Title of Invention

AN EMISSIONS-CONTROL -AGENT DISPENSER USEABLE WITH A FOSSIL-FUEL-FIRED SYSTEM

Abstract A fossil-fuel-fired system, which includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller, is disclosed. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor. To The Controller of Patent The Patent Office Mumbai
Full Text FORM 2
THE PATENT ACT 1970 (39 of 1970)
&
The Patents Rules, 2003 COMPLETE SPECIFICATION (See Section 10, and rule 13)
1. TITLE OF INVENTION
AN EMISSIONS-CONTROL-AGENT DISPENSER USEABLE WITH A FOSSIL-FUEL- FIRED SYSTEM

2. APPLICANT(S)
a) Name : STOCKHAUSEN, INC.
b) Nationality : AMERICAN Company
c) Address : 2401 DOYLE STREET,
GREENSBORO, NC 27406 U.S.A.

GRANTED
12-02-2008



3.

PREAMBLE TO THE DESCRIPTION
The following specification particularly describes the invention and the manner in which it is to be performed : -

ORIGINAL
1115/MUMUNP/2005

PRIORITY APPLICATION
This application claims priority to U. S. Patent Application Serial Number 60/462, 552 filed April 11, 2003 entitled "Superabsorbent Polymer For Fossil-Fuel Incinerator Applications" and is incorporated in its entirety herein by reference. FIELD OF THE INVENTION
The invention relates to a reduced-emissions fossil-fuel-fired system such as a fossil-fuel-fired furnace. In particular, the present invention is directed to reduce at least the opacity of the emissions from a fossil-fuel-fired system. BACKGROUND OF THE INVENTION
The 1990 amendments to the United States Clean Air Act require major producers of air emissions, such as electrical power plants, to limit the discharge of airborne contaminants emitted during combustion processes. In most steam power plants in operation today, fossil fuels (such as petroleum or coal) are burned in a furnace including a boiler to heat water into steam. The steam drives turbines coupled to a generator to produce electricity. These fossil-fuel-fired furnaces, however, emit highly polluting flue-gas streams into the atmosphere. These flue-gas streams typically contain noxious gaseous chemical compounds, such as carbon dioxide, chlorine, fluorine, NOx, and SOx' as well as particulates, such as fly ash, which is a largely incombustible residue that remains after combustion of the fossil fuel. To date, many devices have been used to reduce the concentration of contaminants emitted by fossil-fuel-fired furnaces. One of the most effective devices is an electrostatic precipitator (ESP). ESPs and their use in a typical fossil-fuel-fired boiler are described in detail in US Patent 6,488, 740. An ESP is a device with evenly spaced static conductors, typically plates, which are electrostatically charged. When a flue-gas stream is passed between the conductors, particulates in the flue gas become charged and are attracted to the conductors. Typically, twenty to sixty conductors are arranged parallel to one another, and the flue-gas stream is passed through passages formed between the conductors. A layer of particulates formed on the conductors limits the strength of the electrostatic field and reduces the performance of the ESP. To maintain performance, the conductors are periodically cleaned to remove the collected particulates.
There are two types of ESPs: dry and wet. A dry ESP removes particulates from the conductors by shaking or rapping the conductors and collecting the removed particulates in a dry hopper. A wet ESP removes the particulates by washing the particulates off the conductors and collecting the removed particulates in a wet hopper.
2

A system for removing particulates using a series of dry ESP fields and a wet ESP field is disclosed in U. S. Pat. No. 3, 444, 668. This system removes particulates in a cement manufacturing process. However, positioning a wet ESP field upstream of a dry ESP field, such as that disclosed in U. S. Pat. No. 2,874,802, does not sufficiently remove contaminants from a flue-gas stream or address the above-described problems.
US Patents 5, 384, 343 and 5,171, 781 disclose a process of pelleting coal fines with superabsorbent fines that have been aggregated for used in fossil-fuel furnaces including the steps of converting a wet sticky mass of coal fines to a crumbly or flowable solid and then pelleting the solid. The '343 and '781 patents disclose making the wet, sticky mass of coal fines with water absorbent polymer particles that are fines, particle size of less than lOum, that are selected from starch acrylonitrile graft copolymers and polymers formed by polymerization of water soluble ethylenically unsaturated monomer or monomer blend. In particular, the polymer particles fines have an effective dry size of less than lOum. The fines are then aggregated, and the aggregate polymer is made up of a mixture of superabsorbent polymers of at least 90% below 50um and are mixed into the mass of particulate material, while the particles are in the form either of a dry powder having a particle size above 50um and which consists of internally bonded friable aggregates of finer particles below 50um in size, or of a dispersion of particles below 50um in size in water immiscible liquid. In essence, the '343 and '781 patents are directed to the use of superabsorbent polymer fines, which are aggregated and used to pelletize combustion fuel such as coal.
The '343 and '781 patents further teach that the use of absorbent particles as low as 50um or less is therefore generally undesirable, but a tendency with the use of larger particles, e. g., 200 um and above, is that their rate of absorption of liquid from the environment can be rather slow and, if such particles aggregate, then the aggregates are rather large, and this can be undesirable.
In view of the foregoing, it would be highly desirable to provide a fossil-fuel-fired system including an efficient system tor decreasing the concentration of contaminants within a flue gas emitted by a fossil-fuel-fired furnace, while addressing the above described shortfalls of prior art systems.
SUMMARY OF THE INVENTION
The present invention meets these and other needs by providing a fossil-fuel-fired system that includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent,
3

to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one properly of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor.
One aspect of the present invention is to provide a fossil-fuel-fired system that includes an emissions-control-agent dispenser, a furnace, and an emissions monitor. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through an exhaust to the atmosphere.
Another aspect of the present invention is to provide an opacity-control-agent dispenser useable with a fossil-fuel-fired system. The fossil-fuel-fired system may includes a furnace and may include an opacity monitor. The opacity-control-agent dispenser is capable of providing a prescribed amount of opacity-control agent. The opacity monitor is capable of measuring at least an opacity of the flue-gas communicated from the furnace through an exhaust to the atmosphere.
Still another aspect of the present invention is to provide a fossil-fuel-fired system including an opacity-control-agent dispenser, a furnace, an opacity monitor, and a controller. The opacity-control-agent dispenser is capable of providing a prescribed amount of an opacity-control agent. The opacity monitor is capable of measuring at least the opacity of the flue-gas communicated from the furnace through an exhaust to the atmosphere. The controller communicates with at least the opacity-control-agent dispenser and the opacity monitor.
An additional aspect of the present invention is to provide a method for controlling emissions from a fossil-fuel-fired system. The method includes (a) providing an amount of organic-emissions-control agent to a furnace, (b) measuring at least one property of the flue-gas communicated to the atmosphere, (c) comparing the measured value and a prescribed-set-point value of the at least one property, (d) adjusting, as appropriate, the amount of organic-emissions-control agent provided, and (e) repeating steps (b) through (d). The amount of provided organic-emissions-control agent is sufficient to control the at least one property of the flue-gas at a prescribed-set-point value. As the measured value and the prescribed-set-point value are compared, appropriate adjustments, if any, are made to the
4

amount of organic-emissions-control agent provided so that the measured value and the prescribed-set-point value of the at least one property are substantially the same. Another additional aspect of the present invention is to provide a method for controlling an opacity of the emissions from a fossil-fuel-fired system. The method includes the steps of (a) providing an amount of opacity control agent, (b) measuring at least the opacity of the flue-gas communicated to the atmosphere, (c) comparing the measured-opacity value and a prescribed-opacity set-point value, (d) adjusting, as appropriate, the amount of opacity-control agent provided, and (e) repeating steps (b) through (d). The amount of opacity-control agent provided is sufficient to control at least an opacity of the flue-gas at a prescribed-set-point value. As the measured-opacity value and the prescribed-set-point value are compared, appropriate adjustments, if any, are made to the amount of opacity-control agent provided so that the measure-opacity value and the prescribed-set-point value are substantially the same.
Still another additional aspect of the present invention is to provide a method for operating a fossil-fuel-fired system while controlling emission therefrom. The method includes the steps of (a) operating the fossil-fuel-fired system at a prescribed load-demand set-point value, (b) providing a prescribed amount of an opacity-control agent, (c) adjusting the prescribed load-demand set-point value to a different prescribed load-demand set-point value, (d) measuring at least the opacity of the flue-gas communicated to the atmosphere at the different prescribed load-demand set-point value, (e) comparing the measured-opacity value and the prescribed-opacity set-point value, (f) adjusting, as appropriate, the prescribed amount of opacity-control agent provided, and (g) repeating steps (c) through (f). The prescribed amount of opacity-control agent provided is sufficient to control at least an opacity of the flue-gas at a prescribed-opacity set-point value while operating a the prescribed load-demand set-point value. After the prescribed load-demand set-point value is adjusted to a different prescribed load-demand set-point value, the measured value and the prescribed-opacity set-point value are compared. Appropriate adjustments, if any, are made to the prescribed amount of opacity-control agent provided so that the measured value and the prescribed-set-point value of at least the opacity are substantially the same. An alternative aspect of the preseAt invention is to provide a fuel usable in a fossil-fuel-fired system to control the emissions communicated by the fossil-fuel-fired system into the atmosphere. The fuel includes at least one combustible materials and an organic-emissions-control agent. The emission-control agent is capable of interacting with one of the fuel, the combustion products of the fuel, and the fuel and combustion products so as to reduce the
5

emission of at least one aspect of the flue-gas. In this manner, the emissions communicated by the fossil-fuel-fired system into the atmosphere are controlled.
Another alternative aspect of the present invention is to provide a fuel usable in a fossil-fuel-fired system to control the opacity of the flue-gas communicated by the fossil-fuel-fired system into the atmosphere. The fuel includes at least one fossil fuel and at least one opacity-control agent. The opacity-control agent is capable of interacting with one of the fuel, the combustion products of the fuel, and the fuel and combustion products so as to reduce the opacity of the flue-gas communicated by the fossil-fuel-fired system into the atmosphere. In this manner, at least the opacity of the flue-gas communicated by the fossil-fuel-fired system into the atmosphere is controlled.
A process for limiting a discharge of airborne contaminants emitted from combustion processes comprising the step of adding a superabsorbent polymer to a fossil-fuel-fired system during the combustion process and wherein the superabsorbent polymer is added to the fuel prior to a conveyance of the fuel into a furnace. The process wherein the amount of superabsorbent polymer added to the combustion process is from about 0.001 weight % to about 5 weight % of the fuel used in the combustion process. The process wherein the superabsorbent polymer has an average particle size of at least about 200um. The process wherein the superabsorbent polymer has an average particle size of at least about 250um. The process wherein an amount of superabsorbent polymer added to the combustion process is from about 0. 001 weight % to about 5 weight % of the fuel used in the combustion process. A method of decreasing the concentration of contaminants present in a flue-gas stream emitted by a fossil-fuel-fired system, said method comprising adding a superabsorbent polymer to the fossil-fuel-fired system in a manner that enables a removal of contaminants from the flue gas stream prior to communicating the flue gas to the atmosphere and wherein superabsorbent polymer is added to the fuel prior to the conveyance of the fuel into a furnace. The process wherein the amount of superabsorbent polymer added to the combustion process is from about 0.001 weight % to about 5 weight % of the fuel used in the combustion process. The process wherein the superabsorbent polymer has an average particle size of at least about 200um.
Still another alternative aspect of the present invention is to provide an apparatus for decreasing the concentration of contaminants present in a flue-gas emitted into the atmosphere by a fossil-fuel-fired system. The apparatus includes at least one injector for introducing a superabsorbent polymer to the fossil-fuel-fired system in a flue-gas stream of
6

the combusted fossil fuel. The apparatus may include any one of an emissions monitor, a
controller, and an emissions monitor and a controller. When included, emissions monitor is
downstream of the injector. Also, the emissions monitor is capable of measuring at least one
property of the flue gas communicated to the atmosphere. The controller communicates
with the at least one injector. The controller may communicate with the at least one injector
and the emissions monitor. In either case, the controller controls the flow of the
superabsorbent polymer through the at least one nozzle and into the flue gas stream to
control the concentration of contaminants present in a flue gas downstream of the at least
one injector.
These and other aspects, advantages, and salient features of the present invention will
become apparent from the following detailed description, the accompanying drawings, and
the appended claims.
BRIEF DESCRIPTION OF DRAWINGS
Figure 1A depicts a schematic diagram of a fossil-fuel-fired system according to an
embodiment of the present invention;
Figure 1B depicts a schematic diagram of a fossil-fuel-fired system according to an
embodiment of the present invention;
Figure 1C depicts a schematic diagram of a fossil-fuel-fired system according to an
embodiment of the present invention;
Figure 2A depicts a schematic diagram of the details of a fuel-preparation system usable
with the fossil-fuel-fired system Figure 1C;
Figure 2B depicts a schematic diagram of the details of a fuel-preparation system usable
with the fossil-fuel-fired system of Figure 1C;
Figure 2C depicts a schematic diagram of the details of a fuel-preparation system usable the
fossil-fuel-fired system of Figure 1C;
Figure 3 is a block diagram illustrating a combustion control including emissions control
useable with the fossil-fuel-fired systems of Figure 1 A, 1B, and 1C; and
Figure 4 depicts a detailed schematic diagram of a coal-fired system according to an
embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
In the following description, like reference characters designate like or corresponding parts
throughout the several views shown in the figures. It is also understood that terms such as
"top," "bottom," "outward," "inward," and the like are words of convenience and are not to
be construed as limiting terms.
7

Referring to the drawings in general and to Figures 1A, 1B, and 1C in particular, it will be understood that the illustrations are for the purpose of describing embodiments of the invention and are not intended to limit the invention thereto. As best seen in Figures 1A, 1B, and 1C, a fossil-fuel-fired system, generally designated 10, is shown constructed according to the present invention. The fossil-fuel-fired system 10 includes an emissions-control-agent dispenser 12, a furnace 14, an emissions monitor 20, and a controller 22. The fossil-fuel-fired system 10 may include other components, such as, for example, a fossil-fuel-preparation system 24, a steam generator 32, and a power generator 34. The emissions-control-agent dispenser 12 provides an organic-emissions-control agent 18 in a prescribed manner such as, for example, any one of to the furnace 14 (as depicted in Figure 1A), to the flue gas (as depicted in Figure IB), to the fossil-fuel-preparation system 24 (as depicted in Figure 1C), to subsystems of the fossil-fuel-preparation system 24 (as depicted in Figures 2A, 2B, and 2C), and combinations thereof (See e. g., Figure 4). The furnace 14 includes an exhaust 16 communicating with the atmosphere. The emissions monitor 20 is capable of measuring at least one property of the flue gas communicated from the furnace 14 through the exhaust 16 to the atmosphere. The controller 22 communicates with at least the emissions-control-agent dispenser 12 and the emissions monitor 20. As shown in Figures 1A, 1B, and 1C, controller 22 may communicate with the furnace 14, a fossil-fuel-preparation system 24, a steam generator 32, and a power generator 34. Not shown but implied by Figure 3, controller 22 may communicate with a sensor and probes to facilitate the control of the fossil-fuel-fired system 10.
The controller 22 regulates an amount of emission-control agent provided by the emissions-control-agent dispenser 12. This regulation may be effected in conjunction with the emissions monitor 20 and its communication of a measured value of at least one property of the flue gas to the controller 22. For example, a prescribed amount of emission-control agent 18 is provide by the emissions-control-agent dispenser 12 to maintain at least one property of the flue gas to a predetermined limit through a feedback of the measured value from the emissions monitor 20 to the controller 22. By further example, a prescribed amount of organic-emissions-control agent 18 is provide by the emissions-control-agent dispenser 12 to maintain both at least one property to a predetermined limit and an operational load of any one of the furnace 14, the steam generator 32, the power generator 34, and combinations thereof through a feedback of the measured values to the controller 22. The controller 22 is a commercially available controller with a plurality of inputs and outputs that meet the requirements of the peripherals. The controller 22 may be any one of a
8

micro-controller, a PC with appropriate hardware and software, and combinations of one or more thereof. Details concerning controllers that may be used in fossil-fuel-fired system 10 are discussed in, for example, U. S. Pat. Nos. 5, 980, 078; 5, 726,912; 5,689,415; 5,579,218; 5, 351,200; 4,916,600; 4,646,223; 4,344,127; and 4,396,976, the entire disclosure of each being incorporated by reference herein.
Again with reference to Figures 1A, 1B, and 1C, the fossil-fuel-fired system 10 may include a fuel-preparation system 24, such as a fossil-fuel-preparation system. The fuel-preparation system 24 may be any of a variety including one of a peat-preparation system, a petroleum-coke-preparation system, a coal-preparation system, and combinations thereof. Turning now to Figures 2A, 2B, and 2C, the fuel-preparation system 24 may include a raw-fuel-preparation system 26 for transforming raw fuel into refined fuel. As an example, when coal is one of the raw fuels, a coal crusher may be used to transform raw coal into crushed coal. The raw-fuel-preparation system 26 may include one or more additional dispensers. These dispensers may provide any one of a materials-handling agent, a moisture-binding agent, and a materials-handling, moisture-binding agent. Although there may separate dispensers for each agent, in Figures 2A, 2B, and 2C, the agents are shown as being provided by a single dispenser, the emissions-control-agent dispenser 12.
Returning now to Figures 2A, 2B, and 2C, the fuel-preparation system 24 may be or include a refined-fuel-preparation system 28 for transforming refined fuel into combustion-grade fuel. As an example, when coal is one of the refined fuels, a coal pulverizer may be used to transform crushed coal into pulverized coal. As with the raw-fuel-preparation system 26, the refined-fuel-preparation system 28 may include one or more additional dispensers. These dispensers may provide any one of a materials-handling agent, a moisture-binding agent, and a materials-handling, moisture-binding agent. Also, as with the raw-fuel-preparation system 26, although there may be separate dispensers for each agent, in Figures 2A, 2B, and 2C, the agents are shown as being provided by a single dispenser, the emissions-control-agent dispenser 12.
The fuel-preparation system 24 may be capable of combining at least two fuels such as, for example, any one of different grades, different types, different sizes of fuel, and combinations thereof may be provided within the fossil-fuel-fired system 10. These plurality of fuels may be blended in a manner that creates a fuel mixture meeting the operational load requirements of the furnace 14, while at the same time, in combination with an organic-emissions-control agent 18, meeting or exceeding the emissions performance. It will be appreciated that when the fuel includes coal, the fuel blending may be accomplished using
9

any one of a coal crusher (e. g., in the raw-fuel-preparation system 26), a pulverizer (e. g., in the in refined-fuel-preparation system 28), and combinations thereof.
As shown in Figures 2A, 2B, and 2C, the raw-fuel-preparation system 26 is able to transform a plurality of raw fuels A, B,..., and Z into a plurality of refined fuels 1,2,..., and N. Raw fuels A, B,..., and Z may be transformed by serially processing raw fuels A, B,..., and Z to produce refined fuels 1,2,..., and N. Alternatively, the transformation may be achieved by drawing two or more of raw fuels A, B,..., and Z, for example, to sequentially produce refined fuel 1, refined fuel 2,..., and refined fuel N. Both processes are indicated by the solid arrow from box 26 to the refined fuel bunkers.
Also as shown in Figures 2A, 2B, and 2C, the refined-fuel-preparation system 26 is able to transform a plurality of refined fuels 1, 2,..., and N into a combustion-grade fuel. As with raw fuels A, B,..., and Z, refined fuels 1, 2,..., and N may be transformed by serially processing refined fuels 1,2,..., and N to produce the combustion-grade fuel. Alternatively, the transformation may be accomplished by drawing two or more of refined fuels 1, 2..., and N, for example, to sequentially produce combustion-grade fuel.
It will be appreciated that a fossil-fuel-fired system 10 may include provisions that would make it unnecessary to have a fuel-preparation system 24 to transform raw fuels and refined fuels. In such case, the fossil-fuel-fired system 10 may be a fuel-handling system 30 for providing combustion-grade fuel to the furnace 14. Is such case, the fuel-handling system 30 may include an emissions-control-agent dispenser 12 and one or more additional dispensers. These dispensers may provide any one of a materials-handling agent, a moisture-binding agent, and a materials-handling, moisture-binding agent. Although there may be separate dispensers for each agent, in Figures 2A, 2B, and 2C, the agents are shown as being provided by a single dispenser, the emissions-control-agent dispenser 12.
The furnace 14 may be any that would be afforded benefits by including an emissions-control-agent dispenser 12. When coal is a fuel, examples of a furnace 14 include any one of a stoker-firing furnace, a pulverized-fuel furnace, and combinations thereof. Some specific examples of a pulverized-fuel furnace include any one of a cyclone-type furnace and a fluidized-bed-type furnace. A furnace 14 may be identified by the type of fuel for which it has been designed. Thus, other examples of a furnace 14 include any one of a coal-fired furnace, a peat-fired furnace, a petroleum-coke-fired furnace, and combinations thereof. Applicants have found that providing an emissions-control-agent dispenser 12 to a coal-fired furnace to be beneficial for controlling emissions.
10

Returning to Figures 1A, 1B, and 1C, the fossil-fuel-fired system 10 may including any one of a steam generator 32 and a steam generator 32 and a power generator 34. The power generator 34 may be any of a turbine, a Sterling engine, a reciprocator steam engine, and combinations thereof.
Applicants note that the fossil-fuel-fired system 10 may be used in applications other than those depicted in Figures 1A, 1B, and 1C. For example, the fossil-fuel-fired system 10 may be used in applications that use any one of mechanical power, electrical power, steam power, and combinations thereof such as, for example, any one of a manufacture of pulp, a manufacture of paper, a manufacture of pulp and paper, a manufacture of textiles, a manufacture of chemicals, and a processing of rubber. Other examples of applications for a fossil-fuel-fired system 10 include the metals and cement industries such as, for example, copper-ore smelting, copper refining, nickel-ore smelting, nickel refining, zinc recovery from lead-blast-furnace slag, copper-reverberatory-furnace slag, malleable-iron production from white-cat iron, and cement production.
An emissions monitor 20 is shown in Figures 1A, 1B, 1C, and 4 on the exhaust 16 of the fossil-fuel-fired system 10. Such a monitor is capable of measuring at least one property of the flue gas prior to its communication into the atmosphere. Applicants have found that at least an opacity of the flue-gas is effected by the organic-emissions-control agent of the present invention. To that end, the at least one property that the emissions monitor 20 be capable of measuring is opacity. Therefor, the emissions monitor 20 may be an opacity monitor. Rather than being dedicated, the emissions monitor 20 may be flexible in that it would have the ability to measure opacity and at least an additional one property of the flue-gas such as, for example, any one of carbon oxides (e. g., CO, CO2,... etc.), oxygen (e. g., O2, O3,... etc.), nitrogen oxides (e. g., NO, NO2, NOx/... etc.), sulfur oxides (e. g., SO2, SO3, SOX/... etc.), particulate matter, flow, and combinations thereof.
Details concerning emissions monitors that may be used in a fossil-fuel-fired system 10 are discussed in, for example, U. S. Pat. Nos. 6,597, 799 and 5, 363,199, the entire disclosure of each being incorporated by reference herein. Continuous emission monitoring systems (CEMS), including SO2 analyzers, NOx analyzers, CO2 analyzers, O2 analyzers, flow monitors, opacity analyzers, flue-gas flow meters, and associates data acquisition and handling systems, that meet the requirements set forth in the US Environmental Protection Agency's (EPA's) 40 CFR Part 75 are commercially available. Manufacturers of opacity monitors or analyzers include, for example Teledyne/Monitor Labs, Land Combustion, Thermo Environmental, and Durag.
11

Turning now to the emissions-control-agent dispenser 12 useable with a fossil-fuel-fired system 10. Any disperser that would facilitate the introduction of an organic-emissions-control agent 18 in a manner that reduces emissions communicating with the atmosphere would be appropriate. Such an emissions-control-agent dispenser 12 may include a volumetric-feed dispenser such as, for example, a screw-feed dispenser, and a mass-feed dispenser such as, for example, a weight-belt feeder.
When an opacity-control-agent dispenser, the dispenser 12 is capable of providing an opacity-control agent at a rate so that at least the opacity of the flue-gas communicated through the exhaust 16 to the atmosphere is less than or equal to a substantially prescribed value. In some jurisdictions, the opacity value is substantially less than or substantially equal to about 40. In other jurisdictions, the opacity value is substantially less than or substantially equal to about 30. In yet other jurisdictions, the opacity value is substantially less than or substantially equal to about 20. In still yet other jurisdictions, the opacity value is substantially less than or substantially equal to about 10.
An emissions-control-agent dispenser 12 may communicate with the fossil-fuel-fired system 10 in any manner that allows for providing an organic-emissions-control agent 18 so that the concentration of contaminants of a flue-gas stream emitted by an exhaust 16 are controlled. To that end, an emissions-control-agent dispenser 12 may be provided so as to communicate an organic-emissions-control agent 18 to any one of a fossil-fuel, a fossil-fuel stream prior to combustion, a fossil-fuel stream during combustion (e. g., with gases that are introduced into the furnace 14 during combustion), a fossil-fuel stream following combustion (e. g., a combusted fossil-fuel flue-gas stream), and combinations thereof.
Turning now to Figure 1A that schematically depicts one aspect of the present invention. In this aspect, an emissions-control-agent dispenser 12 communicates an organic-emissions-control agent 18 to a furnace 14. The emissions-control-agent dispenser 12 may be or include an apparatus including, for example, at least one injector for introducing the organic-emissions-control agent 18. The communication to the furnace 14 may be by communicating an organic-emissions-control agent 18 to any one of a fossil-fuel stream prior to combustion, a fossil-fuel stream during combustion (e. g., with gases that are introduced into the furnace 14 during combustion), a fossil-fuel stream following combustion (e. g., a combusted fossil-fuel flue-gas stream), and combinations thereof.
Also as shown in Figure 1A, an apparatus may include any one of an emissions monitor 20, a controller 22, and an emissions monitor 20 and a controller 22. When included, emissions monitor 20 is downstream of the injector. Also, the emissions monitor is capable of
12

measuring at least one property of the combusted fossil-fuel flue-gas stream communicated to the atmosphere. The controller 20 communicates with the at least one injector. The controller 22 may communicate with the at least one injector and the emissions monitor 20. In either case, the controller 22 controls a flow of the organic-emissions-control agent 18 such as, for example, an opacity-control agent (e. g., superabsorbent polymer), through the at least one nozzle to control the concentration of contaminants present in a flue-gas stream downstream of the at least one injector. In this manner, the concentration of contaminants present in a flue-gas stream emitted by an exhaust 16 of a fossil-fuel-fired system 10 are controlled.
Turning now to Figure 1B that schematically depicts another aspect of the present invention. In this aspect, an emissions-control-agent dispenser 12 communicates an organic-emissions-control agent 18 to an exhaust 16. The emissions-control-agent dispenser 12 may be or include an apparatus including, for example, at least one injector for introducing the organic-emissions-control agent 18. The communication to the exhaust 16 may be by communicating an organic-emissions-control agent 18 to a fossil-fuel stream following combustion (e. g., a combusted fossil-fuel flue-gas stream). As with Figure 1A, the apparatus may include any one of an emissions monitor 20, a controller 22, and an emissions monitor 20 and a controller 22.
Turning now to Figures 1C, 2A, 2B, and 2C that schematically depict still another aspect of the present invention. In this aspect, an emissions-control-agent dispenser 12 communicates an organic-emissions-control agent 18 to a fuel-preparation system 24. The communication to the fuel-preparation system 24 may be by communicating an organic-emissions-control agent 18 to any one of a fossil-fuel, a fossil-fuel stream prior to combustion (e. g., any one of a raw-fuel-preparation system 26, a refined-fuel-preparation system 28, a fuel-handling system 30, and combinations thereof), and combinations thereof.
The emissions-control-agent dispenser 12 in this aspect may be or include an apparatus including any one of an injector, a screw feeder, and a weight belt feeder for introducing the organic-emissions-control agent 18. As with Figures 1A and 1B, the apparatus may include any one of an emissions monitor 20, a controller 22, and an emissions monitor 20 and a controller 22.
Applicants have unexpectedly found that a superabsorbent polymer acts as an emissions control agent 18 in general and, in particular, as an opacity control agent. In such case, the emissions-control-agent dispenser 12 is a superabsorbent-polymer dispenser having the
13

capability to dispensing a superabsorbent polymer having an average particle size of at least about 200μm and even of at least about 250μm.
Particle size characteristics for the organic-emissions-control agent useful herein maybe done using standard sieve analyses. Determination of particle size characteristics using such a technique is described in greater detail in US Patent No. 5, 061, 259, "Absorbent structures with gelling agent and absorbent articles containing such structures" issued on October 29, 1991 to Goldman, et al., the entire disclosure of which is incorporated herein by reference. Also, the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent polymer at from about 0.001 weight % to about 5 weight %, preferably, about 0.01 weight % to about 0.5 weight %, and, more preferably, at from about 0.05 weight % to about 0.25 weight % of the fuel feed to the furnace. Stated in a pound/ton-of-fuel basis, the dispenser is capable of dispensing a superabsorbent polymer at from about 0.02 pound/ton of fuel to about 100 pounds/ton, preferably, about 0.2 pound/ton of fuel to about 10 pounds/ton, and, more preferably, at from about 1 pound/ton of fuel to about 5 pounds/ton of fuel feed to the furnace. Further, the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent polymer having any of a variety of physical forms including any one of particles, fibers, foams, films, beads, rods, slurries, suspensions, solutions, and combinations thereof.
Figure 3 is a block diagram illustrating a combustion-control diagram applicable to burning at least two fuels, separately or together, in a fossil-fuel-fired system 10 capable on controlling emissions useable with any of fossil-fuel-fired system 10 of Figure 1A, 1B, and 1C. In Figure 3, the similarly shaped control symbols may have a variety of consistent meanings. For example, circles may represent indicating transmitters (e. g., flow mete, level sensors, thermocouples,... etc.); rectangles may represent any one of a subtracting unit, a proportional controller, a proportional-plus-integral controller, q summer, and a signal lag unit; diamonds may represent manual signal generators, and when grouped may represent a hand/automatic control station including a transfer function; and trapezoids may represent a final controlling function. The specific meanings of the symbols associated with Figure 3 are presented in the tables below.

Table 1 Symbol Meaning for Furnace/Boiler Portion of Figure 3
Element No. Description
50 Steam Pressure Level
52 Pressure Level Error
54 Pressure Control
14

56 Transfer of a hand-automatic selector with bias (part of Boiler Master)
60 Manual signal generator of a hand-automatic selector with bias
62 Manual signal generator of a hand-automatic selector wit bias
64 Fuel-Flow Cross Limit
66 Emission Level Cross Limit
70 Air-Flow Error
72 Air-Flow Control
74 Transfer a hand-automatic selector
76 Manual signal generator of a hand-automatic selector
80 Forced-Draft Fan Damper-Control Drive

Table 2 Symbol Meanings for Fuel/Air Portion of Figure 3
Element No. Description
82 Fuel B Flow
84 Fuel A Flow
86 Fuel Flow
114 Air Flow
90 Combustion Controller-Fuel/Air
92 Fuel-Flow Demand
94 Air-Flow Cross Limit
96 Emission-Level Cross Limit
100 Fuel-Flow Error
102 Fuel-Flow Control
104 Transfer a hand-automatic selector
106 Manual signal generator of a hand-automatic selector
110 Fuel A Control Valve
112 Fuel B Control Valve

Table 3 Symbol Meanings for Steam-Oil Portion of Figure 3
Element No. Description
116 Steam—Oil Pressure Differential, AP
120 Atomizing-Steam Valve
15

Table 4 Symbol Meanings for Emissions Portion of Figure 3
Element No. Description
122 Emissions Level
146 Emissions Control (EC) Agent Flow
124 Emission Error
126 Agent-Flow Cross Limit
130 Fuel-Flow Cross Limit
132 Air-Flow Cross Limit
134 EC Agent Flow Error
136 EC Agent Flow Control
140 Transfer a hand-automatic selector
142 Manual signal generator of a hand-automatic selector
144 EC Agent Disperser Drive
As the fossil-fuel-fired system 10 includes a boiler or steam generator 32, the fuel flows, air flows, and emissions-control-agent (EC-agent) flows are controlled from steam pressure through the boiler master with the fuel and emissions readjusted from fuel-flow, air-flow, emission level, and EC-agent-flow.
Generally, Figure 3 relates to an aspect of the present invention that provides a method for operating a fossil-fuel-fired system 10 while controlling emission therefrom. The method includes the steps of (a) operating the fossil-fuel-fired system 10 at a prescribed load-demand set-point value, (b) providing a prescribed amount of an opacity control agent 18, (c) adjusting the prescribed load-demand set-point value to a different prescribed load-demand set-point value, (d) measuring at least the opacity of the flue-gas communicated to the atmosphere, (e) comparing the measured value and the prescribed-opacity set-point value the different prescribed load-demand set-point value, (f) adjusting, as appropriate, the prescribed amount of opacity-control agent provided, and (g) repeating steps (c) through (f). The prescribed amount of opacity-control agent provided is sufficient to control at least an opacity of the flue-gas at a prescribed-opacity set-point value while operating a the prescribed load-demand set-point value. After the prescribed load-demand set-point value is adjusted to a different prescribed load-demand set-point value, the measured value and the prescribed-opacity set-point value are compared. Appropriate adjustments, if any, are made to the prescribed amount of opacity-control agent provided so that the measured value and the prescribed-set-point value of the at least the opacity are substantially the same.
16

Applicants have unexpectedly found that a superabsorbent polymer acts as an organic-emissions-control agent 18 in general and, in particular, as an opacity control agent. A suitable superabsorbent polymer may be selected from natural, biodegradable, synthetic, and modified natural polymers and materials. The term crosslinked used in reference to the superabsorbent polymer refers to any means for effectively rendering normally water-soluble materials substantially water-insoluble but swellable. Superabsorbent polymers include internal crosslinking and surface crosslinking. Superabsorbent polymers are known for use in sanitary articles as well as other applications, such as for cables and fertilizers. Superabsorbent refers to a water- swellable, water-insoluble, organic or inorganic material capable of absorbing at least about 10 times its weight and up to about 30 times its weight in an aqueous solution containing 0.9 weight percent sodium chloride solution in water. A superabsorbent polymer is a crosslinked polymer which is capable of absorbing large amounts of aqueous liquids and body fluids, such as urine or blood, with swelling and the formation of hydrogels, and of retaining them under a certain pressure in accordance with the general definition of superabsorbent. The superabsorbent polymers that are currently commercially available are crosslinked polyacrylic acids or crosslinked starch-acrylic acid graft polymers, in which some of the carboxyl groups are neutralized with sodium hydroxide solution or potassium hydroxide solution.
In one embodiment of the present invention, the superabsorbent polymer is a crosslinked polymer comprising from about 55 to about 99.9 wt. % of polymerizable unsaturated acid group containing monomers; internal crosslinking agent; and surface crosslinking agent applied to the particle surface. Such superabsorbent polymers are commercially available from Stockhausen Inc. or Stockhausen Louisiana LLC or Stockhausen GmbH & Co. KG. The superabsorbent polymer of the present invention is obtained by the initial polymerization of from about 55 to about 99.9 wt. % of polymerizable unsaturated acid group containing monomers. Suitable monomers include those containing carboxyl groups, such as acrylic acid, methacrylic acid, or 2-acrylamido-2-methylpropanesulfonic acid, or mixtures of these monomers are preferred here. It is preferable for at least about 50-weight %, and more preferably at least about 75 wt. % of the acid groups to be carboxyl groups. It is preferred to obtain polymers obtained by polymerization of acrylic acid or methacrylic acid, the carboxyl groups of which are neutralized to the extent of 50-80 mol%, in the presence of internal crosslinking agents.
17

Further monomers, which can be used for the preparation of the absorbent polymers
according to the invention, include about 0-40 wt. % of ethylenically unsaturated monomers
that can be copolymerized with, for example, acrylamide, methacrylamide, hydroxyethyl
acrylate, dimethylaminoalkyl (meth)-acrylate, ethoxylated (meth)-acrylates,
dimethylaminopropylacrylamide, or acrylamidopropyltrimethylammonium chloride. More
than about 40 wt. % of these monomers can impair the swellability of the polymers.
The internal crosslinking agent has at least two ethylenically unsaturated double bonds or
one ethylenically unsaturated double bond and one functional group that is reactive
towards acid groups of the polymerizable unsaturated acid group containing monomers or
several functional groups that are reactive towards acid groups can be used as the internal
crosslinking component and which is present during the polymerization of the
polymerizable unsaturated acid group containing monomers.
The absorbent polymers are surface crosslinked after polymerization. Surface crosslinking is
any process that increases the crosslink density of the polymer matrix in the vicinity of the
superabsorbent particle surface with respect to the crosslinking density of the particle
interior. The absorbent polymers are typically surface crosslinked by the addition of a
surface crosslinking agent. Preferred surface crosslinking agents include chemicals with one
or more functional groups, which are reactive towards pendant groups of the polymer
chains, typically the acid groups. The content of the surface crosslinking agents is from
about 0.01 to about 5 wt. %, and preferably from about 0.1 to about 3.0 wt. %, based on the
weight of the dry polymer. A heating step is preferred after addition of the surface
crosslinking agent.
While particles are the used by way of example of the physical form of superabsorbent
polymers, the invention is not limited to this form and is applicable to other forms such as
fibers, foams, films, beads, rods, slurries, suspensions, solutions, and the like. The average
particle size of the superabsorbent polymers is at least about 200μm and more likely at least
250μm.
It is sometimes desirable to employ surface additives that perform several roles during
surface modifications. For example, a single additive may be a surfactant, viscosity modifier
and react to crosslink polymer chains.
The polymers according to the invention are preferably prepared by two methods.
The polymers can be prepared continuously or discontinuously in a large-scale industrial
manner by the abovementioned known process, the after-crosslinking according to the
invention being carried out accordingly.
18

According to the first method, the partly neutralized monomer, preferably acrylic acid, is converted into a gel by free-radical polymerization in aqueous solution in the presence of crosslinking agents and, optionally, further components, and the gel is comminuted, dried, ground, and sieved off to the desired particle size. This solution polymerization can be carried out continuously or discontinuously.
Inverse suspension and emulsion polymerization can also be used for preparation of the products according to the invention. According to these processes, an aqueous, partly neutralized solution of monomers, preferably acrylic acid, is dispersed in a hydrophobic, organic solvent with the aid of protective colloids and/or emulsifiers, and the polymerization is started by free radical initiators. The internal crosslinking agents either are dissolved in the monomer solution and are metered in together with this, or are added separately and optionally during the polymerization. The addition of a water- soluble polymer as the graft base optionally takes place via the monomer solution or by direct introduction into the oily phase. The water is then removed azeotropically from the mixture, and the polymer is filtered off and, optionally, dried. Internal crosslinking can be carried out by polymerizing-in a polyfunctional crosslinking agent dissolved in the monomer solution and/or by reaction of suitable crosslinking agents with functional groups of the polymer during the polymerization steps.
In one embodiment, the superabsorbent polymer is used in the form of discrete particles. Superabsorbent polymer particles can be of any suitable shape, for example, spiral or semi-spiral, cubic, rod-like, polyhedral, etc. Particle shapes having a large greatest dimension/smallest dimension ratio, like needles, flakes, or fibers are also contemplated for use herein. Conglomerates of particles of superabsorbent polymers may also be used. Several different superabsorbent polymers that differ, for example, in the rate of absorption, permeability, storage capacity, absorption under pressure, particle size distribution, or chemical composition can be simultaneously used together.
The polymers according to the invention are employed in many products including furnace devices such as boilers. The superabsorbent polymers can be introduced directly into the boiler or applied to coal prior to introduction of the coal into the boiler. When the superabsorbent polymer is introduced directly into the boiler, any means can be used to do so. The superabsorbent polymer may be introduced with gases that are introduced into the boiler during combustion.
When the superabsorbent polymer is applied to coal, it is usually applied to the coal in the amount of from about 0.02 to about 100 pounds of superabsorbent polymer per ton of coal,
19

preferably, from about 0.2 to about 10 pounds of superabsorbent polymer per ton of coal, and most preferably, from about 1 to about 5 pounds of superabsorbent polymer per ton of coal. As one can appreciate, increasing the amount of superabsorbent polymer to the coal has a diminishing value on improving results in the fossil-fuel-fired furnace. In one embodiment, the superabsorbent polymer is dusted onto the coal being held in what are called bunkers and allowed to settle and absorb water or other fluids. The coal is then removed from the bunker and transported by a conveyor belt to a ball mill or other type of grinding or pulverizing equipment to make the coal into particle size suitable for combustion. Generally, the coal is milled to a particle size of from about 1 to about l0μm, and the milled coal containing superabsorbent polymer is subsequently used as fuel. When a dispersant or coagulant or other material is being incorporated before the absorbent polymer, it is generally applied as a solution, but it can be applied in solid form if its solubility is such as to permit it to dissolve relatively rapidly within the boiler or on the coal. It is often preferred that the particle sizes and the amounts of the absorbent polymer and of the filter cake are such that the amount will be adjusted to reduce the emissions of contaminants. For instance, this is achieved by adding about 0.001% (dry on dry) of polymer particles having an average particle size of about 200μm to coal, or injecting the superabsorbent directly into the boiler.
The amount of polymer that is applied is generally at least about 0.01% and is preferably at least about 0.5% of the weight of the coal used in the fossil-fuel-fired furnace. It is a particular advantage of the invention that, despite the unpleasant character of the wet mass, good results can be obtained with very low amounts of superabsorbent polymer, often below 0.3% or 0.4%, and often below 0.15% or 0.2%. These amounts are of dry superabsorbent polymer based on dry particles by weight of the coal.
In an aspect, the present invention is to provide a fuel usable in a fossil-fuel-fired system 10 to control the emissions communicated by the fossil-fuel-fired system 10 into the atmosphere. The fuel includes at least one combustible material and an organic-emissions-control agent 18. The emission-control agent 18 is capable of interacting with one of the fuel, the combustion products of the fuel, and the fuel and combustion products so as to reduce the emission of at least one aspect of the flue-gas. In this manner, the emissions communicated by the fossil-fuel-fired system into the atmosphere are controlled. In another alternative aspect, the present invention is to provide a fuel usable in a fossil-fuel-fired system 10 to control the opacity of the combustion products communicated by the fossil-fuel-fired system 10 into the atmosphere. The fuel includes at least one fossil fuel and
20

at least one opacity-control agent. The opacity-control agent is capable of interacting with one of the fuel, the combustion products of the fuel, and the fuel and combustion products so as to reduce the opacity of the flue-gas communicated by the fossil-fuel-fired system into the atmosphere. In this manner, at least the opacity of the flue-gas communicated by the fossil-fuel-fired system into the atmosphere is controlled.
An operation of the fossil-fuel-fired system 10 is discussed with reference to Figure 4, which is a schematic showing an integration of a fuel-preparation system 24 including a raw-fuel-fuel preparation system 26 and a refined-fuel-preparation system 28, a furnace 14 and an exhaust 16. A plurality of emissions-control-agent dispensers 12 are shown. The operation is discussed in the context of a coal-fired system.
Raw coal from a number of sources is processed through a dryer and crusher system (raw-fuel preparation system 26). During this processing and transport, an organic-emissions-control agent 18 may be added to the coal using a dispenser 12. Also, the coal from a number of sources may be blended by proportionally drawing coal from the number of sources simultaneously. The crushed coal is delivered to one or more bunkers. (Only one bunker is depicted in Figure 4.) The refined coal from the number of bunkers is processed through a pulverizing system (refined-fuel preparation system 28). During this processing and transport, if not already so done, or if additional amounts would beneficial, an organic-emissions-control agent 18 may be added to the coal using a dispenser 12'. Also, the refined coal from the number of bunkers may be blended by proportionally drawing crushed coal and/or other fuel such as, for example, petroleum coke, from the number of bunkers simultaneously.
The pulverized coal is delivered to one or more bins. (Only one bin is depicted in Figure 4.) The pulverized coal from the number of bins is fed through a number of burners to the furnace 14. If not already so done, or if additional amounts would beneficial, an organic-emissions-control agent 18 may be added to the furnace 14 using a dispenser 12". Combustion products are the passed through a convention bank, and some of the flue gas is recirculated to the furnace. The balance of the flue gas is directed to through the exhaust 16 to the atmosphere. The exhaust 16 may include any one of a particulate collector, a dry scrubber, a baghouse for capturing components of the emissions, and combinations thereof. If not already so done, or if additional amounts would beneficial, an organic-emissions-control agent 18 may be added to the exhaust 16 using a dispenser 12"'. Although depicted as being in communication with the stack, the dispenser 12"' may be in communication with any one of the particulate collector, the dry scrubber, the baghouse, the stack, and
21

combinations thereof. An emission monitor 20 detects and reports the emissions level for the components of interest of required by law.
Fossil-fuel-fired systems, as well as associated fuel-preparation systems, raw-fuel-fuel preparation systems, refined-fuel-preparation system, furnaces, exhausts, and control systems are shown in the book entitled "Steam: Its Generation and Use," 39th Edition, copyright by the Babcock & Wilcox Company in 1978. The description of the fossil-fuel-fired systems, as well as associated fuel-preparation systems, raw-fuel-fuel preparation systems, refined-fuel-preparation system, furnaces, exhausts, and control systems are incorporated herein by reference. Also, a fossil-fuel-fired boiler is shown in US Patent 6,488,740, of which the description of the boiler is incorporated by reference.
Further, a fossil-fuel-fired facility is shown in the article entitled "B&W's Advance Coal-fired Low Emission Boiler System Commercial Generating Unit and Proof-of-Concept Demonstration presented to ASME International Joint Power Generation Conference" held November 3-5,1997 in Denver, Colorado, USA, of which the description of the facility is incorporated by reference. Example 1
The superabsorbent is applied to coal prior to processing the coal by a ball mill to have a size of 1 to 10 mm. The mix is pulverized and carried, entrained in air from the pulverizes, as a fuel into the combustion chamber of a power station boiler. There is no evidence of clogging of the pulverizer or other parts of the apparatus through which the product travels from the mixer to the boiler. It was found that the emissions of the boiler were reduced. Example 2
A pilot test was performed at Hoosier Energy REC, Inc.'s Ratts Generating Station in Pike County, Indiana. The coal-fired facility is able to produce 250,000 kilowatts of electricity with twin turbine generators. The generating station is equipped with environmental controls and monitors; these include precipitators for the removal of flyash. Most of the fuel for the facility is Indiana coal with moderate sulfur content burned at about 12,000 BTU per pound and mined within a radius of 20 miles of the generating station.

Table 5-ENVIROSORB 1880 Technical Data
Retention Capacity (Test Method Nr. Q3T013): 28.5-35.0g/g
Absorbency Under Load, [0.9 psi] (Test Method Nr. Q3T027): 18.0g/gmin.
Particle Size: 100-850 microns (Test Method Nr. Q3T015)
%on20Mesh[850um] % on 50 Mesh [300um] 2.0% Max. 95% Max.
22


Using a screw feeder (Model No. 105-HX, manufactured by Acrison Inc.) about 3 pounds/ton of coal of a super absorbent polymer sold under the tradename ENVIROSORB 1880 was added before the raw coal was processed using a crusher. The Technical data relating to ENVIROSORB 1880 superabsorbent polymer is presented in Table 5 and some combustion characteristics are presented in Table 6.

23



About eight hours of coal where prepared. The opacity of the emission exhausted to the atmosphere was continuously monitored using a Spectrum 41 Continuous Opacity Monitoring System (COMS). The results of the six-minute-average data for opacity before, during, and after the superabsorbent polymer emissions-control agent was added To Fuel Supply are presented in Table 7. The data demonstrate that at least the opacity of the emissions was reduced by the addition of the superabsorbent polymer emissions-control agent. Further it was believed that the plant was able to operate closer to the operational load rating without concern of reaching or exceeding the opacity limit. Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. It should be understood that all such modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the following claims.
25

We Claim:
1. An emissions-control-agent dispenser useable with a fossil-fuel-fired system
comprises:
a furnace including an exhaust communicating with the atmosphere;
an emissions monitor capable of measuring at least one property of the flue-gas
communicated from the furnace through the exhaust to the atmosphere; and
an opacity-control-agent dispenser, said opacity control agent dispenser comprises a
superabsorbent - polymer dispenser, wherein said superabsorbent - polymer
dispenser is capable of dispensing a superabsorbent polymer & said superabsorbent
polymer is added to fuel prior to a conveyance of the fuel into a furnace.
2. The emissions-control-agent dispenser according to Claim 1, wherein the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent polymer having an average particle size of at least about 200um.
3. The emissions-control-agent dispenser according to Claim 1, wherein the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent polymer having an average particle size of at least about 250μm.
4. The emissions-control-agent dispenser according to Claim 1, wherein the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent polymer at from about 0.001 weight % to about 5 weight % of the fuel feed to the furnace.
5. The emissions-control-agent dispenser according to Claim 1, wherein the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent polymer at from about 0.01 weight % to about 0.5 weight % of the fuel feed to the furnace.
6. The emissions-control-agent dispenser according to Claim 1, wherein the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent polymer at from about 0.05 weight % to about 0.25 weight % of the fuel feed to the furnace.
7. The emissions-control-agent dispenser according to Claim 1, wherein the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent
26

polymer at from about 0.02 pound/ton of fuel to about 100 pounds/ton of fuel feed to the furnace.
8. The emissions-control-agent dispenser according to Claim 1, wherein the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent polymer at from about 0.2 pound/ton of fuel to about 10 pounds/ton of fuel feed to the furnace.
9. The emissions-control-agent dispenser according to Claim 1, wherein the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent polymer at from about 1 pound/ton of fuel to about 5 pounds/ton of fuel feed to the furnace.
10. The emissions-control-agent dispenser according to Claim 1, wherein the superabsorbent-polymer dispenser is capable of dispensing a superabsorbent polymer having a form including any one of particles, fibers, foams, films, beads, rods, slurries, suspensions, solutions, and combinations thereof.
11. A process for limiting a discharge of airborne contaminants emitted from combustion processes comprising the step of adding a superabsorbent polymer to a fossil-fuel-fired system during the combustion process and wherein the superabsorbent polymer is added to the fuel prior to a conveyance of the fuel into a furnace.
12. The process according to Claim 11, wherein the amount of superabsorbent polymer added to the combustion process is from about 0.001 weight % to about 5 weight % of the fuel used in the combustion process.
13. The process according to Claim 11, wherein the superabsorbent polymer has an average particle size of at least about 200μm.
14. The process according to Claim 11, wherein the superabsorbent polymer has an average particle size of at least about 250μm.
15. The process according to Claim 11, wherein an amount of superabsorbent polymer added to the combustion process is from about 0.001 weight % to about 5 weight % of the fuel used in the combustion process.
16. A method of decreasing the concentration of contaminants present in a flue-gas stream emitted by a fossil-fuel-fired system, said method comprising adding a
27

superabsorbent polymer to the fossil-fuel-fired system in a manner that enables a removal of contaminants from the flue gas stream prior to communicating the flue gas to the atmosphere and wherein superabsorbent polymer is added to the fuel prior to the conveyance of the fuel into a furnace.
17. The process according to Claim 16, wherein the amount of superabsorbent polymer added to the combustion process is from about 0.001 weight % to about 5 weight % of the fuel used in the combustion process.
18. The process according to Claim 16, wherein the superabsorbent polymer has an average particle size of at least about 200um.
19. An apparatus for decreasing the concentration of contaminants present in a flue- gas stream emitted by a fossil-fuel-fired system, said apparatus comprising :
a. at least one injector for introducing a superabsorbent polymer to the fossil-fuel-
fired system in the combusted fossil-fuel flue-gas stream path; said superabsorbent
polymer is added to the fuel prior to the conveyance of the fuel into a furnace and
b. an emissions monitor downstream of the injector and capable of measuring at least
one property of the combusted fossil-fuel flue-gas stream communicated to the
atmosphere; and
c. a controller communicating with the at least one injector and the emissions
monitor to control a flow of the superabsorbent polymer through the at least one
nozzie and into the combusted fossil-fuel flue-gas stream path to control the
concentration of contaminants present in a flue-gas stream downstream of the at
least one injector.
Dated this 7th day of October, 2005.
I
HIRAL CHANDRAKANT JOSHI AGENT FOR STOCKHAUSEN, INC.
28

Documents:

1115-mumnp-2005-abstract(12-2-2008).doc

1115-mumnp-2005-abstract(12-2-2008).pdf

1115-mumnp-2005-abstract.doc

1115-mumnp-2005-abstract.pdf

1115-mumnp-2005-cancelled pages(12-2-2008).pdf

1115-mumnp-2005-claims(granted)-(12-2-2008).doc

1115-mumnp-2005-claims(granted)-(12-2-2008).pdf

1115-mumnp-2005-claims.doc

1115-mumnp-2005-claims.pdf

1115-mumnp-2005-correspondence(12-2-2008).pdf

1115-mumnp-2005-correspondence(ipo)-(3-4-2008).pdf

1115-mumnp-2005-correspondence-received-ver-060406.pdf

1115-mumnp-2005-correspondence-received-ver-071005.pdf

1115-mumnp-2005-correspondence-received-ver-150206.pdf

1115-mumnp-2005-correspondence-received.pdf

1115-mumnp-2005-description (complete).pdf

1115-mumnp-2005-drawing(12-2-2008).pdf

1115-mumnp-2005-drawings.pdf

1115-mumnp-2005-form 1(12-2-2008).pdf

1115-mumnp-2005-form 1(6-2-2006).pdf

1115-mumnp-2005-form 18(12-2-2008).pdf

1115-mumnp-2005-form 2(granted)-(12-2-2008).doc

1115-mumnp-2005-form 2(granted)-(12-2-2008).pdf

1115-mumnp-2005-form 3(10-10-2005).pdf

1115-mumnp-2005-form 3(12-2-2008).pdf

1115-mumnp-2005-form 5(10-10-2005).pdf

1115-mumnp-2005-form 5(12-2-2008).pdf

1115-mumnp-2005-form-1.pdf

1115-mumnp-2005-form-2.pdf

1115-mumnp-2005-form-3.pdf

1115-mumnp-2005-form-5.pdf

1115-mumnp-2005-form-pct-ib-373.pdf

1115-mumnp-2005-form-pct-isa-210(10-10-2005).pdf

1115-mumnp-2005-form-pct-isa-220.pdf

1115-mumnp-2005-form-pct-isa-237.pdf

1115-mumnp-2005-form-pct-isa-seperate sheet-237.pdf

1115-mumnp-2005-pct-search report.pdf

1115-mumnp-2005-power of attorney(13-2-2006).pdf

abstract1.jpg


Patent Number 219047
Indian Patent Application Number 1115/MUMNP/2005
PG Journal Number 42/2008
Publication Date 17-Oct-2008
Grant Date 21-Apr-2008
Date of Filing 10-Oct-2005
Name of Patentee STOCKHAUSEN, INC.
Applicant Address
Inventors:
# Inventor's Name Inventor's Address
1 JOYCE JOHN T. JR. 804 OVERLOOK DRIVE, BECKLEY, WV 25801,
2 JOYCE, John, T., Jr. 804 Overlook Drive, Beckley, WV 25801 (US).
3 ALLEN GARY W
PCT International Classification Number B 03C
PCT International Application Number PCT/US2004/009800
PCT International Filing date 2004-04-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/462,552 2003-04-11 U.S.A.