the first and second thresholds of each thread processing unit. Control
panel 270 allows to enter a plurality of instructions to control unit 280, such as an instruction
to determine the maximum winding speed of a. winding station, to fix the winding speedx or- to
allow control unit 280 to regulate the winding speed.
The proposed device is functioning in the following manner
Soaking unit 260 feeds boiling unit 60 with cocoons mat fall by gravity from soaking
unit outlet 261, via cocoon chamber 616 and boiling unit cocoon inlet 610 to cocoon boiling
unit holders formed on boiling unit conveyor belt 631. These cocoons are conveyed along an
elliptical path through the heated water within boiling unit 80 to cocoon outlet 611, to be
provided to cocoon selection unit 70. During thier passage through boiling unit 80 the
cocoons are heated and filled with water so that a portion of the sericin of the cocoons leaves
the cocoons.
Cocoons exit boiling unit 60 and fall by gravity to a location near an emerging point
EP in which selecting unit bars 71 emerge from under the water within water bath 250. The
cocoons are conveyed by selecting unit bars 71 from emerging point EP along a sloped linear
path to pass over second selection unit axis 75 and to be fed to thread catching unit 90. While
the cocoons are being conveyed they are washed by relatively cold water from cocoon
sprayer 77. Cocoons that are thinner than CSU1 fall between parallel bars of selection unit 70
to be provided to waist unit 80.
Cocoons that are fed to thread catching unit 90 ate usually sunken in water, their
upper end are located near the surface of the water. Brushes 901 contact an upper portion of
the cocoons, force them to move within annular channel 99 and to stick to a brush mat
contacts a cocoon. Brushes 901 are configured not to damage the cocoons while they contact
the cocoons.
Sericin that still remains in the cocoon helps cocoon threads to stick to the brashes of
the thread finding station 90. The return rotary motion of the brushes causes cocoons that
contact the brushes to stay within annular channel 99 for a relative long period, this
movement drives cocoons from one brush to another and increases the probability that a
thread end is found and caught.
Cocoons that exit thread finding station 90 without having their thread being caught
by one of the brushes are forced to move through conveyance section 258 and circular duct
256 and to arrive to cocoon selection unit 70.
Cocoons that have their threads caught by a brush of thread catching station 90 remain
in the water within conveyance section 258, while their thread end is provided to wadding
station 100, by a catching device arm that is lifted and lowered by curved track 94 in a
manner such mat the a reliable catch of a cocoon end is achieved by wadding collector 100.
Sericin that still remains in the cocoons help wadding collector 100 to perform a reliable
catch of the cocoon thread end. Cocoon oscillating bar prevent cocoons having their thread
winded around wadding collector 100 from sticking to cocoon oscillating bar 110 and from
being drawn to wadding collector 100.
Cocoons threads and accordingly cocoons are conveyed along linear conveyor station
109, while dirt is removed and tangled threads are untangled or removed, so mat when
cocoons reach the end of linear conveyor station 109 a single continuous silk thread is
provided. Before reaching mat end the thread ends are cut by thread cutting device 104.
Smooth sloped bar 103 prevents a thread mat is being conveyed toward thread guiding shaft
to be forced to move to an opposite direction.
Thread guiding shaft 120 receives the single cocoon thread and places the thread in
way of jagged carousel 130 and carousel catcher 130 so that the thread is caught by a
carousel catcher arm and wrapped around a carousel catcher cylinder. Jagged carousel 130
and the carousel catcher rotate clockwise, forcing the cocoon thread and accordingly the
cocoon to rattle clockwise, until the thread is provided to one of the (bread processing
stations petitioned around central pole 230.
A thread is provided to a thread processing station by means of a rod that contacts die
thread and provides ft to an intermediate thread catcher positioned in front of die
pneumatically driven rod. For convenience of explanation it is assumed that die thread is
provided to thread processing station 300.
Conveniently, thread processing station 300 is initialized by directing at least one
thread through intermediate thread catcher 140, yarn defect detector 170, ywn thickness
monitor 180, yarn twisting and guiding tout 190, and winding unit 200. After die
initialization each thread that is provided to intermediate thread catcher unit 140 sticks to
other threads that were previously fed to intermediate thread catcher unit 140 and passes with
these threads through die various elements of thread processing station 300.
A thread end passes dvough intermediate catcher groove 144 and passes through yarn
defect detector 170, that sends TH1CKJ signals diat indicate if a silk yarn is too thick, and if
so stops the winding process.
As long as die silk yam is not too thick, the threads that form the yarn pass through
twisting and guiding unit 190 where they are twisted and forced to swivel back and fourth so
that a portion of the water absorbed n the threads exits die threads.
The silk yam passes through yam thickness monitor 180 that detects when the yam is
too thin. If a yam is too thin a THIN_l signal is sent to control unit 280, that activates
pneumatic driven rod 160 in order to catch new direads and to join them to the thin yarn. The
winding speed of the yarn is decreased until the yam is thick enough, and the winding speed
is restored to an optimum level. The winding speed can be decreased if the yam does not
thicken during a predetermined period.
From the yarn thickness monitor die yam u provided to a winding station 200, and
passes through yam guiding slot 2022 to bobbin 205. The rotation speed of bobbin 205 is
controlled by control unit 280. During the winding process yam drying unit 210 dries the silk
yam being wound around bobbin 205.
Thus, mere has been described herein an embodiment including at least one preferred
embodiment of an improved device for producing silk yams. It will be apparent to those
skilled in the art that the disclosed subject matter may be modified in numerous ways and
may assume many embodiments oner than the preferred form specifically set out and
described above. Accordingly, the above disclosed subject matter is to be considered
illustrative and not restrictive, and to the maximum extent allowed by law, it is intended by
the appended claims to cover all such modifications and other embodiments which fell within
the true spirit and scope of the present invention. The scope of the invention is to be
determined by the broadest permissible interpretation of the following claims and their
equivalents rather than the foregoing detailed description.
WE CLAIM
1. A device (31) for producing silk yams from silk cocoons, the device
a boiling unit (60), for receiving cocoons, boiling the cocoons and filling the
cocoons with water, a control unit (280), electrically coupled to a plurality of
thread processing stations, for controlling the thickness of silk yarns being
prefaced by thread processing stations (300), characterized by comprising
a thread catching station (90) for automatically receiving ooooons from the
boiling unit, finding ooooon thread ends and caching the oocoon thread ends;
a cleaning and transporting mechanism (333), for automatically rechiving
ooooon threads from the thread catching station (90) for removing dirt from the
ooooons and for automatically transporting the ooooon threads to a plurality of
thread processing units; and
a plurality of thread processing stations (300) wheress each thread processing
unit out of the plurality of thread processing station is adapted to automatically
receive a plurality of ooooon threads and to produce a silk yam out of the
plurality of the ooooon threads, and for winding the silk yarn on bobbins;
whereas each thread processing station has a monitor for monitoning the
thickness of a silk yam being produced by the thread processing urit
2. The device as claimed in darn 1, wherein a ooooon that did not give a thread
and a ooooon that has its thread broke are directed to the thread catching station
3. The device as cloned in claim 1, wherein the deanang and transporting
tangles threads.
4. The device as darned in claim 1, oonfigui^nottodflrnayacocoopQ\iringfee
production of silk yams.

6. The device as claimed in claim 1, wherein the device comprising a bath,
the bath is adapted to be filled with water in which cocoons are transferred
during the production of silk yams.
6. The device as claimed in claim 1, comprising a cocoon selection unit for
determining which cocoons are to be provided to the thread catching
station.
7 The device as claimed in claim 1, wherein the control unit synchronizes
the boiling unit, the thread catching station, and the cleaning and
transporting mechanism.
8 The device as claimed in claim 1 adapted to receive cocoons from a
soaking unit, the soaking unit is electrically coupled to the control unit; and
wherein the control unit controls the supply rate of cocoons from the
soaking unit to the device.
9 The device as claimed in claim 1, wherein the plurality of thread
processing stations are arranged radially with respect to a central axis of
the device.
10 The device as claimed in claim 1, wherein each thread processing station
comprising:
a yam thickness monitor, for monttonng a thickness of a silk yam in
respect to a first predetermined threshold;
a winding station, for winding silk yarms, a winding speed of the winding
station is controlled by the control unit;
a processing station thread catcher, for catching a cocoon thread and
providing the cocoon thread to a yarn twisting and guiding unit; and
a yam twisting and guiding unit, for twisting a plurality of sik threads and
guiding the plurality of silk threads and the silk yam from the processing
station thread catcher.through the yam thickness monitor and to the
winding station.
11.The device as claimed in claim 10, wherein each thread processing unit
comprises of a yam defect detector, for receiving a silk yam and sensing
when a silk yarn is thicker than a second predetermined threshold.
12.The device as claimed in claim It) wherein each thread processing device
composing a drying unit, for drying silk yams while the silk yams are being
winded by the winding station; and
wherein the yam twisting and guiding unit comprises an eccentric wheel
that is configured to force a silk yam to swivel back and fourth in a manner
such that water are extracted from the sik yam.
13. The device as claimed in claim 10, wherein each processing station thread
catcher, comprising of an intermediat thread catcher and a rod, the
intsrmeoiats thread catcher has a central axis and is configured to rotate
above the axis and to join a plurality of cocoon threads to a cocoon yam;
and
wherein the rod is adapted to undergo a finear path and to provide a
cocoon thread to interrnedlate thread catcher, when the cocoon thread
contacts the rod.
14,The device sa claimed in daim 13, wherein the rod is electrically coupled
to the control unit, wherein the control unit forces the rod to undergo the
linear path when a slk yam is thinner than the first predetermined
threshold.
15.The device as claimed In claim 10, wherein the winding station
comprising:
a winding yam guide, for receiving a yam and guding the yam to a
bobbin;
a grooved guide, for forcing the windkig yam guide to perform horizontal
reciprocal movements;
a winding unit motor, for driving the grooved guide and the bobbin.
17. The device as claimed in daim 110,wherein the grooved guide is mounted
for rotary movement to a horizontal grooved drive axis, and the grooved
guide has a hefcaty arranged guktng groove for transforming a rotation of
the grooved guide to horizontal reciprocal movements.
17..The device as claimed in claim I'D, wherein the yam thickness monitor
comprising:
a thickness monitor arm adapted to receive a sic yam and to be
positioned according to the yam thickness;
a thickness monitor arm location detector, for detecting a position of the
thickness monitor arm and for notifying the control unit of the position.
18: The device as claimed in claim 187 wherein the yam thickness monitor
arm is privoteJy mounted to a thickness monitor supporter by means of
thickness monitor axis, wherein a thickness monitor weight forces the
thickness monitor arm to fail by gravity to a first position;
wherein a trapezoid shaped slot is formed at an opposite end of the
thickness monitor arm and is configured to allow a yam within a
predetermined range of thickness to force the thickness monitor arm to
enter a second position by friction.
19. The device as claimed in clam 18 wherein the yam twisting and guiding
unit comprising an eccentric guiding wheel for receiving a yam and forcing
the yam to swivel back and fourth, in a manner that forces a portion of a
water within the yam to exit the yam.
20. The device as claimed in claim 11 wherein the yam defect detector
comprising:
a defect detector arm adapted to receive a silk yam and to be positioned
according to the yam thickness; and
a defect detector arm location detector, for detecting a position of the
defect detector arm and for notifying the control unit of the position.
21.The device as claimed in claim 1, wherein the thread catching station is
occupied by a carousel type catohing device and an annular channel, the
carousel type catching device comprising a plurality of brushes that are
configured to contact cocoons within the annular channel, to find and to
catch a cocoon thread end.
22. The device as claimed in clam 22, wherein each brush has an axis and
the brushes are forced to execute at a time a return rotary motion around
their axis and a translation along the annular channel.
23. The device as clamed in clamed in claim 22, wherein the brushes have elastic
bristles
24.The device as claimed in claim 24; wherein the bristles are fabricated from
polymer mono-fibers with high abity of catching cocoon thread ends.
25. The device as dawned in daim -22 wherein the annular channel is closed
by a cover provided with a spite, the epfit is configured to alow the brushed
to execute a translation along the annular channel.
26.The device as claimed in claim 22, wherein brushes that art the annular
station are lifted and lowered for providing a thread end to the cleaning
and transporting mechanism.
-27. The device as darned n claim 26 wherein the carousel type catching
device comprising:
a plurality of catching device arms, each device catching arm has one end
connected to a brush and an opposite end connected to a catching device
upper end, the catching device upper end is adapted to force the plurality
of catching device arms to execute a translation along the annular
channel;
a catohng device member, adapted to perform an altematng angular
movement and to force a catching device arm that contacts the catching
device member to execute a return rotary motion around an aids of the
catching device arms.
28,The device as claimed in claim 1, wherein the waist removing and
transporting mechanism comprising:
a linear conveyor station, for receiving a cocoon thread end from the
thread catching station, and providing a continuously cocoon thread to a
carousel type conveyor;
a carousel type conveyor, for providing the continuously cocoon thread to
the plurality of thread processing stations that are arranged radially with
respect to a central axis of the device.
30 The device as claimed in claim 28, wherein the carousel type conveyor
comprising:
a jagged carousel, mounted for rotary movement around the central axis
of the device, the jagged carousel is adapted to receive the continuously
cocoon thread and place it in a path of one of a plurality of carousel thread
catchers located near a circumference of the jagged carousel.
31. The device as claimed in claim 29 wherein each carousel thread catcher
carousel thread catcher is configured to execute a rotary motion around its
-31. The device as claimed in claim 30 wherein each carousel thread catcher
comprising a pair of horizontal arms, connected to a carousel catcher
cylinder that is connected to the aids, the arms are configured to catch a
cocoon thread and causing the cocoon thread to be winding around the
carousel catcher cylinder.
32. The device as claimed in claim 29 comprising conical thread guiding
shaft, for receiving a cocoon thread from the linear conveyor station and
proviotng the cocoon thread to the jagged carousel.
33. The device as claimed in claim 28, wherein the linear conveyor station is
adapted to remove dirt and tangled threads from a cocoon;
34. The device as claimed in claim -34; wherein the linear conveyor station
comprising:
a linear toothed conveyor, for conveying a cocoon thread to the carousel
type conveyor; and
a wadding colector, for winding cocoon threads and for colecting dirt and
tangled cocoon threads. .
35. The device as claimed in claim 34, wherein the linear conveyor station
comprising:
a thread cutting device, located near the carousel type conveyor, for
cutting a thread end and alowing the thread to be provided to the carousel
type conveyor.
36.The device as claimed in claim 34 wherein the linear conveyor station
comprises of a cocoon osciilating bar, for preventing cocoons having their
threads being winded around the wadding collector from sticking to the
. cocoon oscillating bar and from being drawn to the wadding collector.
37 .The devtoe ee claimed in claim 36, wherein the cocoon oscillating bar and
the wadding collector expose the cocoon thread to impact actions that
assist the remove of and tangled threads.
38. The device as claimed in claim 1, wherein the boiling unit comprising:
a boiling unit housing, adapted to be filled with water;
e boang unt conveyor, for conveying cocoons and forcing them to be
filled with water;
a boiling unit healing element tor boffng the water and for boing cocoons
that enter the water.
40. The device as claimed in claim 1 where the control unit slows a wndmg of
a sflk yarn when the sik yam is thinner than a first predetermined
threshold.
40.The device as claimed in claim 40; wherein the control unit speeds the
winding when the silk yam thickness resumes to be above the first
predetermined threshold. ,
41. The devrioe as claimed in claim 40, wherein if during a first predetermined
time period the silk yam remains thinner than the first predetermined
threshold the control unit slows the winding of the sUk yam.
42 The device as claimed in claim 42, wherein the winding is slowed until
being stopped.
43. method for producing ssilk. yams from silk. cocoons the method
comprising the steps of:
receiving cocoons;
boding the cocoons and fulling the cocoons with water,
automatically finding cocoon thread ends and catching the cocoon thread
ends;
removing dirt and tangled cocoon threads and automatically transporting
the cocoon threads to a plurality of thread processing units; and
automaticaly producing a sik yam out of a pturafity of cocoon thread,
while controlling the thickness of each silk yam being produced by the
44. plurality of thread processing stations.
46. The method as claimed in dawn 4, comprising repealing the stage of
automaticaly finding cocoon threads of cocoons that did not give a thread
and a cocoons that had their thread broke removing otrt and producing a
silk yam until substantially an the cocoon thread is extracted.
45. The method as claimed in claim 44, wherein the stages of automatically
finding cocoon thread ends, removing dirt and automatically producing silk
yams are being executed without substantially damaging the cocoons.
46.The method as claimed in claim 44, wherein the step of finding cocoon
thread end is succeeded by a step of selecting which cocoons are to
dumped.
46. The method as claimed in dawn 44, while the step of finding cocoon
thread ends and catching the cocoon thread ends involves forcing a
plurality of brushes to execute at time a return rotary movement around
their axis and a translation along an annular channel for contacting
cocoons which are transferred in the annular channel.
48. The method as dawned in dawn 44, wherein the step of removing dirt and
tangled cocoon threads involves exposing cocoon threads to impact
49.The method as claimed in dawn 44, wherein the step of producing a silk
yam out of a plurality of cocoon threads silk yam comprising:
combining a plurality of cocoon threads to form a silk yam;
monitoring the thickness of the silk yam;
winding the silk yam on a bobbin, wherein the winding speed is associated
to a thickness of the silk yam.
A device (31) for producing silk yams from silk cocoons, the device comprising: a
boiling unit (60), for receiving cocoons, boiling the cocoons and for filling the
cocoons with water; a control unit (280), electricaly coupled to a plurality of
thread processing stations, for controlling the thickness of silk yams being
produced by thread processing stations (300); characterized by comprising a
thread catching station (90), for automatically receiving cocoons from the boiling
unit, finding cocoon thread ends and catching the cocoon thread ends; a cleaning
and transporting mechanism (333), for automatically receiving cocoon threads
from the thread catching station (90) for removing dirt from the cocoons and for
automatically transporting the cocoon threads to a plurality of thread processing
units; and a plurality of thread processing stations (300), whereas each thread
processing unit out of the plurality of thread processing stations is adapted to
automatically receive a plurality of cocoon threads and to produce a silk yam out
of the plurality of the cocoon threads, and for winding the silk yam on bobbins;
whereas each thread processing station has a monitor for monitoring the
thickness of a silk yam being produced by the thread processing unit.

Documents:


Patent Number 225467
Indian Patent Application Number IN/PCT/2002/00668/KOL
PG Journal Number 46/2008
Publication Date 14-Nov-2008
Grant Date 12-Nov-2008
Date of Filing 17-May-2002
Name of Patentee SILKTECH LTD
Applicant Address AHI DAKAR 4, HERZLIYA
Inventors:
# Inventor's Name Inventor's Address
1 RUBINOV BORIS ICHILOV 9/17, NETANYA 42445
2 BARNOAH LZHAK AHI DAKAR 4, HERZLIYA 46702
PCT International Classification Number D01B 7/00
PCT International Application Number PCT/IL99/00625
PCT International Filing date 1999-11-21
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA