Title of Invention

PROCESS AND APPARATUS FOR PRODUCING OLEFIN POLYMERS.

Abstract The present invention concerns a process and an apparatus for continuous polymerisation of olefin monomers in a cascade of polynerisation reactors. According to the process, an olefin 5 monomer is polymerized first in slurry phase in an inert hydrocarbon diluent in at least one loop reactor and then, subsequently, in gas phase in at least one gas phase reactor. According to the invention, a polymer slurry is continuously withdrawn from the loop reactor and optionally concentrated. The concentrated slurry is conducted to a high pressure flash unit in order to remove the remaining fluid phase, and fed to the gas phase reactor. With the process 10 described in this invention, it is possible to produce bimodal polyethylene with good properties. The operation of the process is stable because of the truly continuous operation.
Full Text 1
PROCESS AND APPARATUS FOR PRODUCING OLEFIN POLYMERS
Background of the Invention
5 Field of the Invention
The present invention relates to olefin polymerisation. In particular, the present invention
concerns a process and an apparatus for continuous polymerisation olefin monomers like
ethylene and other monomers in a cascade of polymerisation reactors, wherein an olefin
10 monomer is polymersed first in shurry phase in an inlet hydrocarbon diluent in at least one
loop reactor and then, subsequently, in gas phase in at least one gas phase reactor.
Description of Related Art
15 The loop reactor was developed in the 1950's. It is now widely used for the production of
polyethylene and other olefin polymers. In a loop reactor, ethylene is polymerised in the
presence of a hydrocarbon diluent in slurry phase at elevated pressure and temperature. The
slurry is withdrawn from the reactor and concentrated so that the solids content at the reactor
outlet is higher than the solids, content in the reactor. Traditionally, this has been done by
20 using settling legs. However, present methods for concentrating the polymer slurry of a loop
reactor have been unsatisfactory. This is true, in particular, for the production of bimodal
polyethylene in cascaded reactors.
Bimodal polyethylene comprises at least one low molecular weight component and at least
25 one high molecular weight component It can be produced in a cascade of reactors, which
means that polymerisation is carried out in a plurality of reactors placed in serial arrangement
so that the polymerisation product withdrawn from the product cutlet of one reactor is fed into
the inlet of the following reactor. When using cascaded polymerisation reactors, it is
important to prevent the flow of certain reactants from one polymerisation stage to the new. if
30 the low molecular weight polymer component is produced in the first polymerisation stage,
any carryover of hydrogen from the first stage to the second stage will reduce the molecular
weight produced in the second stage, thereby leading to reduced mechanical properties and
inferior meit strength of the final polymer. On the other hand, if the high molecular weight
component is produced in the first reactor, then carryover of comonorners into the second


2
polymerisation stage will have a negative impact on the mechanical properties of the final
polymer.
The use of hydrocyclones for concentrating the outlet slurry of a loop reactor is known since
5 the 1960's. Loop reactors equipped with a hydrocyclone are disclosed in, e.g., US 3 816 383,
where a part of the underflow from the hydrocyclone is taken to product recovery, while the
residual pan is combined with the overflow and returned to the loop reactor.
Another document relating to the above-mentioned topic is US 4 395 523, which discloses a
10 method of making and recovering polymer particles. The known method comprises
polymerising in a loop reactor, directing a portion of the recirculating polymer slurry into a
hydroeyclone, returning the overflow from the hydrocyclone into the reactor and withdrawing
the underflow from the hydrocyclone and conducting it to product recovery.
15 Further.EPl 113624.EP1 118625andEPl118626 disclose a process for polymerismg
olefin, where the polymer slurry is directed from a loop reactor into a hydrocyclone. The
underflow from the hydrocyclone is directed either to a subsequent polymerisation stage or to
produet recovery.
20 EP 891 990 discloses an ethylene polymerisation process comprising a continuous take-off of
polymer slurry. The polymer shurry is continuously withdrawn from the loop reaccor and fed
to a high-pressure flash. From the high-pressure flash, the polytmer is transferred into a low--
pressure flash and from there to product recovery.
25 EP 517 868 discloses a process for producing ethylene polymers in a reactor cascade
comprising a loop reactor and a gas phase reactor. The document docs not disclose how the
polymer slurry is withdrawn from the loop reactor. Hydrocarbons are separated from the
polymer, but no details are given on how this is done. Finally, the polymer is fed into the gas
phase reactor.
30
Even if the above documents describe different methods of withdrawing the slurry from the
loop reactor, none of them discloses or suggests a suitable, cost efficient process for
polymerising ethylene in two successive stages, the first stage being conducted in a loop
reactor and the second stage in a gas phase reactor. The polymer is separated from the


3
reaction mixture after the loop polymerisation stage and at least a part. of the hydrocarbon
mixture is removed.. Then essentially no hydrogen is tarried over to the gas-phase
polymerisation reactor.
5 The process of EP 517 868 comprises a low-pressure flash after the loop reactor for
separating the polymer from the reaction mixture. While this provides effective separation, it
is a relatively expensive process, because the overhead flow from the flash needs to be
compressed before it can be returned into [he loop reactor and the polymer must be fed into
the gas phase reactor with e.g. a pressuring/depress ring sequence.
10
One way of overcoming the above-mentioned problem involving the necessity of
compressing the overhead flow from the flash, would be to replace the low-pressure flash of
EP 517 868 with a high-pressure flash, as suggested in EP 891 990. However, if the slurry
were withdrawn from the reactor continuously, as proposed in EP 891 990, the separation of
15 the reactants would not be sufficiently efficient and, in particular, some hydrogen would be
carried over from the loop reactor to the gas phase reactor, thus limiting the molecular weight
that could be produced in the gas phase reactor. The use of a combination of a high-pressure
flash and a low-pressure flash would result in an expensive process. Finally, if the polymer
slurry were withdrawn from the loop reactor intermittently by using setting legs and the thus
20 withdrawn concentrated slurry would be conducted to a high-pressure flash, there would still
remain the problem with high hydrogen concentration in the gas. However, the flash would
now have to be designed for a high flow, because the flow rates are high at the times when the
settling legs open to discharge the slurry. This overdesign and use of settling legs leads to a
high investment cose.
25
Summary of the Invention
It is an aim at the present invention ID eliminate the problems of the prior art and to provide a
novel way of polymerising ethylene and other olefin monomers, optionally in me presence of
It is a particular aim of the present invention to find an economical alternative to file process
known from EP 517 868 by providing a novel and cost-efficient process for polymerising
ethylene in two successive stages, the first stage being conducted in a loop reactor and the

4
second stage in a gas phase reactor, where the polymer is separated from the reaction mixture
after the loop polymerisation stage so that no reactant, especially no hydrogen, is transferred,
from the loop reactor to the gas phase reactor in such an extent that it would have an adverse
effect in the polymerisation in gas phase.
5
The invention is based on the idea of using, in combination, means located outside the loop
reactor for increasing the solids content of the slurry withdrawn from the loop reactor to
provide a concentrated slurry, and a high-pressure flash unit for essentially evaporating all of
the remaining liquid-phase hydrocarbons of the slurry phase diluent to provide a gas/solids
10 mixture containing polymer solids gases. Alternatively, the slurry can be concentrated when it
is withdrawn from the reactor.
Thus, the apparatus for producing an olefin polymer in the presence of a catalytic system
preferably comprises, in a cascade, a loop reactor, means for increasing the concentration of
15 polymer slurry withdrawn from the loop reactor, a high-pressure flash and a gas phase reactor.
The means for increasing the concentration of the slurry can be located externally to the loop
reactor or be arranged in conjunction with the reactor outlet.
The process according to the invention for producing olefin polyners in the presence of a
20 catalytic system in a continuously operated multistage polymerisation sequence, comprises
the steps of
- continuously withdrawing from the loop reactor a polymer slurry containing polymer
and fluid mixture containing diluent, monomers and optionally hydrogen,
- optionally, concentrating the slurry by removing a part of the hydrocarbon diluent to
25 provide a concentrated slurry,
- conducting the concentrated slurry to a high pressure flash unit in order to remove
essentially all of the remaining hydrocarbon diluent and to provide a product stream
containing a mixture of polymer solids and gases,
- transferring the product stream from the flash into the gas phase reactor.
30
According to a preferred embodiment of the invention, the product stream from the flash unit
can be purged countercurrently in a gas-exchange zone with essentially hydrogen-free gas in
order to reduce the amount of hydrogen carryover to the gas phase reactor.

5
The present invention provides important advantages, Thus, it is possible to produce bimodal
polyethylene with good properties. There is no harmful carryover of reactants from the first
polymerisation stage to the second polymerisation stage. Expensive overdesign of process
elements can be avoided. The operation of the process is stable because of the truly
5 continuous operation. The time of transitions and start-up can be reduced.
Further details and advantages of the invention will become apparent from the following
detailed description comprising a number of working examples.
10 Brief Description of the Drawings
Figure 1 depicts in a schematic fashion the process configuration of a first preferred
embodiment of the invention.
15 Detailed Description of the Invention
Overall Process
The reference numerals used in the attached drawing refer to the following pieces of
1. loop reactor
2. hydrocyclone
3. high pressure flash receiving vessel
25 4. gas phase reactor
11. loop reactor outlet line
21. overhead flow from the hydrocyclone
22. flash pipe (heated)
31. overhead flow to the diluent recycle
30 32. flow from the flash receiving vessel
33. polymer flow to the gas phase reactor
5. gas exchange zone


6
The present invention includes the following steps, which will appear from the attached
drawing showing an embodiment of the invention:
Olefin monomers like ethylene and optionally one or more alpha-olefin comononer(s) are
5 polymerised in a loop reactor 1 in a hydrocarbon diluent, preferably propane or isobutane, in
the presence of a polymerisation catalyst, optionally in the presence of hydrogen. The
polymer slurry is continuously withdrawn from the loop reactor 1 through an outlet nozzle.
At least a part of the polymer slurry thus withdrawn is conducted to a hydrocyclone 2, in
10 which the slurry is concentratted to provide a first product stream having a high concentration
of solid matter and a second product steam, which mainly consists of hydrocarbon diluent
separated from the polymer slurry. The first product stream forms the underflow of the
hydrocyclone 2 and it is conducted via fiash pipe 22 to receiving vessel of the flash unit 3,
which preferably is operated at a high pressure. The overhead flow comprising the second
15 product stream of the hydrocyclone is recycled from the hydiocyclone 2 to the loop reactor 1.
The bottom flow containing the polymer is conducted from the receiving vessel of the flash
unit 3 into a gas phase reactor 4, preferably by gravity drop or pressure difference.
20 At least a part of the overhead flow from the receiving vessel of the flash unit, consisting
mainly of hydrocarbons is recycled directly or indirectly into the loop reactor 1 or gas phase
Optionally, the flow containing the polymer can be passed through a gas exchange lone
25 before it is introduced into the gas phase reactor 4.
The various steps of the process will now be described in more detail.

7
A. Loop Reactor
In the loop reactor 1, olefins like ethylene are homopolymerised or eopolymerised with at
ieast one C6 to C10 alpha-olefin. The polymerisation takes place in an inert hydrocarbon
5 diluent or liquid monomer, preferably a C5 to C5 hydrocarbon diluent, more preferably in
propane or isobutane diluent, and in particular propane diluent.
The temperature in the loop is from about 60ºC to about 110ºC. preferably from 75 to 105
°C. If ethylene orpropylene is homopolymerised in the loop reactor, it is preferred to operate
10 the loop reactor at conditions known as "supercritical", where the operating temperature
exceeds the critical temperature of the reaction mixture and the operating pressure exceeds the
critical pressure of the reaction mixture. At such conditions, the operation temperature is
higher than 90 °C, preferably higher than 93ºC,
15 The operating pressure needs to be selected so that the contents of the loop reactorremain
cither in liquid state or supercritical state. For liquid slurry operation, the suitable range of
operating pressure is from about 20 to about 100 bar, preferably from 25 to 75 bar. For
supercritical slurry operation, the suitable range of operating pressure is from about 50 to
about 100 bar, preferably from 55 to 80 bar.
20
Suitable catalysts that can be used to polymerise ethylene are, e.g., Ziegler-Natta catalysts,
single-site catalysis, multi-site catalysts containing one or more single-site catalyst
components, or combinations or mixtures of these.
25 The Ziegler-Natta catalyst comprise titanium and magnesium compounds, optionally also
aluminium compounds, and may be supported on an inert support, such as. silica or
magnesium dichloride. Preferable catalysts are those that are disclosed in EP688 794, EP 949
274, WO 99/58584 and WO 01/55230.
30 The single-site catalyst may be any catalyst that comprises one or more submitted of
unsubstituted cydopentadienyl ligands. Particularly useful are catalysts disclosed in WO
97/28170 and WO 00/34341.

8
Preferably, ethylene is (co)polymerised in the loop reactor in the presence of hydrogen to
produce the low molecular weight polymer component Typically, the reaction mixture
contains from 0 to 10 %, preferably from 0 to 4 mol-% of alpha-olefin comonomer. If a
Ziegler-Natta catalyst is used, the reaction mixture typically contains from 2 to 10 mol-%
5 hydrogen, preferably from 2 to 8 mol-%. If a single site catalyst is used, the reaction mixture
typically contains from 0.01 to 1 mol-% hydrogen. Further, the reaction mixture contains
typically from 1 to 10 mol-%, preferably from 3 to 10 mol-% ethylene. If a single site catalyst
is used, then slightly lower ethylene concentration may be used. The reaction mixture further
comprises the components of the diluent. Preferably, the major part of the diluent is propane,
10 with minor quantities of other alkanes, such as methane, ethane, and buttanes.
The concentration of the polymer in the reactor slurry is typically from 10 to 40 % by volume,
preferably from 20 lo 30 % by volume.
15 The polymer slurry is withdrawn from the loop reactor continuously through an outlet.The
outlet may be placed at any suitable location in the reactor. However, most preferably the
outlet is located at a suitable location downstream of the loop circulation pump, t! is also
possible to withdraw the slurry from the loop reactor in such a manner that the concentraaon
of solids at the outlet is higher than the concentration of solids in the loop reactor. The slurry
20 may be directed into the flash unit directly or through a further concentration step.
Pressure of the reactor is controlled by continuous withdrawal of the slurry from the reactor
through an outlet nozzle. The said slurry can be directed to the hydrocydone. In that case the
pressure control valve is located in the product take off line of the hydrocyclone.
25
Performance of the hydrocyclone is highly dependent on the feed conditions. Any disturbance
in the bottom flow will affect the performance of the hydrocyclone. The design can be made
e.g. by allowing a wide controlling range for the feed flow. Stable operating conditions could
then be reached by recycling a part of the slurry from the bottom of the hydrocyclone to the
30 reactor.
Cut size of the particles can be adjusted e.g. by controlling the feed flow to the hydroc yclone.

9
Solids concentration at the bottom of the hydrocyclone can be measured and adjusted by
adjusting [he ratio of the recycle flow (overflow) and the product flow (underflow).
B. Hydrocyclone
5
From the loop reactor 1 the polymer slurry is directed to a hydrocyclone 2. where the
concentration of the slurry takes place by effect of centrifugal forces. The hydrocyclone
divides the slurry flow into two streams: An overflow 21, which is rich in liquid, and an
underflow, which is rich in polymer. The overflow is returned to the loop reactor or to a fines
10 collection tank (not shown in the drawing) and the underflow is directed to a flash unit.
As described above, the slurry entering the hydrocyclone has a solids content of 10 to 40 %
by volume. The solids concentration in the underflow can be adjusted by adjusting the ratio of
the recycle flow (overflow) to the product flow (underflow), and is typically from 30 to 55 %
15 by volume, preferably 40 to 52 % by volume. It is often advantageous to recycle a part of the
underflow back to the loop reactor.
The maximum solids concentration in the product flow is set by the limit of stable operation.
If the solids concentration of the slurry is too high, the risk of plugging the product flow
20 increases. For economical reasons, on the other hand, as high as possible solids concentration
in the slurry is desired
Typically, the ratio of recycle flew to product flow is from about 0.01 to about 10, preferably
from 0.01 to 5 and more preferably from 0.1 to 2.
25
The solids concentration of the recycle flow is typically about 0 (or at least 0.001) to 5 %by
C. High Pressure Flash Unit
30
The flash unit 3 typically consists of a heated flash pipe 22 and a receiving vessel 3. The
slurry entering the flash unit has a solids concentration of 30 to 60% by volume. In the flash
unit, the remaining hydrocarbons are removed from the polymer. The flash pipe is preferably
heated, e.g. by steam or water. If water is used for heating, [he heating water can be


10
advantageously taken from the jacket of the loop reactor. The temperature is selected
according to the composition at the hydrocarbon fluid so that the fluid is essentially
evaporated. "the phrase "essentially removing the fluid phase" means that a major fraction of
the fluid phase is removed and only an amount of fluid that fills the volume between the
5 polymer particles and the volume of pores in the polymer particles remains with the polymer.
Typically, the temperature at the receiving vessel is from 50 to 100ºC. preferably from 60 to
90ºC, in particular from 70 to 90 °C, and a pressure of 10 to 30 bar, preferably 12 to 21 bar,
and in particular from 14 to 34 bar. The pressure is preferably higher than the pressure in the
gas phase reactor, to allow smooth transfer of the polymer into the gas phase reactor.
10 Advantageously, the pressure is at least 0.05 bar higher than in the gas phase reactor.
At least a part of the overhead flow 31 from the receiving vessel of the flash unit 3 is passed
to the recovery system for recycling into the loop reactor 1 or gas phase reactor 4 or both. A
small purge stream can be recycled e.g. to a cracker.
15
D. Gas Exchange Zone
The product flow 32 from the flash receiving vessel 3 is directed into a gas phase reactor. The
flow contains about the void volume of gas of the same composition as the loop reactor fluid
20 the rest being polymer. Before introduction into the gas phase reactor, the product flow can be
passed through a gas exchange zone 5, where it is flushed countercurrently with essentially
hydrogen free gas fraction from the diluent recovery or with a pure hydrocarbon, preferably
propane, to reduce the amount of hydrogen carryover to the gas phase reactor. The gas
displacement zone comprises a conduit and a control valve or optionally one or two rotary
25 feeders.
There are different ways of implementing the gas exchange zone. One possibility is simply to
have a control valve in the conduit used for transporting the polymer from the flash into the
gas phase reactor. The flush gas is then introduced into the conduit upsteam the control valve
30 and optionally also below the control valve.
Another alternative is to have one or two rotary feeders after the flash unit. The rotary feeder
moves a part of the gas upwards and a part of the gas downwards. Again, flash gas is


11
introduced into the conduit between the rotary feeder(s) and the gas phase reactor below and
optionally also above the rotary feeders).
The product flow after flushing contains typically less than 0.1 mol-% of hydrogen.
The product flow is transferred to the gas phase reactor. An auxiliary gas may be used to
facilitate smooth transfer of the product flow into the gas phase reactor.
E. Gas Phase Reactor
10
The gas phase reactor 4 is operated at a temperature of from about 60ºC to about 115ºC,
preferably 70 to 110ºC. The operating pressure is from 10 to 30 bar. preferably from 15 to 25
bar.
15 In the gas phase reactor, olefins are is copolymerised with one or more C3 to C10 alpha-olefin
comonomers, or the olefins like ethylene ate homopotymerised.
Preferably, the olefins like ethylene are copolymerised in the gas phase reactor with a minor
amounts of hydrogen to produce a high molecular weight polyethylene eopolymer. The
20 reaction mixture contains typically from 5 to 25 mol-% ethylene, from 0.1 to 10mol-% alpha-
olefin comonomer and from 0.01 to 3 mol-% hydrogen. If a single site catalyst is used to
polymerise ethylene. then the content of hydrogen may be from 0.001 to 1 mol-%. The
remainoeris composed of inert components, like nitrogen or propane.
25 Summarising what has been stated above, one particularly preferred embodiment of the
invention comprises the following steps: Polymerising the monomer in the presence of a
catalytic system in a loop reactor 1 using a suitable catalyst and an inert hydrocarbon diluent,
continuously withdrawing the polymer slurry from the loop reactor through an outlet line 11,
concentrating the slurry in a hydrocyclone 2 to remove excess hydrocarbons to provide a
30 concentrated slurry, returning the overflow 21 containing hydrocarbons from the
hydrocyclona to the loop reactor, directing the concentrated slurry through a heated flash pipe
22 to the receiving vessel 3 of the high pressure flash unit in order to remove excess fluid
reaction mixture, directing the product flow 32 from the receiving vessel of the flash unit into
a gas phase reactor.

12
According to a second particularly preferred embodiment, the product flow 32 from the
receiving vessel of the flash unit is directed into a gas phase reactor through a gas exchange
lone. In the gas exchange zone, the amount of hydrogen in the product flow is reduced by
5 flushing the flow with an essentially hydrogen free gas.
Examples
Example 1:
10 A 20 m3 loop reactor is operated sit 95 °C and 60 bar pressure with propane diluent. Ethylene
homopolymer is produced in the reactor by introducing ethylene, diluenr, hydrogen and a
polymerisation catalyst, which was prepared according to Example 3 of EP 688 794 with the
exception that as a carrier material silica having an average panicle size of 20 µm is used, in
such quantities that the diluent contains 5.9 mol-% of ethylene and 2.6 mol-% hydrogen. The
15 remainder is propane with minor quantities (less than 1 mol-% each) of methane, ethane,
isobutane and n-butane. The polymer production is 2.8 tons per hour; the melt index of the
polymer is 450 g/10 min and the density 973 kg/m3. The solids content of the slurry is 25 vol-
%.
20 The polymer slurry is withdrawn continuously from the reactor through an outlet nozzle and
transferred to a hydrocyclone according to Figure 1. The total slurry feed to the hydrocydone
is 5.5 tons per hour. The product flow is 3.7 tons per hour, with 52 vol-% of solids. The
recycle flow is 1.8 tons per hour, with 1.7 vol-% solids. The recycle flow is returned to the
25
The product flow of the hydrocyclone is routed into a flash pipe and further to a flash
receiving vessel, operated in a temperature of 75 °C and a pressure of 21 bar. The
hydrocarbons separated from the polymer are returned into the loop reactor via a diluent
recovery. They contain 5.9 mol-% of ethylene and 2-6 mol-% of hydrogen.
30
The product flow from the flash receiving vessel is introduced into a gas exchange zone,
where it is flushed with 300 Kg/h of propane. The gas entering the gas displacement zone with
powder contains 5.9 mol-% of ethylene and 2.6 mol-% of hydrogen. After flushing, the gas


13
flow to the gas phase reactor with powder contains 0.3 mol-%of ethylene and 0.1 mol-% of
hydrogen the rest being propane. The flush gas is recycled to diluent recovery via a flash
receiving vessel.
5 The product flow from the gas exchange zone containing pan of the flush propane is
introduced into a gas phase reactor essentially by gravity drop, where the polymerisation is
continued by adding ethylene, hydrogen and 1-butene so that the reaction mixture contains 13
mol-% ethylene, 0.9 mol-% I-butene and 0.35 mol-% hydrogen, the remainder being nitrogen
and a minor amount of propane. The polymerisation temperature is 80 °C and pressure is 20
10 bar. The polymer production rate in the gas phase reactor is 3.2 tons per hour, so that 6 tons of
polymer is withdrawn from the gas phase reactor per hour. The final polymer has a melt index
MFR21, of 9 g/10 min and density of 949 kg/m3.
Example 2:
15 Into the reactor of Example 1 is introduced ethylene. 1-butene, hydrogen and diluent, as well
as similar catalyst to what was used in Example 1, so that the reaction mixture contains 5.9
mol-% ethylene. 3.7 mol-% 1-butene and 2.6 mol-% hydrogen. Polymerisation temperature is
85 °C. The polymer production is 2.4 tons per hour, the med index of the polymer is 200 g/10
min and the density 952 kg/m3. The solids content of the slurry is 25 vol-%.
20
The polymer slurry is withdrawn continuously from the reactor through an outlet nozzle and
transferred to a hydrocyclone according to Figure I. The total slurry feed to the hydrocyclone
is 5.2 tons per hour. The product flow is 3.8 tons per hour, with 39 vol-% of solids. The
recycle flow is 1.4 tons per hour, with 5.S vol-% solids. The recycle flow is returned to the
25 loop reactor.
The product flow of the hydrocyclone is introduced into a flash pipe and further to a flash
receiving vessel, operated at a temperature of 80 "C and a pressure of 20 bar. The
hydrocarbons separated from the polymer are returned into the loop reactor. They contain 5.9
30 mol-% of ethylene. 3.7 mol-% 1-butene and 2.6 mol-% of hydrogen.
The product flow from the Hash receiving vessel is introduced into a gas exchange zone
consisting of a conduct and a rotary feeder, where it is flushed with 300 kg/h of essentially
hydrogen free flow from diluent recovery. The gas entering the gas displacement zone with

14
powder contains 5.9 mol-% of ethylene, 3.7 mol-% of 1-butene and 2.6 mol-% of hydrogen.
After flushing, the gas flow to the gas phase reactor with powder contains 0.3 mol-% of
ethylene, 0.3 mol-% of 1-butene and 0.05 mol-% of hydrogen the rest being propane. The
flush gas is recycled to diluent recovery via a flash receiving vessel.
5
The product flow from the receiving vessel of the flash unit is introduced into a gas phase
reactor where the polymerisation is continued by adding ethylene, hydfogen and L-butene so
that the reaction mixture contains 12 mol-% ethylene, 53 mol-% 1-butene and 0.08 mol-%
hydrogen the remainder being nitrogen and a minor amount of propane. The polymerisation
10 temperature is 80ºC and pressure is 19 bar. The polymer production rate in the gas phase
reactor is 3.6 tons per hour, so that 6 tons of polymer is withdrawn from the gas phase reactor
per flour. The final polymer has a melt index MFR21 of 18 g/10 min and density of 922 kg/m


15
Claims
l. A process for producing olefin. polymers in the presence of a catalytic system in a
continuously operated multistage polymerisation sequence, wherein an olefin monomer is
polymerised first in slurry phase in a hydrocarbon diluent or liquid monomer, in at lease
one loop reactor, the slurry having a first concentration of solids, and then subsequently in
gas phase in at least one gas phase reactor, said process comprising
- continuously withdrawing from the loop reactor a polymer slurry containing
polymer and a fluid phase, further containing hydrocarbons and optionally
hydrogen,
- concentrating the slurry by removing a pan of the fluid phase to provide a
concentrated slurry,
- conducting the concentrated slurry having a second concentration of solids, which
is higher than the. first concertration of solids, to a high pressure flash unit in order
to remove essentially all of the remaining fluid phase and to provide a product flow
containing a suspension of polymer solids and gases, and
- feeding the product flow of the flash unit into the gas phase reactor,
wherein the receiving vessel of the flash unit is operated at a pressure of 10 to 30 bar, the
operating pressure of the flash unit being higher than the pressure in the gas phase reactor.
2. The process according to claim 1, wherein the solids content of the concenuated sluny
is 30 to 55 %, preferably 40 to 52 % by volume.
4. The process to claim 3, wherein the slurry is concentrated in a hydrocydone to provide
an underflow, which comprises the concentrated slurry, and an overflow, which is rich in
hydrocarbon(s).
5. The process according to claim 1, wherein the slurry is withdrawn from the loop reader
in such a manner that the concentration of solids at the outlet is higher than the
concentration of solids in the loop reactor.
AMENDED SHEET
25-11-2004

ed:29-11-2004 CLMS Fl03016
16
6. The process according to claim 5, wherein the overflow is recycled to the loop reactor.
7- The process according to claim 6, wherein the ratio of the recycled overflow to the
underflow withdrawn from the hydrocyclone is 0.01 to 10, preferably 0.01 to 5 and in
particular 0.1 to 2.
8. The process according to any of claims 5 to 7, wherein the solids concentration of the
slurry of the overflow is 0.001 to 5 % by volume of the flow.
9,The process according to any of. the preceding claims, wherein the flash unit comprises a
flash pipe, which is optionally heated, in which the remaining hydrocarbons of the
concentrated slurry are at least partly evaporated to form an overflow containing the
evaporated fluid phase, and a receiving vessel to form an overflow containing the
evaporated fluid phase and a product flow containing the polymer particles and a minor
amount of the fluid phase.
10. The process according to any of the preceding claims, wherein the receiving vessel of
the flash unit is operated at a pressure of 12 to 27 bat, preferably 14 to 24 bar.
11. The process according to any of the preceding claims, wherein the receiving vessel of
the flash, unit is operated at a pressure, which is at least 0.05 bar higher, than the pleasure
in the gas phase reactor.
12. The process according to claim 9, wherein flash pipe is heated with steam or water
so that temperature of the gas at the receiving vessel is 50 to 100 °C, preferably 60 to 90
ºC, in particular 70 to 90ºC.
13 The process according to claim 12. wherein the flash pipe is heated with water taken
from jacket of the loop reactor
14. The process according to any of claims 11 to 13, wherein the overflow from the flash is
recycled into the loop reactor or conducted to the gas phase reactor or both.
AMENDED SHEET 25-11 -2004

17
15. The process according to any of the preceding claims, wherein the product flow of the
flash unit is flushed counter-currently in a gas exchange zone with an essentially hydrogen-
free gas fraction to reduce the amount of hydrogen carryover to the gas phase reactor before
the product flow is transferred into the gas phase reactor.
5
16. The process according to claim 15, wherein the gas exchange zone comprises a conduit
interconnecting the receiving vessel of the flash unit and the gas phase reactor and equipped
with a control valve, whereby flash gas is introduced upstream and/or downstream at the
control valve.
10
17. The process according to claim 15, wherein the gas exchange zone comprises a conduit
interconnecting the receiving vessel of the flash unit and the gas phase reactor and equipped
with one or several rotary feeders, whereby flush, gas is introduced upstream and/or
downstream of the rotary feeders).
15
18. The process according to any of the preceding claims, wherein the product flow from the
flash unit contains less than 0.1 mol-% of hydrogen.
19. The process according to any of the preceding claims, wherein the polymer is conducted
20 into the gas phase reactor by gravity drop.
20. The process according to any of the preceding claims, wherein the gas phase reactor is
operated at a temperature of 60 -115ºC, preferably 70 - 110 °C.
25 21. The process according to any of the preceding claims, wherein the gas phase reactor is
operated at a pressure of 10 - 30 bar, preferably 15-25 bar.
22. The process according to any of the preceding claims, wherein the monomer is ethylene,
which is optionally copolymerised with one or more C4 to C10 alpha-olefin.
30
23. The process according to any of the preceding claims, wherein the catalytic system
comprises a Ziegler-Natta catalyst, single site catalyst. mate site analyst or a combination or
mixture of the above.

18
24. An apparatus for producing an olefin polymer in the presence of a catalytic system, said
apparatus comprising, in a cascade, a loop reactor, a hydrocyclone, a high-pressure flash and a
gas phase reactor.
5
25. The apparatus according to claim 24, further comprising gas exchange zone arranged in
the cascade between the high-pressure flash and the gas phase reactor.
26. The apparatus according claim 24, comprising
10 - a loop reactor for polymerising olefin monomer in slurry phase in a reaction mixture
comprising fluid hydrocarbons and optionally hydrogen and polymer particles and
provided with at least one outlet to allow for continuous withdrawal of polymer slurry,
- at least one hydrocyclone having at least one inlet for the polymer slurry and at least
one first outlet for concentrated slurry and at least one second outlel for an overhead
15 flow, said inlet being connected to the outlet of the loop reactor, and said
hydrocyclone being adapted to separate the fluid phase from the polymer slurry to
provide a concentrated slurry,
- a high pressure flash unit having at least one islet for the slurry and at least one first
outlet for a suspension of polymer solids and gases and at least one second outlet for
20 evaporated fluid phase, said ink! being connected to the first outlet of the
hydrocyclone, and said flash unit being adapted to separate the fluid phase from the
concentrated slurry, and
- a gas phase reactor having at least one inlet for polymersolids and gases and at least
one outlet for polymer product, said inlet being connected to the first outlet of the high
25 pressure flash unit.
27. The apparatus according to claim 26. wherein the outlet of the loop reactoris placed at a
suitable location downstream of the loop circulation pump.
30 28, The apparatus according to claim 24, wherein a gas exchange zone is arranged between
the high pressure flash unit and the gas phase reactor to provide for countercurrent flushing of
the product flow with essentially hydrogen-free gas.

19
29. The apparatus according to claim 28, wherein the gas exchange zone comprises a conduit
interconnecting the receiving vessel of the flash unit and the gas phase reactor and euipped
with a control valve, whereby flash gas can be introduced upstream and/or downstream of the
control valve.
5
30. The apparatus according to claim 20, wherein the gas exchange zone comprises a conduit
interconnecting the receiving vessel of the flash unit and the gas phase reactor and equipped
with one or several rotary feeders, whereby flush gas can be introduced upstream and/or
downstream of the rotary feeder(s).f

The present invention concerns a process and an apparatus for continuous polymerisation of
olefin monomers in a cascade of polynerisation reactors. According to the process, an olefin
5 monomer is polymerized first in slurry phase in an inert hydrocarbon diluent in at least one
loop reactor and then, subsequently, in gas phase in at least one gas phase reactor. According
to the invention, a polymer slurry is continuously withdrawn from the loop reactor and
optionally concentrated. The concentrated slurry is conducted to a high pressure flash unit in
order to remove the remaining fluid phase, and fed to the gas phase reactor. With the process
10 described in this invention, it is possible to produce bimodal polyethylene with good
properties. The operation of the process is stable because of the truly continuous operation.

Documents:


Patent Number 218578
Indian Patent Application Number 00750/KOLNP/2005
PG Journal Number 14/2008
Publication Date 04-Apr-2008
Grant Date 02-Apr-2008
Date of Filing 28-Apr-2005
Name of Patentee BOREALIS TECHNOLOGY OY
Applicant Address PL-330, FIN-06101 PORVOO, FINLAND.
Inventors:
# Inventor's Name Inventor's Address
1 VUORIKARI MARIANNA KUUSIKKOTIE 3, FIN-06650 HAMARI, FINLAND.
2 KORHONEN ESA RITARINKAARI 6, FIN-06100 PORVOO, FINLAND
3 ANDTSJO HENRIK JOUSITIE 29, FIN-06150 PORVOO, FINLAND
4 ZITTING SAMULI RIIHITIE 6 AS 7, FIN-O43O0 TUUSULA, FINLAND
PCT International Classification Number C08F 2/00
PCT International Application Number PCT/FI2003/000799
PCT International Filing date 2003-10-27
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 02396161.8 2002-10-30 EUROPEAN UNION