Title of Invention

A METHOD AND APPARATUS FOR DETERMINING OPERATING BEHAVIOR OF A QUALITY INDICATOR BIT

Abstract In a code division multiple access communication system, a method and apparatus provide for an efficient testing of operating behavior of a quality indicator bit. The method and the accompanying apparatus include configuring a receiver to expect to receive a communication channel at a full data rate, and transmitting a signal from a transmitter to the receiver. The signal is carrying the communication channel at a data rate other than said full data rate, and at a power level for receiving at the full data rate. Consequently, the receiver fails to receive the communication channel et the full data rate. A received signal to noise ratio of the received signal at the receiver is determined. A value of the quality indicator bit is determined based on the determined signal to noise ratio. The determined value of the quality indicator bit is communicated to the transmitter. IFIG. 21
Full Text

RELATED APPUCATION(S)
11001] The present application is a regular application of a provisional
application filed on October 11, 2000, in the United States Patent Office, having been granted a patent application number 60/239,775.
BACKGROUND Field:
[1002] The disclosed embodiment relate to the field of
communications.
Background:
[1003] A system for wireless communications in accordance with the
CDMA technique has been disclosed and described in various standards published by the Telecommunication Industry Association (TIA). One of ordinary skilled in the art is familiar with such standards. Such standards are commonly known as TIA/EIA/IS-2000, TIA/EIA/95A/B, and WCDMA, among several others. A copy of the standards may be obtained by accessing the world wide web at the address: http://www.cdq.orQ. or by writing to TIA, Standards and Technology Department, 2500 Wilson Boulevard, Arlington, VA 22201, United States of America. The specification generally klentified as WCOMA specification may be obtained by contacting 3GPP Support Office, 660 Route des Lucioies-Sophia Antipolis, Valbonne-France, A section of one of such standards pertains to performance testing of devices operating within

the requirements as specified in each standard. Various disclosed embodiments provide for a simplified and detailed quality indicator bit (QIB) test procedure in a section of such standards.
[1004] To this end as well as others, there is a need for an improved
communication system.
SUMMARY
[1016] In a code division multiple access communication system, a
method and apparatus provide for an efficient testing of operating behavior of a quality indicator bit. The method and the accompanying apparatus include configuring a receiver to expect to receive a communication channel at a full data rate, and transmitting a signal from a transmitter to the receiver. The signal is canrying the communication channel at a data rate other than the full data rate, and at a power level for receiving at the full data rate. Consequently, the receiver fails to receive the communication channel at the full data rate. A received signa-to-nolse ratio of the received signal at the receiver is determined. A value of the quality indicator bit is detenmined based on the determined signal to noise ratio. The determined value of the quality indicator bit is communicated to the transmitter.
BRIEF DESCRIPTION OF THE DRAWINGS
[1017] The features, objects, and advantages of the present invention
will become more apparent from the detailed description set forth below when taken In conjunction with the drawings in which like reference characters klentify correspondingly throughout and wherein:

[1018] FIG. 1 illustrates a communication system capable of operating
in accordance with various embodiments of the invention;
[1019] FIG. 2 illustrates a communication system receiver, for operation
in a mobile station and a base station, capable of operating in accordance
with various embodiments of the invention; and
[1020] FIG. 3 illustrates a flow chart for controlling power level of a
communication channel between a mobile station and a base station In
accordance with various embodiments of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
[1005] Generally stated, a novel and Improved method and an
accompan^ng apparatus provide for an efficient perfomiance testing process in a transmitter and a receiver in a code division multiple access communication system. One or more exemplary embodiments described herein are set forth In the context of a digital wireless data communication system. While use within this context is advantageous, different embodiments of the invention may be incorporated in different environments or configurations. In general, the various systems described herein may be formed using software-controlled processors, integrated circuits, or discrete logic. The data, instructions, commands, information, signals, symbols, and chips that may be referenced throughout the application are advantageously represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or a combination thereof. In addition, the

blocks shown in each block diagram may represent hardware or method steps.
[1006] FIG. 1 illustrates a general block diagram of a communication
system 100 capable of operating in accordance with any of the code division
multiple access (CDMA) communicatton system standards, and in accordance
with vartous embodiments. Generally, communication system 100 includes a
base station (BS) 101 that provides communk)ation linits between a number of
mobile stations, such as mobile stations 102-104, and between the mobile
stations 102-104 and a wireline network 105. BS 101 may include a number
of components, such as a mobile station controller, a base station controller,
and a radio frequency transceiver. For simplicity, such components are not
shown. BS 101 may also be in communication with other base stations (not
shown.) BS 101 communicates with each mobile station 102-104 via a
fonvard link. The fonvard link may be maintained by a fonward link signal
transmitted from BS 101. The fonvard link signals targeted for several mobile
stations 102-104 may be summed to fomri a fonvard link signal 106. Each of
the mobile stations 102-104 receiving fonvard link signal 106 decodes Vne
fonvard link signal 106 to extract the information that is targeted for its user.
At ti>e receiving end, the receiver may treat as interference the portion of the
received fonvard link signal 106 targeted for otiiers.
[1007] Mobile stations 102-104 communicate with BS 101 via a
corresponding reverse link. Each reverse link is maintained by a reverse link signal, such as reverse link signals 107-109 for respectively mobile stations 102-104. BS 101 may also transmit a predefined series of data bits on a pilot channel via the fonvard link to all mobile stations to assist each mobile station

in decoding the forward link signai 106. Each of the mobile stations 102-104 may transmit a pilot channel to BS 101. The pilot channel transmitted from a mobile station may be used for decoding the information carried by the reverse link signal transmitted from the same mobile station. The use and operation of a pilot channel are well known. A transmitter and a receiver for communicating via the fonvard and reverse links are included in each mobile stations 102-104, and BS 101.
[1008] FIG. 2 Illustrates a block diagram of a receiver 200 used for
processing CDMA signals. Receiver 200 demodulates the received signal to
extract the information carried by the received signal. Receive (Rx) samples
are stored in RAM 204. Receive samples are generated by a radio
frequency/intemediate frequency (RF/IF) system 290 and an antenna system
292. Antenna system 292 receives an RF signal, and passes the RF signai to
RF/IF system 290. RF/IF system 290 may be any conventional RF/IF
receiver. The received RF signals are filtered, down-converted, and digitized
to form RX samples at baseband frequencies. The samples are supplied to a
demultiplexer (demux) 202. The output of demux 202 is supplied to a
searcher unit 206, and finger elements 208. A control unit 210 is coupled
thereto. A combiner 212 couples a decoder 214 to finger elements 208.
Control unit 210 may be a microprocessor controlled by software, and may be
k)cated on the same integrated circuit or on a separate integrated circuit.
[1009] During operation, receive samples are supplied to demux 202.
Demux 202 supplies the samples to searcher unit 206, and finger elements 208. Control unit 210 configures finger elements 208 to perfonn demodulation of the received signai at different time offsets based on search

results from searcher unit 206. The results of the demodulation are combined and passed to decoder 214. Decoder 214 decodes the data, and outputs the decoded data.
[1010] In general for searching, searcher 206 may use non-coherent
demodulation of a pilot channel to test timing hypotheses and phase offsets
conesponding to various transmitting sources and multi-paths. The
demodulation perfomied by finger elements 208 may be perfonned via
coherent demodulation of other channels such as control and traffic channels.
The infbnnation extracted by searcher 206 by demodulating a pilot channel
may be used in finger elements 208 for demodulation of other channels. The
searcher 208 and finger elements 208 may provide both pilot channel
searching, and demodulation of control and traffic channels. The
demodulation and searching can be perfonned at various time offsets. The
results of the demodulation may be combined in combiner 212 before
decoding the data transmitted on each channel. Despreading of the channels
is perfonned by multiplying the received samples with the complex conjugate
of the PN sequence and assigned Walsh function at a single timing
hypothesis, and digitally filtering the resulting samples, often with an integrate
and dump accumulator circuit (not shown). Such a technique is commonly
known in the art. Receiver 200 may be used in BS 101 and mobile stations
102-104 for decoding the infonnation on respectivety reverse and fonvard
links signals. BS 101 may employ several of receiver 200 to decode the
information transmitted from several mobile stations at the same time.
[1011] Receiver 200 may also perfomi interference cancellation
through a correlation process. The received samples, after being read from

RAM 204, are passed through a correlation process for each received signal. The correlation process may collectively be described as the operations of searcher 206, finger element 208, and combiner 212. Since the received samples contain samples from the signals transmitted from more than one transmitting source, the correlation process may be repeated for each received signal. The conrelation process for each received signal may be unique t)ecause each sigr^l may require different conrelation parameters as of those found In operations of searcher 206, finger element 208, and combiner 212. Each signal may include a traffic channel and a pilot channel. The PN sequence assigned to the traffic channel and pilot channel carried by each signal may be different. The correlation process may include channel estimation, which includes estimating the channel fading characteristics based on the result of correlating with the pilot channel. The channel estimation infbnnation is used for correlating with the traffic channel. Each traffic channel is then decoded.
[1012] The result from each correlation process may pass through a
decoding process in decoder 214. if the transmitted channel is encoded via a convoiutional encoding process, decoding step 214 is perfomned according to the utilized convoiutional code. If the transmitted channel is encoded via a turbo encoding process, decoding step 214 is perfomied according to the utilized turbo code.
[1013] Each signal may be decoded to provide enough Infomiation
about whether a pass indicator is produced for each cyclic redundancy check (CRC) associated with each transmitted frame of data. Operation and use of CRC in a communication system are well known. If the CRC is passed, the

decocted result of the channel associated with the passed CRC may be
passed on for further receiving operation. A quality indicator bit (QIB) may
also be used to indicate signal quality. The QIB may be communicated on a
reverse link power control sub-channel to indicate signal quality on the
fonvard link forward dedicated control channel (DCCH). When the fonvard
fundamental channel is present, the QIB is set to Indicate the same as an
erasure indicator bit. An erasure indicator bit may indicate en erased channel
frame and/or non-transmission of a channel frame.
[1014] The signals received by BS 101 may be input to receiver 200.
Antenna system 292 and RF/IF system 290 receive the signals from the mobile stations to produce the samples of the received signals. The received samples may bQ stored in RAM 204. Receiver 200 may incorporate a number of searchers 206, a number of finger elements 208, a number of combiners 212, and a number of decoders 214 for simultaneously perfomiing the conflation process and the decoding process for all the signals received from different mobile stations. However, only one antenna system 292 and RF/IF system 290 may be necessary.
[1015] Each time a correlation process is started, searcher 206 and
finger element 208 may start anew for detemiining non-coherent demodulation of a pilot channel to test timing hypotheses and phase offsets. Searcher 206, or finger element 208, or searcher 206 and finger element 208 in combination, may determine tiie signal to interference ratio (S/i) for each received signal. The ratio Eb/i may be synonymous with the ratio S/I. The ratio Eb/1 is a measure of signal energy over interference per unit of a data symbol or data bit. Therefore, S/I and Eb/I may be interchangeable in some

respects. The interference (i) may typically be defined as the power spectral density of Interference and thermal noise.
[1016] To control interference, the system controls the signal level
transmitted from each transmitting source, or the data rate of the communication link, or both. Generally, each MS detennines the needed reverse link power level to support both the traffic channel and the pilot channel. Various power control schemes for controlling power levels of signals transmitted from an MS in a communication system are known. The output power level of each MS is controlled by two independent control loops, an open loop and a closed loop. The Open loop power control IS based on the need of each MS to maintain an adequate communication link with the BS. Therefore, the MS closer to the BS needs less power than the MS further away. A strong receive signal at the MS indicates less propagation loss between the MS and the BS, and, thus, requires a weaker reverse link transmit power level. In the open loop power control, the MS sets the transmit power level of the reverse link based on Independent measurements of S/l of at least one received channel, such as pilot, paging, sync, and trafflc channels. The MS may make the independent measurement prior to power level setting on the reverse link.
[1017] FIG. 3 illustrates a flow diagram 300 of an exemplary closed
loop power control method. Operation of closed loop power control method 300 begins once an MS in communication system 100 seizes a fbnivard link traffic channel. After the initial access attempt by the MS, the MS sets an initial reverse channel power level. The initial power level setting on the reverse link is then adjusted during the communication link via the closed loop

power level control 300, The closed loop power control 300 operates with a faster response time than the open loop control. The closed loop power control 300 provides correction to the open loop power control. The closed loop power control 300 operates in conjunction with the open (cop control during a traffic channel communication link to provide the reverse linlc power control with a large dynamic range.
[1018] To control the power level of the reverse link signal of a mobile
station via the ctosed loop 300, BS 101 at step 301 measures the signal to
interference ratio (S/l) of the reverse link signal transmitted from the mobile
station. The measured S/l is compared with a set point S/l at step 302. The
measured S/l may be in the form of Eh/I which is a ratio of bit energy over
interference, and consequently, the set point may be in the same form. The
set point is selected for the mobile station. The set point may be initially
based on open loop power setting by the mobile station.
[1019] If the measured S/l is higher than the set point, at step 303, BS
101 orders the mobile station to power down the power level of its reverse link signal by an amount, for example 1 dB. When the measured S/l is higher than the set point, it indicates that the mobile station is transmitting on the reverse link at a signal power level higher than Is needed to maintain an adequate reverse link communication. As a result, the mobile station is ordered to lower the signal power level of its reverse link to reduce the overall system interference. If the measured S/l is lower than the set point, at step 304, BS 101 orders the mobile station to power up the power level of its reverse link signal by an amount, for example 1 dB. When the measured S/l is lower than the set point, it indicates that the mobile station is transmitting on

the reverse link at a signal power level lower than is needed to maintain an adequate reverse link oommunicatlon. As a result of increasing the power level, the mobile station may be able to overcome the interference level and provide an adequate reverse link communication.
[1020] The operations perfomied at steps 302*304 may be referred to
as the inner loop power control. The inner-loop power control keeps the
reverse link (S/l) at the BS 101 as close as possible to its target threshold as
provkled by the set point. The target S^ is based on the set point selected for
the mobile station. The power up or power down may be perfomied several
times during a time frame. One time frame may be divided into 16 power
control groups. Each power control group consists of several data symbols.
The power up or power down command may be transmitted 16 times per
frame, if one frame of data has not been received at step 305, the power
control loop 300 continues to measure S/l of the reverse link signal during the
next power control group at step 301. The process is repeated at steps 302-
304 until at least one frame of data Is received from the mobile station.
[1021] A single set point or target may not be satisfactory for all
conditions. Therefore, the set point used at step 302 may also change depending on a desired reverse link frame error rate. If one frame of data has been received at step 305, a new S/i set point may be calculated at step 306. The new set point becomes the new S/l target for the mobile station. The new set point may be based on a number of factors including the frame error rate. For example, if the frame error rate is above a predetemiined level, indicating unacceptable frame enx)r rate, the set point may be raised to a higher level. By raising the set point to a higher level, the mobile station consequently

increases its reverse link transmit power level via the comparison at step 302 and power up command at step 304. If the frame error rate is below a predetemiined level indicating above an acceptable frame error rate, the set point may t>e lowered to a lower level. By lowering the set point to a lower level, the mobile station consequently decreases its reverse \mk transmit power level \Aa the comparison at step 302 and power down command at step 303. The operations performed at steps 305-306, looping back from step 306 to step 302 to indk)ate a new set point, and looping back to step 301 for measuring the S/l of the new frames, may be viewed as the outer toop operation. The outer-loop power control may command once every frame, and the closed loop power control may command once every power control group. One frame and one power control group may be, respectively, 20 and 1.25 mSec long.
[1022] The system may also employ a forward link power control
scheme to reduce interference. The MS communicates to the BS periodteafty about the voice and data quality. The frame error rate and quality measurements are reported to the BS via a power measurement report message. The message contains the number of frames received in error on the forward link during an interval. The power level of the forward link signal is adjusted based on the number of frame encore. Since such a quality measurement feedback is based on the frame error rate, such a mode of forward link power control is much slower than reverse link power control. For fast response, a reverse link erasure bit may be used to inform the BS whether the previous frame was received with or without error. The channel

power gain may be continuously adjusted while monitoring the message or
the erasure bit as a way of controlling forward link power level.
[1023] For communication of data, the forward link may be transmitted
to the MS at a fixed power level while adjusting the effective forward link data
rate targeted for the MS. The data rate adjustment on the fonA/ard llni viewed for the overall system is a fonn of interference control. Note that the
forward link power control is generally for controlling interference in a
coverage area, and/or for sharing a limited communtoation resources. When
the feedback quality measurement is indicating poor reception, the data rate
may be lowered while keeping the power level constant to overcome the
effect of the interference. The data rate may also be lowered to allow other
mobile stations to receive forward link communication at a higher data rate.
[1024] In addition to the open loop and closed loop power control
schemes, the MS may adjust the output power level by attributes of a code channel as specified by the standard. The MS may set the output power of the enhanced access channel header, the enhanced access channel data, and the reverse common control channel data relative to the output power level of the reverse pilot channel. The output power level of the reverse pilot channel is set by the open and closed loop power controls. The MS maintains a power level ratio between the code channel power level and the reverse pilot channel power level. The ratio may be defined by the data rate used in the code channel. Generally, a table provides the values for the ratio at different data rates. The ratio generally increases for higher data rates. A ratio equal to one or a ratio less than one may also be possible. At a ratio equal to one, the power level of the pilot channel as set by the power control

loop 300 is equal to the power level of the code channel. During transmission of data on a traffic channel, the data rate and the traffic channel power level may be adjusted. The power level may be selected based on a relative power of the reverse link pilot. Once an allowable data rate Is selected, a corresponding channel gaSx\ with respect to the reverse linic pilot power level is used to set the traffic channel power level.
[1025] In data mode, a BS may be providing communication links to a
large number of MSs at different data rates. For example, one MS in a torwatd link connected state may be receiving data at a low data rate, and another MS receMng at a high data rate. On the reverse link, the BS may be receiving a number of reverse link signals from different MSs. An MS based on an independent measurement may decide and request a desired data rate from the BS. The desired forward fink data rate may be communicated to the BS via a data rate contrcM (ORG) channel. The BS attempts to providB a toward link data transfer at the requested data rate. On the reverse link, the MS may autonomously seJect a reverse link data rate from a number of possible reverse link data rates. The selected data rate may be communteated to the BS via a reverse rate indicator channel. Each MS may also be limited to a predetermined grade of sen/ice, A grade of sen^ice may limit the maximum available data rate on the forward and/or reverse links. Moreover, the communication of data may not be continuous In a way that, perhaps, voice data are communicated. A receiver may be receiving packets of data at different intenrals. The interval for different receiver may be different For example, a receiver may be receiving data sporadically while another receiver may be receiving data packets within short time intervals.

[1026] Communication of data at high data rates takes a greater
transmit/receive signal power ievel than at low data rates. The forward and reverse links may have similar data rate activities in the case of voice communications. The forward and reverse links data rates may be limited to low data rates since the votes infonrtation frequency spectrum Is limited. Possible voice data rates are commonly known and described in code division multiple access (CDMA) communication system standards such as IS-95, iS-2000 and WCDMA. For data communications, however, the forward and reverse links may not have similar data rates. For example, an MS may be retrieving a large data file from a database, in such a case, the communication on the fonAfard link is predominantly occupied for transmission of data packets. The data rate on the forward link may reach 2.5 Mbps in a data mode. The data rate on the forward link may be based on a data rate request made by the MS. On the reverse link, the data rate may be lower, and may range from 4.8 to 153.6 Kbps.
[1027] Generally, in communication system 100, in accordance with
various embodiments, duty cycle of a communteation channel is detemnined, and power level of the communication channel is controlled based on the detennined duty cycle. Each transmission of the communk)ation channel may be In a time frame, For example, each time frame may be for a duration of 20 mSec. The data rate of each time frame may range from 1250 to 14400 bits per seconds. As such, the number of bits In each frame may be different depending on the data rate. The channel may be used for communication of user and signaling information during a call between the user and a destination. The user may be using a mobile station, such as mobile stations.

102-104 for the call. Any of the mobile stations 102-104 may be a cellular phone. The destinafion may be base station 101.
[1028] In accordance with an embodiment, the communication channel
may be a dedicated control channel (DCCH). A DCCH channel may be used for
communication of user and signaling information for maintaining a traffic data
call between a user and a destination, such as, respectively, mobile stations
102-104 and base station 101. The number of DCCH frames transmitted over
a period of time may be different depending on the usage. As such, the time
between transmission of DCCH time frames during the traffic data call may be
different. For example, even though traffic data may be communicated, a
transmission of a frame on the communication channel, such as DCCH, may
not necessarily take place. In yet another situation, several time frames of the
communication channel, such as DCCH, may be transmitted in a short period
of time. Therefore, the duty cycle of the transmission of the frames of the
communication channel, such as DCCH, may be different at different times.
[1029] A test procedure for the quality indicator bit (QIB) may contain
three parts that may be overfapping. Various disclosed embodiments provide a simplified procedure. Behavior of the QIB for the forward Dedicated Control Channel may be performed on the forward Dedicated Control Channel for mobile stations that support a channel configuration not containing the Forward Fundamental Channel, forward Traffic Channel closed loop power control in the base station shall be enabled during this test. When operating with FPC MODE equal to '100' and with a channel configuration that does not contain the forward Fundamental Channel^ the mobile station monitors the forward Dedicated Control Channel and sends

the QIB. When the frame is active, the Quality Indicator Bit has the same
value as the EIB. When the frame is inactive, the QIB indicates the channel
quality. In certain teste, the process verifies that the mobile station sends the
QIB with the same value as the EIB for active frames. In certain tests, the
process verifies that the mobile station sends the QIB according the received
signal quality for inactive frames with power control bits only (i.e., without
data).
[1030] The measurements may include:
[1031] Connecting the base station and an AWQN generator to the
mobile station antenna connector.
[1032] For each band dass that the mobile station supports,
configuring the mobile station to operate in that band class and perfonn steps 3 through 8.
[1033] If the mobile station supports demodulation of Radio
Configuration 3, 4, or 5, setting up a call using Dedicated Control Channel Test Mode 3, and perform steps 5 through 8.
[1034] If the mobile station supports demodulation of Radio
Configuration 6, 7, 8, or 9, setting up a call using Dedicated Control Channel Test Mode 7 (see 1.3) and perfonn steps 5 through 8.
[1035] Setting \he test parameters for Tests 1,3, 5,7, 9,11, and 13 as
specified in Tables A.2.13.1-1 through A.2,13.1-7 and sending alternating good and bad 20-ms frames with data. The good frames are sent from the base station simulator at the 9600 or 14400 bps rate. The bad frames are sent

from the base station simulator in one of two ways: 1. At the 1500 or 1800 bps rates as in the forward Fundamental Channel in the same radio configuration under test; or, 2. At the same 9600 or 14400 bps rate using a different radio configuration from the one under test.
[1036] Checking the received QIB at the base station against the
corresponding frames received at the mobile station for at least 100 frames.
[1037] Setting the test parameters for Tests 2, 4, 6, 8,10,12, and 14 as
specified in Tables A.2.13.1-1 through A.2,13.1-7 and altemately enable and disable the transmission of a frame with power control bits only on the forward Dedicated Control Channel.
[1038] Checking the received QIB at the base station for at least 100
frames.
[1039] A minimum standard for certain tests may include that the QIB
result follows the sent frame pattem of alternating '0' and T for 'good' and 'bad' frames respectively with 95% confidence. In certafn tests, the minimum standard may include that the QIB result follows the sent frame pattern of attemating '0' euid '1' for 'enabling' and 'disabling' the transmission of frames respectively with 95% confidence.

[1040] Table A.2.13.1-1. Test Parameters for Behavior of QIB for Radio
Conflguration 3 Forward Dedicated Control Channel In AWGN


[1041]Table A.2.13.1-2. Test Parameters for Behavior of QIB fbr Radio Configuration 4 Forward Dedicated Control Channel in AWGN


[1042]Table A.2.13.1-3. Test Parameters for Behavior of QIB for Radio Configuration 5 Forward Dedicated Control Channel in AWGN










[1047] Those of skill in the art would further appreciate that the various
illustrative logical blocks, modules, circuits, and algorithm steps described in
connection with the embodiments disclosed herein may be implemented as
electronic hardware, computer software, or combinations of both. To clearty
illustrate this interchangeability of hardware and software, various illustrative
components, blocks, modules, circuits, and steps have been described above
generally in terms of their functionality. Whether such functionality is
imr^emented as hardware or software depends upon the particular applteation
and design constraints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for each particular
application, but such implementation decisions should not be interpreted as
causing a departure from the scope of the present invention.
[1048] The various illustrative logical blocks, modules, and circuits
described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

[1049] The steps of a method or algorithm described in connection with
the embodiments disclosed herein may be embodied directly in hardware, In a
software module executed by a processor, or in a combination. A software
module may reside In RAM memory, flash memory, ROM memory, EPROM
memory, EEPROM memory, registers, hard disit, a removable disk, a CD*
ROM, or any other form of storage medium known in the art. An exemplary
storage medium is coupled to the processor such that the processor can read
Infonnation from, and write infonnation to, the storage medium. In the
alternative, the storage medium may be integral to the processor. The
processor and the storage medium may reside in an ASIC. The ASIC may
reside in a user temilnal. In the alternative, the processor and the storage
medium may reside as discrete components in a user terminal.
[1050] The previous description of the preferred embodiments is
provided to enable any person skilled in the art to make or use the present invention. The various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.



WE CLAIM :
1. A method for determining operating behavior of a quality indicator bit in a
code division multiple access communication system, comprising the steps of
a) configuring a receiver to expect to receive a communication channel at a full data rate;
b) transmitting a signal from a transmitter to said receiver, wherein said signal is carrying said communication channel at a data rate other than said full data rate, and at a power level for receiving at said full data rate;
c) failing to receive at said receiver said communication channel at said full data rate;
d) determining received signal to noise ratio of said signal at said receiver;
e) determining a value of said quality indicator bit based on said determined signal to noise ratio;
f) communicating to said transmitter said determined value of said quality indicator bit.

2. The method as claimed in claim 1 comprising: repeating steps (b)-(f).
3. The method as claimed in claim 1 comprising: determining said operating behavior of said quality indicator bit based on said communicated value of said quality indicator bit.
4. The method as claimed in claim 1 wherein said determining operating behavior of said quality indicator bit is for determining behavior of said quality indicator bit in a forward dedicated control channel in said communication system.
5. The method as claimed in claim 1 wherein said communication channel is a forward dedicated channel.

6. The method as claimed in claim 1 wherein said receiver is associated with a mobile station, and said transmitter associated with a base station in said communication system.
7. The method as claimed in claim 1 wherein said full data rate is at one of 9600 and 14400 bit per second data rate, and said other than the full rate is at one of 1500 and 1800 bit per second data rate.
8. The method as claimed in claim 1 wherein said power level for receiving at said full data rate is at a power level corresponding to a power level used at a power control sub-channel.
9. An apparatus for determining behavior of a quality indicator bit in a code division multiple access communication system comprising
a receiver (200) configured for expecting to receive at a full data rate;
a first transmitter (101, 102, 103, 104) configured for transmitting a signal to said receiver at a data rate other than said full data rate, and at a power level for receiving at said full data rate;
a controller (210) at said receiver configured for detecting failure to receive at said receiver said signal at said full rate;
wherein said receiver in communication with said controller further configured for determining received signal to noise ratio of said signal at said receiver, and determining a value of said quality indicator bit based on said determined signal to noise ratio;
a second transmitter (101, 102, 103, 104) configured for communicating to said first transmitter said determined value of said quality indicator bit.
10. The apparatus as claimed in claim 9 wherein said determining behavior of said
quality indicator bit is for determining behavior of said quality indicator bit in a
forward dedicated control channel in said communication system (100).

11. The apparatus as claimed in claim 9 wherein said receiver (200) is associated with a mobile station (102, 103, 104), and said first transmitter associated with a base station (101), and said second transmitter associated with said mobile station (102, 103, 104) in said communication system (100).


Documents:

504-chenp-2003 abstract duplicate.pdf

504-chenp-2003 claims duplicate.pdf

504-chenp-2003 description (complete) duplicate.pdf

504-chenp-2003-abstract.pdf

504-chenp-2003-claims.pdf

504-chenp-2003-correspondnece-others.pdf

504-chenp-2003-correspondnece-po.pdf

504-chenp-2003-description(complete).pdf

504-chenp-2003-drawings.pdf

504-chenp-2003-form 1.pdf

504-chenp-2003-form 26.pdf

504-chenp-2003-form 3.pdf

504-chenp-2003-form 5.pdf

504-chenp-2003-other documents.pdf

504-chenp-2003-pct.pdf


Patent Number 223150
Indian Patent Application Number 504/CHENP/2003
PG Journal Number 47/2008
Publication Date 21-Nov-2008
Grant Date 04-Sep-2008
Date of Filing 09-Apr-2003
Name of Patentee QUALCOMM INCORPORATED
Applicant Address 5775 MOREHOUSE DRIVE, SAN DIEGO, CALIFORNIA 92121,
Inventors:
# Inventor's Name Inventor's Address
1 CHEN, TAO 5415 HARVEST RUN DRIVE, SAN DIEGO, CALIFORNIA 92130,
2 BUTSUMYO, VINCE, RYO 7625 ANDASOL STREET, SAN DIEGO, CALIFORNIA 92126,
3 AYDIN, LEVENT 12969 CANDELA PLACE, SAN DIEGO, CALIFORNIA 92130,
PCT International Classification Number H04B17/00
PCT International Application Number PCT/US01/31389
PCT International Filing date 2001-10-06
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/239,775 2000-10-11 U.S.A.
2 09/822,947 2001-03-30 U.S.A.