Title of Invention

A SORBENT COMPOSITION AND A PROCESS FOR THE PRODUCTION OFTHE SAME.

Abstract TITLE: A SORBENT COMPOSITION AND A PROCESS FOR THE PRODUCTION OF THE SAME. A sorbent composition suitable for removal of sulfur from cracked gasolines and diesel fuels which is comprised of :(a) zinc oxide; (b)silica; (c)alumina; and (d) nickel wherein said nickel is presetn in a substantially reduced valence state and in an amount which effects the removal of sulfur from a stream of cracked-gasoline or diesel fuel contacted with said sorbent composition containing said nickel under desulfurization conditions.
Full Text This invention relates to a sorbent composition and a process
for the production of the same.
Field of the Invention
This invention relates to the removal of sulfur from fluid streams of
cracked-gasolines and diesel fuels. In another aspect this invention relates to
sorbent compositions suitable for use in the desulfurization of fluid streams of
cracked-gasolines and diesel fuel. A further aspect of this invention relates to a
process for the production of sulfur sorbents for use in the removal of sulfur bodies
from fluid streams of cracked gasolines and diesel fuels.
Background of the Invention
The need for cleaner burning fuels has resulted in a continuing world
wide effort to reduce sulfur levels in gasoline and diesel fuels. The reducing of
gasoline and diesel sulfur is considered to be a means for improving air quality
because of the negative impact the fuel sulfur has on the performance of automotive
catalytic converters. The presence of oxides of sulfur in automotive engine exhaust
inhibits and may irreversibly poison noble metal catalysts in the converter.
Emissions from an inefficient or poisoned converter contain levels of non-
combusted, non-methane hydrocarbon and oxides of nitrogen and carbon monoxide.
Such emissions are catalyzed by sunlight to form ground level ozone, more
commonly referred to as smog.
Most of the sulfur in gasoline comes from the thermally processed
gasolines. Thermally processed gasolines such, as for example, thermally cracked
gasoline, visbreaker gasoline, coker gasoline and catalytically cracked gasoline
(hereinafter collectively called "cracked-gasoline") contains in part olefins,
aromatics, and sulfur-containing compounds.
Since most gasolines, such as for example automobile gasolines,
racing gasolines, aviation gasoline and boat gasolines contain a blend of at least in
part cracked-gasoline, reduction of sulfur in cracked-gasoline will inherently serve
to reduce the sulfur levels in such gasolines.
The public discussion about gasoline sulfur has not centered on
whether or not sulfur levels should be reduced. A consensus has emerged that
lower sulfur gasoline reduces automotive emissions and improves air quality. Thus

the real debate has focused on the required level of reduction, the geographical areas
in need of lower sulfur gasoline and the time frame for implementation.
As the concern over the impact of automotive air pollution continues,
it is clear that further efforts to reduce the sulfur levels in automotive fuels will be
required. While the current gasoline products contain about 330 part per million
with continued efforts by the Environmental Protection Agency to secure reduced
levels, it has been estimated that gasoline will have to have less than 50 part per
million of sulfur by the year 2010. (See Rock, K.L., Putman H.M., Improvements
in FCC Gasoline Desulfurization via Catalytic Distillation" presented at the 1998
National Petroleum Refiners Association Annual Meeting (AM-98-37)).
In view of the ever increasing need to be able to produce a low sulfur
content automotive fuel, a variety of processes have been proposed for achieving
industry compliance with the Federal mandates.
One such process which has been proposed for the removal of sulfur
from gasoline is called hydrodesulfurization. While hydrodesulfurization of gasoline
can remove sulfur-containing compounds, it can result in the saturation of most, if
not all, of the olefins contained in the gasoline. This saturation of olefins greatly
affects the octane number (both the research and motor octane number) by lowering
it. These olefins are saturated due to, in part, the hydrodesulfurization conditions
required to remove thiophenic compounds (such as, for example, thiophene, benzo-
thiophene, alkyl thiophenes, alkylbenzothiphenes and alkyl dibenzothiophenes),
which are some of the most difficult sulfur-containing compounds to remove.
Additionally, the hydrodesulfurization conditions required to remove thiophenic
compounds can also saturate aromatics.
In addition to the need for removal of sulfur from cracked-gasolines,
there is also presented to the petroleum industry a need to reduce the sulfur content
of diesel fuels. In removing sulfur from diesel by hydrodesulfurization, the cetane
is improved but there is a large cost in hydrogen consumption. This hydrogen is
consumed by both hydrodesulfurization and aromatic hydrogenation reactions.
Thus there is a need for a process wherein desulfurization without
hydrogenation of aromatics is achieved so as to provide a more economical process
for the treatment of diesel fuels.

As a result of the lack of success in providing successful and
economically feasible processes for the reduction of sulfur levels in both cracked-
gasolines and diesel fuels, it is apparent that there is still needed a better process for
the desulfurization of both cracked-gasolines and diesel fuels which has minimal
affect of octane while achieving high levels of sulfur removal.
The present invention provides a novel sorbent system for the
removal of sulfur from fluid streams of cracked-gasolines and diesel fuels.
The invention also provides a process for the production of novel
sorbents which are useful in the desulfurization of such fluid streams.
The invention further provides a process for the removal of sulfur-
containing compounds from cracked-gasolines and diesel fuels which minimize
saturation of olefins and aromatics therein.
The invention yet further provides a desulfurized cracked-gasoline
that contains less than about 100 parts per million of sulfur based on the weight of
the desulfurized cracked-gasoline and which contains essentially the same amount of
olefins and aromatics as were in the cracked-gasoline from which it is made.
Summary of the Invention
The present invention is based upon our discovery that through the
utilization of nickel in a substantially reduced valence state, preferably zero, in a
sorbent composition there is achieved a novel sorbent composition which permits
the ready removal of sulfur from streams of cracked-gasolines or diesel fuels with a
minimal effect on the octane rating of the treated stream.
Accordingly, in one aspect of the present invention there is provided
a novel sorbent suitable for the desulfurization of cracked-gasolines or diesel fuels
which is comprised of zinc oxide, silica, alumina and nickel wherein the valence of
the nickel is substantially reduced and such reduced valence nickel is present in an
amount to permit the removal of sulfur from cracked-gasolines or diesel fuels.
In accordance with another aspect of the present invention, there is
provided a process for the preparation of a novel sorbent composition which
comprises admixing zinc oxide, silica and alumina so as to form a wet mix, dough,
paste or slurry thereof, particulating the wet mix, dough, paste or slurry thereof so
as to form a particulate granule, extrudate, tablet, sphere, pellet or microsphere

thereof; drying the resulting particulate; calcining the dried paniculate; impregnating
the resulting solid paniculate with a nickel or a nickel-containing compound; drying
the resulting impregnated solid paniculate composition, calcining the dried
paniculate composition and reducing the calcined product with a suitable reducing
agent, such as hydrogen, so as to produce a sorbent composition having a substantial
zero valence nickel content in an amount which is sufficient to permit the removal
with same of sulfur from a cracked-gasoline or diesel fuel stream.
In accordance with a further aspect of the present invention, there is
provided a process for the desulfurization of a cracked-gasoline or diesel fuel stream
which comprises desulfurizing in a desulfurization zone a cracked-gasoline or diesel
fuel with a solid-reduced nickel metal-containing sorbent, separating the
desulfurized cracked-gasoline or diesel fuel from the sulfurized sorbent,
regenerating at least a portion of the sulfurized-solid-reduced nickel metal
metal-containing sorbent to produce a regenerated desulfurized solid nickel metal
metal-containing sorbent; activating at least a portion of the regenerated desulfurized
solid nickel metal-containing sorbent to produce a solid reduced nickel metal
metal-containing sorbent; and thereafter returning at least a portion of the resulting
reduced nickel metal-containing sorbent to the desulfurization zone.
Detailed Description of the Invention
The term "gasoline" as employed herein is intended to mean a
mixture of hydrocarbons boiling from about 100°F to approximately 400°F or any
fraction thereof. Such hydrocarbons will include, for example, hydrocarbon streams
in refineries such as naphtha, straight-run naphtha, coker naphtha, catalytic gasoline,
visbreaker naphtha, alkylate, isomerate or reformate.
The term "cracked-gasoline" as employed herein is intended to mean
hydrocarbons boiling from about 100°F to approximately 400°F of any fraction
thereof that are products from either thermal or catalytic processes that crack larger
hydrocarbon molecules into smaller molecules. Examples of thermal processes
include coking, thermal cracking and visbreaking. Fluid catalytic cracking and
heavy oil cracking are examples of catalytic cracking. In some instances the
cracked-gasoline may be fractionated and/or hydrotreated prior to desulfurization
when used as a feed in the practice of this invention.

The term "diesel fuel" as employed herein is intended to mean a fluid
composed of a mixture of hydrocarbons boiling from about 300°F to approximately
750°F or any fraction thereof. Such hydrocarbon streams include light cycle oil,
kerosene, jet fuel, straight-run diesel and hydrotreated diesel.
The term "sulfur" as employed herein is intended to mean those
organosulfur compounds such as mercaptans or those thiophenic compounds
normally present in cracked gasolines which include among others thiophene,
benzothiophene, alkyl thiophenes, alkyl benzothiophenes and alkyldibenzothiophenes
as well as the heavier molecular weights of same which are normally present in a
diesel fuel of the types contemplated for processing in accordance with the present
invention.
The term "gaseous" as employed herein is intended to mean that state
in which the feed cracked-gasoline or diesel fuel is primarily in a vapor phase.
The term "substantially reduced nickel valence" as employed herein is
intended to mean that a large portion of the valence of the nickel component of the
composition is reduced to a value of less than 2, preferably zero.
The present invention is based upon the discovery of applicants that a
substantially reduced valence nickel component in a paniculate composition
comprising zinc oxide, silica, alumina and nickel results in a sorbent which permits
the removal of thiophenic sulfur compounds from fluid streams of cracked-gasolines
or diesel fuels without having a significant adverse affect of the olefin content of
such streams, thus avoiding a significant reduction of octane values of the treated
stream. Moreover, the use of such novel sorbents results in a significant reduction
of the sulfur content of the resulting treated fluid stream.
In a presently preferred embodiment of this invention, the sorbent
composition has a nickel content in the range of from about 5 to about 50 weight
percent.
The zinc oxide used in the preparation of the sorbent composition can
either be in the form of zinc oxide, or in the form of one or more zinc compounds
that are convertible to zinc oxide under the conditions of preparation described
herein. Examples of such zinc compounds include, but are not limited to, zinc
sulfide, zinc sulfate, zinc hydroxide, zinc carbonate, zinc acetate, and zinc nitrate.

Preferably, the zinc oxide is in the form of powdered zinc oxide.
The silica used in the preparation of the sorbent compositions may be
either in the form of silica or in the form of one or more silicon-containing
compounds. Any suitable type of silica may be employed in the sorbent
compositions of the present invention. Examples of suitable types of silica include
diatomite, silicalite, silica colloid, flame-hydrolyzed silica, hydrolyzed silica, silica
gel and precipitated silica, with diatomite being presently preferred. In addition,
silicon compounds that are convertible to silica such as silicic acid, sodium silicate
and ammonium silicate can also be employed. Preferably, the silica is in the form
of diatomite.
The starting alumina component of the composition can be any
suitable commercially available alumina material including colloidal alumina
solutions and, generally, those alumina compounds produced by the dehydration of
alumina hydrates.
The zinc oxide will generally be present in the sorbent composition in
an amount in the range of from about 10 weight percent to about 90 weight percent,
preferably in an amount in the range of from about 15 to about 60 weight percent,
and more preferably in an amount in the range of from about 45 to about 60 weight
percent, when such weight percents are expressed in terms of the zinc oxide based
upon the total weight of the sorbent composition.
The silica will generally be present in the sorbent composition in an
amount in the range of from about 5 weight percent to about 85 weight percent,
preferably in an amount in the range of from about 20 weight percent to about 60
weight percent when the weight percents are expressed in terms of the silica based
upon the total weight of the sorbent composition.
The alumina will generally be present in the sorbent composition in
an amount in the range of from about 5.0 weight percent to about 30 weight
percent, preferably from about 5.0 weight percent to about 15 weight percent when
such weight percents are expressed in terms of the weight of the alumina compared
with the total weight of the sorbent system.
In the manufacture of the sorbent composition, the primary
components of zinc oxide, silica and alumina are combined together in appropriate

proportions by any suitable manner which provides for the intimate mixing of the
components to provide a substantially homogeneous mixture.
Any suitable means for mixing the sorbent components can be used
to achieve the desired dispersion of the materials. Such means include, among
others, tumblers, stationary shells or troughs, Muller mixers, which are of the batch
or continuous type, impact mixers and the like. It is presently preferred to use a
Muller mixer in the mixing of the silica, alumina and zinc oxide components.
Once the sorbent components are properly mixed to provide a
shapeable mixture, the resulting mixture can be in the form of wet mix, dough,
paste or slurry. If the resulting mix is in the form of a wet mix, the wet mix can be
densified and thereafter particulated through the granulation of the densified mix
following the drying and calcination of same. When the admixture of zinc oxide,
silica and alumina results in a form of the mixture which is either in a dough state
or paste state, the mix can be shaped to form a paniculate granule, extrudate, tablet,
sphere, pellet or mixrosphere. Presently preferred are cylindrical exrudates having
from 1/32 inch to 1/2 inch diameter and any suitable length. The resulting
paniculate is then dried and then calcined. When the mix is in the form of a slurry,
the particulation of same is achieved by spray drying tht slurry to form
microspheres thereof having a size of from about 20 to about 500 microns. Such
microspheres are then subjected to drying and calcination. Following the drying
and calcination of the particulated mixture, the resulting particulates can be
impregnated with nickel oxide compound or a nickel oxide precursor.
Following the impregnation of the paniculate compositions with the
appropriate nickel compound, the resulting impregnated paniculate is then subjected
to drying and calcination prior to the subjecting of the calcined paniculate to
reduction with a reducing agent, preferably hydrogen.
The elemental nickel, nickel oxide or nickel-containing compound
can be added to the particulated mixture by impregnation of the mixture with a
solution, either aqueous or organic, that contains the elemental nickel, nickel oxide
or nickel-containing compound. In general, the impregnation with the nickel is
carried out so as to form a resulting paniculate composition of zinc oxide, silica,
alumina and the nickel metal, nickel oxide or nickel oxide precursor prior to the

drying and calcination of the resulting impregnated composition.
The impregnation solution is any aqueous solution and amounts of
such solution which suitably provides for the impregnation of the mixture of zinc
oxide, silica and alumina to give an amount of nickel oxide in the final zinc oxide
based composition to provide when reduced a reduced nickel metal content
sufficient to permit the removal of sulfur from streams of cracked-gasoline or diesel
fuels when so treated with same in accordance with the process of the present
invention.
Once the nickel, nickel oxide or nickel oxide precursor has been
incorporated into the particulate calcined zinc oxide, alumina and silica mixture, the
desired reduced valence nickel metal sorbent is prepared by drying the resulting
composition followed by calcination and thereafter subjecting the resulting calcined
composition to reduction with a suitable reducing agent, preferably hydrogen, so as
to produce a composition having a substantial zero valence nickel content therein
with such zero valence nickel content being present in an amount to permit the
removal with same of sulfur from a cracked-gasoline or diesel fuel fluid stream.
The solid reduced nickel metal sorbent of this invention is a
composition that has the ability to react with and/or chemisorb with organo-sulfur
compounds, such as thiophenic compounds. It is also preferable that the sorbent
removes diolefins and other gum forming compounds from the cracked-gasoline.
The solid reduced metal sorbent of this invention is comprised of
nickel that is in a substantially reduced valence state, preferably a zero valence state.
Presently the reduced metal is nickel. The amount of reduced nickel in the solid
nickel reduced metal sorbents of this invention is that amount which will permit the
removal of sulfur from a cracked-gasoline or diesel fuel fluid stream. Such amounts
are generally in the range of from about S to about SO weight percent of the total
weight of nickel in the sorbent composition. Presently it is preferred that the
reduced nickel metal be present in an amount in the range of from about 15 to
about 40 weight percent of the total weight of nickel in the sorbent composition.
In one presently preferred embodiment of the present invention, the
reduced nickel is present in an amount in the range of from about 15 to 30 weight
percent and the nickel component has been substantially reduced to zero valence.

In another presently preferred embodiment of this invention, zinc
oxide is present in an amount of about 38 weight percent, silica is present in an
amount of about 31 weight percent, alumina is present in an amount of about
8 weight percent and nickel is present prior to reduction to zero valence in an
amount of about 30 weight percent nickel oxide.
In another presently preferred embodiment of this invention, zinc
oxide is present in an amount of about 41 weight percent, silica is present in an
amount of about 32 weight percent, alumina is present in an amount of about
8 weight percent and nickel is present prior to reduction in an amount of about
19 weight percent.
From the above, it can be appreciated that the sorbent compositions
which are useful in the desulfurization process of this invention can be prepared by
a process which comprises:
(a) admixing zinc oxide, silica and alumina so as to form a mix of
same in the form of one of a wet mix, dough, paste or slurry;
(b) particulating the resulting mix to form particulates thereof in the
form of one of granules, extrudates, tablets, pellets, spheres or microspheres;
(c) drying the resulting particulate;
(d) calcining the dried particulate;
(e) impregnating the resulting calcined particulate with nickel, nickel
oxide or a precursor for nickel;
(f) drying the impregnated particulate;
(g) calcining the resulting dried particulate; and
(h) reducing the calcined particulate product of (g) with a suitable
reducing agent so as to produce a particulate composition having a substantial
reduced valence nickel content therein and wherein the reduced valence nickel
content is present in an amount sufficient to permit the removal with same of sulfur
from a cracked-gasoline or diesel fuel fluid stream when contacted with the
resulting substantially reduced valence nickel particulated sorbent.
The process to use the novel sorbents to desulfurize cracked-gasoline
or diesel fuels to provide a desulfurized cracked-gasoline or diesel fuel comprises:
(a) desulfurizing in a desulfurization zone a cracked-gasoline or

diesel fuel with a solid reduced nickel metal metal-containing sorbent;
(b) separating the desulfurized cracked-gasoline or desulfurized
diesel fuel from the resulting sulfurized solid reduced nickel-containing sorbent;
(c) regenerating at least a portion of the sulfurized solid reduced
nickel-containing sorbent to produce a regenerated desulfurized solid nickel-
containing sorbent;
(d) reducing at least a portion of the regenerated desulfurized solid
nickel-containing sorbent to produce a solid reduced nickel-containing sorbent
thereafter and;
(e) returning at least a portion of the regenerated solid reduced
nickel-containing sorbent to the desulfurization zone.
The desulfurization step (a) of the present invention is carried out
under a set of conditions that includes total pressure, temperature, weight hourly
space velocity and hydrogen flow. These conditions are such that the solid reduced
nickel-containing sorbent can desulfurize the cracked-gasoline or diesel fuel to
produce a desulfurized cracked-gasoline or desulfurized diesel fuel and a sulfurized
sorbent.
In carrying out the desulfurization step of the process of the present
invention, it is preferred that the feed cracked-gasoline or diesel fuel be in a vapor
phase. However, in the practice of the invention it is not essential, albeit preferred,
that the feed be totally in a vapor or gaseous state.
The total pressure can be in the range of about 15 psia to about
1500 psia. However, it is presently preferred that the total pressure be in a range of
from about 50 psia to about 500 psia.
In general, the temperature should be sufficient to keep the cracked-
gasoline or diesel fuel essentially in a vapor phase. While such temperatures can be
in the range of from about 100°F to about 1000°F, it is presently preferred that the
temperature be in the range of from about 400°F to about 800°F when treating as
cracked-gasoline and in the range of from about 500°F to about 900°F when the
feed is a diesel fuel.
Weight hourly space velocity (WHSV) is defined as the pounds of
hydrocarbon feed per pound of sorbent in the desulfurization zone per hour. In the

practice of the present invention, such WHSV should be in the range of from about
0.5 to about SO, preferably about 1 to about 20 hr-1.
In carrying out the desulfurization step, it is presently preferred that
an agent be employed which interferes with any possible chemisorbing or reacting
of the olefinic and aromatic compounds in the fluids which are being treated with
the solid reduced nickel-containing sorbent. Such an agent is presently preferred to
be hydrogen.
Hydrogen flow in the desulfurization zone is generally such that the
mole ratio of hydrogen to hydrocarbon feed is the range of about 0.1 to about 10,
and preferably in the range of about 0.2 to about 3.0.
The desulfurization zone can be any zone wherein desulfurization of
the feed cracked-gasoline or diesel fuel can take place. Examples of suitable zones
are fixed bed reactors, moving bed reactors, fluidized bed reactors and transport
reactors. Presently, a fluidized bed reactor or a fixed bed reactor is preferred.
If desired, during the desulfurization of the vaporized fluids, diluents
such as methane, carbon dioxide, flue gas, and nitrogen can be used. Thus it is not
essential to the practice of the process of the present invention that a high purity
hydrogen be employed in achieving the desired desulfurization of the cracked-
gasoline or diesel fuel.
It is presently preferred when utilizing a fluidized system that a solid
reduced nickel sorbent be used that has a particle size in the range of about 20 to
about 1000 micrometers. Preferably, such sorbents should have a particle size of
from about 40 to about 500 micrometers. When a fixed bed system is employed for
the practice of the desulfurization process of this invention, the sorbent should be
such as to have a particle size in the range of about 1/32 inch to about 1/2 inch
diameter.
It is further presently preferred to use solid reduced nickel sorbents
that have a surface area of from about 1 square meter per gram to about 1000
square meters per gram of solid sorbent.
The separation of the gaseous or vaporized desulfurized fluids and
sulfurized sorbent can be accomplished by any means known ta the art that can
separate a solid from a gas. Examples of such means are cyclonic devices, settling

chambers or other impingement devices for separating solids and gases. The
desulfurized gaseous cracked-gasoline or desulfurized diesel fuel can then be
recovered and preferably liquefied.
The gaseous cracked-gasoline or gaseous diesel fuel is a composition
that contains in part, otefins, aromatics and sulfur-containing compounds as well as
paraffins and naphthenes.
The amount of olefins in gaseous cracked-gasoline is generally in the
range of from about 10 to 35 weight percent based on the weight of the gaseous
cracked-gasoline. For diesel fuel there is essentially no olcfin content.
The amount of aromatics in gaseous cracked-gasoline is generally in
the range of about 20 to about 40 weight percent based on the weight of the
gaseous cracked gasoline. The amount of aromatics in gaseous diesel fuel is
generally in the range of about 10 to about 90 weight percent.
The amount of sulfur in cracked-gasolines or diesel fuels can range
from about 100 parts per million sulfur by weight of the gaseous cracked-gasoline
to about 10,000 parts per million sulfur by weight of the gaseous cracked-gasoline
and from about 100 parts per million to about 50,000 parts per million for diesel
fuel prior to the treatment of such fluids with the sorbent system of the present
invention.
The amount of sulfur in cracked-gasolines or in diesel fuels following
treatment of same in accordance with the desulfurization process of this invention is
less man 100 parts per million.
In carrying out the process of this invention, if dqsired, a stripper unit
can be inserted before the regenerator for regeneration of the sulfurized sorbent
which will serve to remove a portion, preferably all, of any hydrocarbons from the
sulfurized sorbent or before the hydrogen reduction zone so as to remove oxygen
and sulfur dioxide from the system prior to introduction of the regenerated sorbent
into the sorbent activation zone. The stripping comprises a set of conditions that
includes total pressure, temperature and stripping agent partial pressure.
Preferably the total pressure in a stripper, when employed, is in a
range of from about 25 psia to about 500 psia.
The temperature for such strippers can be in the range of from about

100°F to about 1000°F.
The stripping agent is a composition that helps to remove
hydrocarbons from the sulfurized solid sorbent. Presently, the preferred stripping
agent is nitrogen.
The sorbent regeneration zone employs a set of conditions such that
at least a portion of the sulfurized sorbent is desulfurized.
The total pressure in the regeneration zone is generally in the range
of from about 10 to about 1500 psia. Presently preferred is a total pressure in the
range of from about 25 psia to about 500 psia.
The sulfur removing agent partial pressure is generally in the range of
from about 1 percent to about 25 percent of the total pressure.
The sulfur removing agent is a composition that helps to generate
gaseous sulfur oxygen-containing compounds such a sulfur dioxide, as well as to
burn off any remaining hydrocarbon deposits that might be present. Currently,
oxygen-containing gases such as air are the preferred sulfur removing agent.
The temperature in the regeneration zone is generally from about
100°F to about 1500°F with a temperature in the range of about 800°F to about
1200°F being presently preferred.
The regeneration zone can be any vessel wherein the desulfurizing or
regeneration of the sulfurized sorbent can take place.
The desulfurized sorbent is then reduced in an activation zone with a
reducing agent so that at least a portion of the nickel content of the sorbent
composition is reduced to produce a solid nickel reduced metal sorbent having an
amount of reduced metal therein to permit the removal of sulfur components from a
stream of cracked-gasoline or diesel fuel.
In general, when practicing the process of this invention, the
reduction of the desulfurized solid nickel-containing sorbent is carried out at a
temperature in the range of about 100°F to about 1500°F and a pressure in the
range of about 15 to 1500 psia. Such reduction is carried out for a time sufficient
to achieve the desired level of nickel reduction in the sorbent system. Such
reduction can generally be achieved in a period of from about 0.01 to about
20 hours.

Following the activation of the regenerated paniculate sorbent, at
least a portion of the resulting activated (reduced) sorbent can be returned to the
desulfurization unit.
When carrying out the process of the present invention in a fixed bed
system, the steps of desulfurization, regeneration, stripping, and activation are
accomplished in a single zone or vessel.
The desulfurized cracked-gasoline resulting from the practice of the
present invention can be used in the formulation of gasoline blends to provide
gasoline products suitable for commercial consumption.
The desulfurized diesel fuels resulting from the practice of the present
invention can likewise be used for commercial consumption where a low sulfur-
containing fuel is desired.
EXAMPLES
The following examples are intended to be illustrative of the present
invention and to teach one of ordinary skill in the art to make and use the
invention. These examples are not intended to limit the invention in any way.
EXAMPLE I
A solid reduced nickel metal sorbent was produced by dry mixing
20.02 pounds of diatomite silica and 25.03 pounds of zinc oxide in a mix-Muller for
15 minutes to produce a first mixture. While still mixing, a solution containing
6.38 pounds of Disperal alumina (Condea), 22.5 pounds of deionized water and 316
grams of glacial acetic acid, were added to the mix-Muller to produce a second
mixture. After adding these components, mixing continued for an additional 30
minutes. This second mixture was then dried at 300°F for 1 hour and then calcined
at 1175°F for 1 hour to form a third mixture. This third mixture was then
particulated by granulation using a Stokes Pennwalt Granulator fitted with a
50 mesh screen. The resulting granulated mixture was then impregnated with
673.8 grams of nickel nitrate hexahydrate dissolved in 20 grams of hot (200°F)
deionized water per 454 grams of granulated third mixture to produce an
impregnated particulate. The impregnated mixture was dried at 300°F for one hour
and then calcined at 1175°F for one hour to form a solid particulate nickel oxide-
containing composition.

The solid nickel oxide-containing participate was then reduced by
subjecting it to a temperature of 1000°F, a total pressure of 15 psia and a hydrogen
partial pressure of 15 psi for 30 minutes to produce a solid reduced nickel sorbent
wherein the nickel component of the sorbent composition was reduced substantially
to zero valence.
Reduction of the paniculate solid calcined composition comprising
zinc oxide, silica, alumina and a nickel compound so as to obtain the desired
sorbent having a reduced valence nickel content is carried out in the reactor as
described in Example II. Alternatively, such reduction or activation of the
paniculate composition to form the desired sorbent can be carried out in a separate
activation or hydrogenation zone and subsequently transferred to the unit in which
desulfurization of the feedstock is to be carried out.
EXAMPLE II
The paniculate solid reduced nickel sorbent as prepared in Example I
was tested for its desulfurization ability as follows.
A 1-inch quartz reactor tube was loaded with the indicated amounts
as noted below of the sorbent of Example I. This solid nickel sorbent was placed
on a frit in the middle of the reactor and subjected to reduction with hydrogen as
noted in Example I. Gaseous cracked-gasoline having about 310 parts per million
sulfur by weight sulfur-containing compounds based on the weight of the gaseous
cracked-gasoline and having about 95 weight percent thiophenic compounds (such
as for example, alkyl benzothiophenes, alkyl thiophenes, benzothiophene and
thiophene) based on the weight of sulfur-containing compounds is the gaseous
cracked-gasoline was pumped upwardly through the reactor. The rate was
13.4 milliliters per hour. This produced sulfurized solid sorbent and desulfurized
gaseous-cracked gasoline. In Run 1, no hydrogen was used during the
desulfurization resulting in no reduction in its sulfur content.
After Run 1, the sulfurized sorbent was subjected to desulfurizing
conditions that included a temperature of 900°F, a total pressure of 15 psia and an
oxygen partial pressure of 0.6 to 3.1 psi for a time period of 1-2 hours. Such
conditions are hereinafter referred to as "regeneration conditions" to produce a
desulfurized nickel-containing sorbent. This sorbent was then subjected to reducing

conditions that included a temperature of 700°F, a total pressure of 15 psia and a
hydrogen partial pressure of 15 psi for a time period of 0.5 hours. Such conditions
are hereinafter referred to as "reducing conditions".
The resulting solid reduced nickel metal sorbent composition was
then used in Run 2. In this run, hydrogen was added to the cracked-gasoline feed at
a partial pressure of 2.25 psi which resulted in the reduction of sulfur content from
310 ppm to 30 ppm after 1 hour and 170 ppm after 4 hours.
After Run 2, the sulfurized sorbent was then subjected to the
desulfurizing conditions and the reducing conditions. This solid sorbent was then
used in Run 3. Run 3 was a repeat of Run 2 indicating the sorbent can be
regenerated.
After Run 3, the sulfurized sorbent was subjected to the regeneration
conditions. This regenerated sorbent was then used in Run 4. In Run 4, the sorbent
was not reduced prior to the desulfurization run, resulting in a poorer removal of
sulfur from the feed.
After Run 4, the sulfurized sorbent was subjected to the desulfurizing
conditions and the reducing conditions. This solid nickel reduced metal sorbent was
then used in Run 5. In Run 5, when the hydrogen partial pressure was increased to
13.2 psi, the performance of the sorbent markedly improved and a sulfur removal to
5-30 ppm was observed.
After Run 5, the sulfurized sorbent was subjected to the regeneration
conditions and the reducing conditions. This solid reduced nickel metal sorbent was
then used in Run 6. In Run 6, the temperature was raised to 700°F which improved
the sulfur reduction ability of the sorbent resulting in a product that contained
10 ppm or less sulfur.
After Run 6, the sulfurized sorbent was subjected to the regeneration
conditions and the reducing conditions. This solid reduced nickel metal sorbent was
then used in Run 7 with the temperature returned to 600°F. Once again the sorbent
showed ability to remove sulfur but not as efficient as at 700°F.
After Run 7, the sulfurized sorbent was subjected to the regeneration
conditions and the reducing conditions. This solid reduced nickel metal sorbent was
then added to 5 grams of new solid reduced nickel metal sorbent and then used in

Run 8. The reactor had a total of 10 grains of sorbent instead of 5 grams in
Runs 1-7. Under these conditions, the sulfur was reduced to less than 5 ppm from
gasoline.
Runs 8 and 9 show the high effectiveness of the invention sorbent to
reduce sulfur from cracked-gasoline to less than or equivalent to 5 ppm at two
differential pressures of hydrogen and that the sorbent is regenerable.
The feed employed in these runs had a Motor Octane Number
(MON) of 80 and an olefin content of 24.9 weight percent. The composite MON
for Run 8 was 79.6. The composite MON for Run 9 was 79.9. When compared
with the MON value of the feed it can be seen that no significant loss of octane was
observed. The olefin content was reduced only 10 percent as shown by a
comparison of the original feed olefin content of 24.9 weight percent with Run 8
product which had an olefin content of 22.4 weight percent and Run 9 product
which also had an olefin content of 22.4 weight percent.
The results of this series of runs is set forth in Table 1.


EXAMPLE III
A second solid reduced nickel metal sorbent composition was
prepared as follows:
363 grams of diatomite silica was mixed with 443 grams of Nyacol
Al-20 alumina solution in a mix-Muller. While still mixing, 454 grams of dry zinc
oxide powder was then added to the above mixture and further mixed for
30 minutes to form an extrudable paste. This paste was extruded through a
laboratory 1-inch Bonnet extruder employing a die containing 1/16 inch holes. The
wet extrudate was dried at 300°F for one hour and calcined at 1175°F for one hour.
500 grams of dried extrudate were then impregnated with a solution of 371.4 grams

of nickel nitrate hexahydrate dissolved in 36.5 ml of deionized water, the nickel
impregnates were dried at 300°F for one hour and then calcined at 1175°F for one
hour. 200 grams of the first nickel impregnated sorbent was subjected to a second
impregnation with 74.3 grams of nickel nitrate hexahydrate dissolved in 30 grams of
deionized water. After the second impregnation, once again the impregnated
extrudates were dried at 300°F for one hour and then calcined at 1175°F for one
hour.
The extruded solid nickel oxide sorbent was then reduced in the
reactor by subjecting it to a temperature of 700°F, a total pressure of 15 psia and a
hydrogen partial pressure of 15 psia for 60 minutes to produce an extruded solid
reduced nickel sorbent wherein the nickel component of the sorbent composition
was substantially reduced to zero valence state.
EXAMPLE IV
10 grams of the paniculate sorbent of Example III was placed in a
1/2 inch diameter stainless steel tube having a length of about 12 inches. The
bottom of the tube was packed with alundum pellets (R-268 Norton Chemical) to
provide an inert support for the bed of sorbent which was placed in the middle of
the reactor. Alundum was also placed on top of the sorbent bed. Gaseous diesel
motor fuel having a density at 37.5°C of 0.8116 g/cc, an Initial Boiling Point of
266°F and a Final Boiling Point of 725°F and having 415 ppm sulfur by weight
sulfur-containing compounds based on the weight of the gaseous diesel fuel was
pumped downwardly through the reactor at a WHSV of 1.0 hr-1.
The reactor was maintained at a temperature of 800°F and a pressure
of 150 psig. Hydrogen Flow was at 50 seem feed (standard cubic centimeters per
minute).
The sorbent composition was reduced with hydrogen for 1 hour
before Run 1. Before Run 2, the sorbent was regenerated with air at 900°F for
1 hour, then purged with nitrogen and then reduced in flowing hydrogen for 1 hour
at 700°F.
The product sulfur (ppm) for each run was measured at 1 hour
intervals over a 4 hour period.
The following results were obtained:


The above data clearly demonstrate that use of the reduced nickel
sorbent of this invention to remove sulfur from a diesel fuel having 415 ppm
results in a significant reduction of the sulfur content-generally to below 50 ppm.

We Claim:
1. A sorbent composition suitable for removal of sulfur from cracked
gasolines and diesel fuels which comprises:
(a) zinc oxide;
(b)sitica;
(c) alumina; and
(d)nickel
wherein said zinc oxide is present in an amount in the range of
about 10 to about 90 weight percent;
wherein said silica is present in an amount in the range of about 5
to about 85 weight persent;
wherein said alumina is present in an amount in the range of from
about 5 to about 30 weight percent; and
wherein said nickel is present in a substantial reduced valence state
and in an amount which effects the removal of organosulfur from
a stream of cracked-gasolines or diesel fuel when contacted with
same under desulfurization conditions.
2. A sorbent composition as claimed in claim 1 wherein said nickel is
present in an amount in the range of about 5 to about 50 weight
percent.
3. A sorbent composition as claimed in claim 1 wherein said zinc
oxide is present in an amount in the range of about 15 to about 60

weight percent, said silica is present in an amount in the range of
about 20 to about 60 weight percent, said alumina is present in an
amount in the range of about 15 to about 40 weight percent.
4. A sorbent composition in as claimed in claim 3 wherein said zinc
oxide is present in an amount of about 38 weight percent, said
silica is present in an amount of about 31 weight percent, said
alumina is present in an amount of about 8 weight percent and said
nickel is present prior to reduction in an amount of about 30 weight
percent nickel oxide.
5. A sorbent composition in accordance with claim 3 wherein said
zinc oxide is present in an amount of about 41 weight percent, said
silica is present in an amount of about 32 weight percent, said
alumina is present in an amount of about 8 weight percent and said
nickel is present in an amount of about 19 weight percent
6. A sorbent composition as claimed in claim 1 wherein said
composition is a particulate in the form of one of granule,
extgrudate, tablet, sphere, pellet or micro sphere.
7. A process for the production of a sorbent composition suitable for
the removal of sulfur from a cracked-gasoline or diesel fuel stream
which comprises:

(a)admixing of zinc oxide, silica and alumina so as to form a mix
thereof wherein said zinc oxide is present in an amount in the
range of from about 10 to about 90 weight percent, said silica is
present in an amount in the range of about 5 to about 85 weight
percent and said alumina is present in an amount in the range of
from about 5 to about 30 percent;
(b)particulating the resulting mix so as to form particles thereof
(c) drying the particulate of step (b);
(d)calcining the dried paniculate of step (c);
(e) impregnating the resulting calcined particulate of step (d) with
nickel or a nickel-containing compound;
(f) drying the impregnated particulate of step (e);
(g)calcining the dried particulate of step (f); and there-after
(h)reducing the resulting calcined particulate of step (g) in a
redaction zone with reducing agent under suitable conditions to
effect a substantial reduction of the valence of the nickel
content so as to provide an amount of reduced valence nickel
metal such that the resulting composition will effect the
removal of organosulfur compounds from a cracked-gasoline or
diesel fuel stream when said stream is contacted with same
under desulfurization conditions.
8. A process as chimed in claim 7 wherein said mix is in the form of
one of a wet mix, dough, paste or slurry.

9. A process as claimed in claim 7 wherein said particles are in the
form of one of granules, extrudates, tablets, spheres, pellets or
microspheres.
10. A process as claimed in claim 7 wherein said particulate is
impregnated with nickel or a nickel compound in an amount to
provide a nickel content therein in an amount in the range of from
about 5 to about 50 weight percent.
11. A process as churned in claim 7 wherein said particulate is dried in
steps (c) and 9f) at a temperature in the range of about 150°F to
about 350°F.
12. A process as claimed in claim 7 wherein said dried particulate is
calcined in steps (d) and (g) at a temperature in the range of about
400°F to about 1500°F.
13. A process as claimed in claim 8 wherein said zinc oxide is present
in an amount in the range of about 15 to about 60 weight percent,
said silica is present in an amount in the range of about 20 to about
60 weight percent, said alumina is present in an amount in the
range of about 5.0 to about 15 weight percent and said nickel is
present in an amount in the range of about 15 to about 40 weight
percent.

14. A process as claimed in claim 7 wherein the reduction of nickel is
carried out at a temperature in the range of about 100°F to about
1500°F and at a pressure in the range of about 15 to about 1500
psia for a time sufficient to permit the formation of the desired
reduced valence nickel component.
15. The sorbeot product of the process as claimed in claim 7.
16. The sorbent product of the process as claimed in claim 10.
17. The sorbent product of the process as claimed in claim 13.
18. A process for the removal of an organ osulfur from a stream of a
cracked-gasoline or a diesel fuel which comprises:
(a)contacting said steam with a sorbent composition comprising
zinc oxide, silica, alumina and nickel wherein said nickel is
present in a substantially reduced valence state and in amount
which will effect the removal of an organ osulfur compound
from said stream in a desulfurization zone under conditions
such that there is formed a desulfurized fluid stream of cracked-
gasoline or diesel fuel and a sulfurized sorbent;
(b)separating the resulting desulfunzed fluid stream from said
sulfurized sorbent;
(c)regenerating at least a portion of the separated sulfurized
sorbent in a regeneration zone so as to remove at least a portion
of the sulfur absorbed thereon;

(d)reducing the resulting desulfurized sorbent in an activation zone
so as to provide a reduced valence nickel content therein which
will affect the removal of an organosulfur compound from a
stream of a cracked-gasoline or diesel fuel when contacted with
same; and thereafter
(e) returning at least a portion of the resulting desulfurized, reduced
sorbent to said desulfurization zone.
19. A process as claimed in claim 18 wherein said desulfurization is
carried out at a temperature in the range of about 100°F to about
1000°F and a pressure in the range of about 15 to about 1300 psia
for a time sufficient to affect the removal of organosulfur from said
stream.
20. A process as claimed in claim 18 wherein said regeneration is
carried out at a temperature in the range of about 100°F to about
1500°F and a pressure in the range of about 10 about 1500 psia for
a time sufficient to effect the removal of at least a portion of sulfur
from the sulfurized sorbent.
21. A process as claimed in claim 20 wherein there is employed air as
a regeneration agent in said regeneration zone.
22. A process as claimed in claim 18 wherein said regenerated sorbent
is subjected to reduction with hydrogen in a hydrogenation zone

which is maintained at a temperature in the range of about 100°F to
about 1500°F and at a pressure in the range of about 15 to about
1500 psia and for a period of time to affect a substantial reduction
of the valence of the nickel content of said sorbent.
23. A process as claimed in claim 18 wherein said separated sulfurized
sorbent is stripped prior to introduction to said regeneration zone.
24. A process as claimed in claim 18 wherein the regenerated sorbent
is stripped prior to introduction into said activation zone.
25. A sorbent composition suitable for removal of sulfur from cracked
gasolines and diesel fuels which comprises:
(a) zinc oxide;
(b)silica;
(c) alum in a; and
(d)nickel
wherein said zinc oxide is present in an amount in the range of
about 10 to about 90 weight percent;
wherein said silica is present in an amount in the range of about 5
to about 85 weight percent;
wherein said alumina is present in an amount in the range of from
about 5 to about 30 weight percent;

wherein said nickel is present in a substantial reduced valence state
and in amount which effects the removal of organosulfur from a
stream of cracked-gasolines or diesel fuel when contacted with
same under desulfurization condtions; and
wherein at least portion of the composition is calcined to convert at
least a portion of the alumina to an alum mate.
26. A sorbent composition substantially as herein described.
27. A process for the production of a sorbent composition substantially
as herein described.
28. A process for the removal of organosulfur substantially as herein
described.
Dated this 7* day of February 2002.
A sorbent composition suitable for removal of sulfur from cracked gasolines and
diesel fuels which is comprised of: (a) zinc oxide; (b) silica; (c) alumina; and (d)
nickel wherein said nickel is present in a substantially reduced valence state and
in an amount which effects the removal of sulfur from a stream of cracked-
gasoline or diesel fuel contacted with said sorbent composition containing said
nickel under desulfurization conditions.

Documents:

IN-PCT-2002-200-KOL-(07-10-2011)-CORRESPONDENCE.pdf

IN-PCT-2002-200-KOL-(07-10-2011)-OTHERS.pdf

IN-PCT-2002-200-kol-ASSIGNMENT.pdf

IN-PCT-2002-200-kol-CORRESPONDENCE.pdf

IN-PCT-2002-200-KOL-FORM-27.pdf

in-pct-2002-200-kol-granted-abstract.pdf

in-pct-2002-200-kol-granted-claims.pdf

in-pct-2002-200-kol-granted-correspondence.pdf

in-pct-2002-200-kol-granted-description (complete).pdf

in-pct-2002-200-kol-granted-examination report.pdf

in-pct-2002-200-kol-granted-form 1.pdf

in-pct-2002-200-kol-granted-form 18.pdf

in-pct-2002-200-kol-granted-form 2.pdf

in-pct-2002-200-kol-granted-form 3.pdf

in-pct-2002-200-kol-granted-form 5.pdf

in-pct-2002-200-kol-granted-gpa.pdf

in-pct-2002-200-kol-granted-letter patent.pdf

in-pct-2002-200-kol-granted-reply to examination report.pdf

in-pct-2002-200-kol-granted-specification.pdf

in-pct-2002-200-kol-granted-translated copy of priority document.pdf

IN-PCT-2002-200-kol-PA.pdf


Patent Number 215556
Indian Patent Application Number IN/PCT/2002/200/KOL
PG Journal Number 09/2008
Publication Date 29-Feb-2008
Grant Date 27-Feb-2008
Date of Filing 07-Feb-2002
Name of Patentee PHILLIPS PETROLEUM COMPANY
Applicant Address 4TH AND KELLER, BARTLESVILLE, OK 74004, USA.
Inventors:
# Inventor's Name Inventor's Address
1 SUGHRUE EDWARD L. 6468 CLEAR CREEK LOOP, BARTLESVILLE, OK 74006 USA.
2 BERTUS BRENT J 1318 SWAN DRIVE, BARTLESVILLE, OK 74006-5125, USA.
3 JOHNSON MARVIN M 4413 WOODLAND ROAD, BARTLESVILLE, OK 74006, USA.
4 KHARE GYANESH P 2657 WILLIAM SBURG, BARTLESVILLE, OK 74006, USA.
PCT International Classification Number B01J20/02,20/06,
PCT International Application Number PCT/US00/40609
PCT International Filing date 2000-08-09
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/382,935 1999-08-25 U.S.A.