Title of Invention

6-AMINOMORPHINANE DERIVATIVES, METHOD FOR THE PRODUCTION OF THE SAME

Abstract The invention relates to the compounds of formula (I) which are useful as highly active analgesics.
Full Text This invention relates to 6-amino morphinane derivatives and a method for the production of the same.
This invention relates to a class of 6-amino-morphinan compounds which can be used as highly active analgesics. This invention also relates to their pharmaceutically acceptable salts and easily accessible derivatives (e.g. esters or amides of the amino acid derivatives), to a process for their manufacture and their application in the manufacture of pharmaceutical specialities.
The existence of opioid receptors as receptors of the central nervous system (CNS), which transfer an analgesic effect, has been clearly proven. These receptors are subdivided into three subtypes, p, K and 5. Activation of these receptors by opioids results in an analgesic effect. The activation of the |j receptors causes the highest analgesic effect, whereby particularly morphinans with an oxygen function in position 6 (morphine, oxymorphone, hydromorphone, etc.) are used as effective analgesics. In the past a great deal of work has been invested in the structure-activity relationship studies of this class of substance.
In the Journal of Medicinal Chemistry 1984, 27, pp. 1575-1579 various 14-methoxymorphinan-6-ones with various substituents in position 3 are described. These derivatives exhibit higher analgesic activity than their 14-hydroxy counterparts.
A detailed study of 5-methyloxymorphone (= 14-hydroxy-5-methyldihydromorphinone) is described in Helvetica Chimica Acta (1988, 71, pp. 1801 -1804) which arrives at the result that the introduction of a 5-methyl group reduces the opioid agonistic characteristics of oxymorphone.
A further study on 14-alkoxymorphinan-6-ones is described in Helvetica Chimica Acta 1989, 72, pp. 1233-1239 in which the influence of various substituents in position 3 and of the amino nitrogen was evaluated.
The German disclosure document DE 34 12 727 describes 14-alkoxy-N-methylmorphinan-6-ones (14-0-alkyloxymorphone) with higher activity than their 14-hydroxy counterparts.
Recently the existence of opioid receptors in the periphery has also been detected (e.g. in bones, joints, cartilage, muscles, etc.). It could be shown that analgesia is also imparted via these peripheral opioid receptors (C. Stein, New Engl. J. Med. 1995, 332, pp. 1685-1690). For this, only a slight dose of an opioid (e.g. morphine), which is applied directly into the injured tissue by injection, is necessary. This slight dose does not result in any side effects being imparted by the central nervous system. The analgesic effect has been observed especially during the treatment of inflammation and neuropathic pain (R. Likar et al., Brit. J. Anaesth. 1999, 83, pp. 241-244; V. Kayser et al., Neurosci. 1995, 64, 537-545). The type of application (injection) represents a significant disadvantage of the treatment. Repeated injections into the affected tissue or joint are associated with risks such as bleeding, infections or cartilage damage. Analgesically effective substances, which have only a limited access to the central nervous system (due to the fact that they cannot

ss, or pass only to a very small extent, the blood-brain barrier) and which can be administered stemically or orally, are of great interest.
e object of this invention was to produce highly active analgesics which preferably possess restricted access to the CNS and which preferably act peripherally and not centrally and which also can be preferably systemically or orally administeredySubstances showing promise of success in this connection would be ones which indicate an exclusively peripheral analgesic effect, without the side effects which occur with a centrally acting effect.
This invention solves the object presented above through the object of the independent claims. Preferred embodiments are given in the subclaims.
This invention provides highly active compounds of the formula (I),

in which the substituents have the following meaning:
Ri: hydrogen; Ci-Ce-alkyI; Ca-Cg-alkenyl; C2-C6-alkinyl; Ci-Cg-monohydroxyalkyl; Cz-Ce-dihydroxyalkyI; C3-Ce-trihydroxyalkyi; C4-Ci6-cycioalkylaikyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkyl is Ci-Ce-aikyl; C5-Ci6-cycloalkylalkenyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkenyl is C2-C6-alkenyl; C5-C16-cycloalkylalkinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkinyl is C2-C6-alkinyl; Cr-Cie-arylalkyI, where aryl

is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Cs-Cie-arylalkenyi, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Ca-Cie-arylalkinyi, where aryl is Ce-Cio-ary! and alkinyl is Ca-Ce-alkinyl.
The nitrogen joined with Ri can also be quarternised by two substituents Ri, which can be the same or different and which are defined as previously shown, and where the second, quarternising substituent can also have the meaning hydroxyl, oxyl (N oxide) as well as alkoxyl.
R2, subject to the following definition of X: hydrogen; Ci-Ce-alkyI; C2-C6-alkenyl; C2-C6-alkinyl; Ci-Ce-monohydroxyalkyl; C2-C6-dihydroxyalkyl; Ca-Ce-trihydroxyalkyI; C4-Ci6-cycloalkylalkyl, where cycloalkyi is C3-Cio-cycloalkyl and alkyl is Ci-Ce-alkyI; Cs-Cie-cycioalkylaikenyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkenyl is Ca-Ce-alkenyl; Cs-Cie-cycloalkylalkinyl, wtiere cycloalkyi is Cs-Cio-cydoalkyl and alkinyl is C2-C6-alkinyl; Cz-Cie-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Ca-Cie-aryialkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Cs-Cie-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-C6-alkinyl; C2-C6-alkanoyl; Cs-Ce-alkenoyI; Ca-Ce-alkinoyI; C7-Ci6-arylalkanoyl, where aryl is Ce-Cio-aryl and alkanoyl is Ci-Ce-alkanoyI; Cg-Cig-arylalkenoyl, where aryl is Ce-Cio-aryl and alkenoyl is Ca-Ce-alkenoyI; C9-C16-arylalkinoyl, where aryl is Ce-Cio-aryl and alkinoyl is Cj-Ce-alkinoyl.
R3: hydrogen; Ci-Ce-alkyI; C2-C6-alkenyl; C7-Ci6-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Cs-alkyI; Ca-Cie-arylalkenyl, where aryl is Cs-Cio-aryl and alkenyl is C2-C6-alkenyl; alkoxyalkyl, where alkoxy is Ci-Ce-alkoxy and alkyl is CrCe-alkyl; C02(Ci-C6-alkyl); CO2H; CH2OH.
R4, subject to the following definition of Y: hydrogen; Ci-Cs-alkyI; C2-C6-alkenyl; C2-C6-alkinyl; C4-C16-
cycloalkylalkyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkyl is Ci-Ce-alkyI; Cs-Cie-cycloalkylalkenyl, where
cycloalkyi is Ca-Cio-cycloalkyI and alkenyl is C2-C6-alkenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi is C3-
Cio-cycloalkyl and alkinyl is C2-C6-alkinyl; Cy-Cie-aryialkyI, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI;
Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Cs-Cie-arylalkinyl, where aryl is Cs-
Cio-aryl and alkinyl is C2-C6-alkinyl; C2-Ce-alkanoyl; Ca-Cg-alkenoyl; Ca-Ce-alkinoyI; C7-Cie-arylalkanoyl,
where aryl is Ce-Cio-aryl and alkanoyl is Ci-Ce-alkanoyI; Cg-Cie-arylalkenoyI, where aryl is Ce-Cio-aryl and /
alkenoyl is Ca-Ce-alkenoyI; Cg-Cie-arylalkinoyI, where aryl is Ce-Cio-aryl and alkinoyl is Ca-Ce-alkinoyI; /
iminomethyl, formamidinyl, Ci-Ce-N-alkyl- and N,N"-diaikyiformamidinyl; C2-C6-N-alkenyl- and N,N"- /
dialkenylformamidinyl; C2-C6-N-alkinyl- and N,N"-dialkinylformamidinyl; C4-Ci6-N-cycloalkylalkyl- and N,N"-dicydoalkylalkylformamidinyl, where cycloalkyi is Cs-Cio-cycioalkyl and alkyl is Ci-Ce-alkyl; C5-C16-N-cylcoalkylalkenyl- and N,N"-dicycloalkylalkenylformamidinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkenyl is C2-C6-alkenyl; Cs-Cie-N-cycloalkylalkinyl- and N,N"-dicycloalkylalkinylformamidinyl, where cycloalkyi is C3-Cio-cycioalkyl and alkinyl is C2-C6-alkinyl; Cy-Cie-N-aryialkyI- and N,N"-diarylalkylformamidinyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyl.
R5 and Re, which can be the same or different: hydrogen; Ci-Ce-alkyl; C2-C6-alkenyl; Ca-Ce-alkinyl; C4-Cie- \ cycloalkylalkyi, where cycloalkyi is Ca-Cio-cycloalkyI and alkyl is Ci-Cg-alkyl; Cs-Cie-cycloalkylalkenyl, where ^ cycloalkyi is C3-Cio-cycloalkyl and alkenyl is C2-C6-alkenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi is C3- I Cio-cycloalkyl and alkinyl is C2-Ce-alkinyl; Cr-Cie-arylalkyI, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyl;

C8-Ci6-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Cs-Cie-aryiaikinyl, where aryl is Cg-Cio-aryl and alkinyl is C2-C6-alkinyl; furthermore, R5 and Re, which can be the same or different, CH(A)C02B, where A is hydrogen; hydroxy); Ci-Ce-alkyI; Cj-Ce-alkenyl; C2-C6-alkinyl; C4-Ci6-cycloalkylalkyl, where cycloalkyi is Cs-Cio-cycloalkyI and alky! is Ci-Ce-alkyI; Cs-Cie-cycloaikyiaikenyl, where cycloalkyi is C3-C10-cycloalkyl and alkenyl is Ca-Ce-alkenyl; Cs-Cie-cycioaikylalkinyi, where cycloalkyi is Ca-Cio-cydoalkyl and alkinyl is C2-C6-alkinyl; Cr-Cie-arylalkyi, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Ca-de-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Ca-Cie-arylalkinyl, where aryl is Cg-Cio-aryl and alkinyl is C2-C6-alkinyl; amino; CrCe-alkylamino; guanidino; Ci-Ce-alkyl-COaB; and where B is hydrogen; C1-C30-, preferably Ci-Ce-alkyI; C2-C30-, preferably C2-C6-alkenyl; C2-C30-, preferably C2-C6-alkinyl; C4-C16-cydoalkylalkyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkyl is Ci-Ce-alkyI; Cs-Cie-cycloalkylalkenyl, where cycloalkyi is Ca-Cio-cycloaikyI and alkenyl is C2-C6-aikenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi Is C3-Cio-cycioaikyl and alkinyl is C2-C6-alkinyl; Cr-Cie-arylalkyi, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Cs-Cie-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-C6-alkinyl; phenyl; substituted phenyl; CH20CO-Ci-Ce-alkyl; CH(Ci-C6-alkyl)0C0-Ci-Cs-alkyl; CHaOCOO-Ci-Ce-alkyI; CH(Ci-C6-alkyl)OCOO-Ci-C6-alkyl; CH2CON{Ci-C6-alkyl)2; CH(Ci-C6-alkyl)CON(Ci-C6-alkyl)2; phthalidyl, (5-methyl-2-oxo-1,3-dioxol-4-yt)methyl; furthermore CH(A)S03B, where A and B are defined as above; also R5 and Re, which can be the same or different, can represent iminomethyl, formamidinyl, Ci-Ce-N-alkyI- and N,N"-dialkylformamidinyl; C2-C6-N-alkenyl- and N,N"-dialkenylformamidinyl; C2-C6-N-alkinyl- and N,N"-diaikinylformamidinyl; C4-Ci6-N-cycioaikyialkyl- and N,N"-dicycloalkylalkylformamidinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkyl is Ci-Ce-alkyl; C3-C16-N-cylcoalkylalkenyl- and N,N"-dicycloalkylalkenylformamidinyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkenyl is C2-Ce-alkenyl; Cs-Cie-N-cycloalkylalkinyl- and N,N"-dicycloalkyialkinylformamidinyl, where cycloalkyi is C3-Cio-cycloalkyl and alkinyl is C2-Ce-alkinyl; Cr-Cie-N-arylalkyI- and N,N"-diarylalkylformamidinyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Ca-Cie-N-arylalkenyl- and N,N"-diarylalkenylformamidinyl, where aryl is Ce-Cio-aryl and alkenyl is C2-Ce-alkenyl; Ca-Cie-N-arylalkinyl- and N,N"-diarylalkinylformamidinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-Ce-alkinyl; C2-C7-N-alkyloxycarbonyl- and N,N"-bis(alkyloxycarbonyl)formamidinyl; Ca-Ce-N-alkenyloxycarbonyl- and N,N"-bis(alkenyloxycarbonyl)formamidinyl; Ca-Cs-N-alkinyioxycarbonyi- and N,N"-bis(alkinyloxycarbonyl)formamidinyl; Cs-Cir-N-arylal kyloxycarbonyl- and N,N"-
bis(arylalkyloxycarbonyl)formamidinyl, where aryl is Ce-Cio-aryl and alkyloxy is Ci-Ce-alkyloxy; C9-C17-N-arylalkenyloxycarbonyl- and N,N"-bis(arylalkenyloxycarbonyl)formamidinyl, where aryl is Ce-Cio-aryl and alkenyloxy is C2-C6-alkenyloxy; Cg-Ci7-N-arylalkinyloxycarbonyl-and N,N"-
bis{arylalkinyloxycarbonyl)formamidinyl, where aryl is Ce-Cio-aryt and aikinyloxy is C2-C6-alkinyloxy; C2-C7-N-alkanoyl- and N,N"-dialkanoylformamidinyl; Ca-Cs-N-alkenoyI- and N,N*-dialkenoylformamidinyl; C3-C8-N-alkinoyl- and N,N"-dialkinoylformamidinyl; Cs-Cie-N-arylalkanoyl- and N.N"-diarylalkanoylformamidinyl, where aryl is Ce-Cio-aryl and alkanoyl is C2-C6-alkanoyl; Cg-Cie-N-arylaikenoyl- and N,N"-diarylalkenoylformamidinyl, where aryl is Ce-Cio-aryl and alkanoyl is C3-C6-alkenoyl; Cg-Cie-N-arylalkinoyl-and N.N"-diarylalkinoylformamidinyl, where aryl is Ce-Cio-aryl and alkinoyl is Ca-Ce-alkinoyI; also R5 and Re,

which can be the same or different, can be 4,5-clihydro-1/-/-imidazol-2-yl, 1,4,5,6-tetrahydropyrimidin-; 4,5,6,7-tetrahydro-1 H-[1,3]diazepin-2-yl.
X is oxygen, sulphur or methylene or the group (X-R2) is H.
Y is oxygen or the group (Y-R4) is H.
This invention also includes pharmaceutically acceptable acid addition salts and easily accessible derivatives (e.g. esters or amides of the amino acid derivatives) of the compounds of formula (I).
in this invention the terms aikyi, alkenyl and aikinyl include both branched and also unbranched alkyl, aikenyl and alkinyl groups as well as mono-, di- and trihydroxy-substituted branched and unbranched alkyl, alkenyl and alkinyl groups. Aryl can be unsubstituted or mono-, di- or tri-substituted, whereby the substituents can be chosen independently from hydroxy, halogen, nitro, cyano, thiocyanato, trifluoromethyl, Ci-Ca-aikyI, C1-C3-alkoxy, CO2H, CONH2, C02(Ci-C3-alkyl), C0NH(Ci-C3-alkyl). CON(Ci-C3-alkyl)2, CO{Ci-C3-alkyl); amino; (Ci-C3-monoalkyl)amino, (Ci-C3-dialkyl)amino, Cs-Ce-cycloalkylamino; (Ci-C3-alkanoyl)amido, SH, SO3H, S03(Ci-C3-alkyl), S02(Ci-C3-alkyl), S0(Ci-C3-alkyl), Ci-C3-alkylthio or Ci-C3-aikanoylthio. The definitions listed above for alkyl, alkenyl, alkinyl and aryl are valid for all substituents of this application.
The compounds of this invention contain pharmaceutically and pharmacologically acceptable salts of the compounds of formula (I). According to this invention both inorganic and also organic salts are suitable. Examples of suitable inorganic salts for this invention are hydrochlorides, hydrobromides, sulphates, phosphates and tetrafluoroborates. Possible organic salts are, for example, acetates, tartrates, lactates, benzoates, stearates, pamoates, methane sulphonates, salicylates, fumarates, maleinates, succinates, aspartates, citrates, oxalates, trifluoroacetates and orotates.
Acid addition salts are preferred as conventional pharmaceutically acceptable addition salts, particularly preferred are the hydrochlorides, hydrobromides, tetrafluoroborates and trifluoroacetates. X and Y are preferably oxygen. Preferably Ri is alkyl as defined above, in particular methyl or ethyl, whereby methyl is preferred, or cycloalkylalkyi, preferably cyclopropylmethyl. R2 is preferably not H and also not a group which forms an ester unit with X. The other definitions for R2 as defined in Claim 1 are, in contrast, preferred, whereby especially alkyl as defined above is preferred, particularly preferred are methyl, ethyl and propyl, where necessary substituted, e.g. with a phenyl group, for example to produce a 3-phenylpropyl group (i.e., put differently, an arylalkyi group is also preferred for R2, in particular 3-phenylpropyl). Ri and R2 are especially preferably both simultaneously alkyl, in particular either both simultaneously methyl or methyl (Ri) and ethyl (R2). A further preferred combination of Ri and R2 is cycloalkylalkyi, in particular cyclopropylmethyl for Ri and arylalkyi, preferably phenylpropyl for R2. R3 and R4 are in each case preferably hydrogen or alkyl, whereby methyl is especially preferred as an alkyl group. R4 is in addition preferred as C(N-Boc)(NH-Boc). R5 and Re are preferably chosen such that one is H and the other is different to H, whereby this radical,

different to H, is preferably not halogenated. R5 and Re are preferably selected, independent of one another, from hydrogen, CH2COOC(CH3)3, CH2COOH, CH(CH3)COOC(CH3), CH(CH3)C00H, CH(CH2Ph)COOC(CH3)3, CH(CH2Ph)C00H, C(N-Boc)NH-BOC and C(NH)NH2, whereby Rg is preferably H and R5 is preferably one of the groups mentioned above or is H. Also preferred, R5 and Rg are both H.
In a specially preferred representation X and Y are oxygen. Then preferably, Ri is methyl and cyclopropylmethyl and R2 is alky! and arylalkyi, in particular methyl and 3-phenylpropyl, and R3, R4 and Rg are hydrogen. Preferably, R5 is then chosen as tert.-butoxycarbonylmethyl, hydroxycarbonylmethyl, 2-(tert.-butoxycarbonylethyl), 2-(hydroxycarbonylethyl), 2-(tert.-butoxycarbonyl-1-phenylethyl), 2-(hydroxycarbonyl-2-phenylethyl), hydrogen, benzyl (in this case Re is also a benzyl group), N,N"-bis-(tert.-butoxycarbonyl)formamidinyl and formamidinyl.
In a particularly preferred representation of this invention the compound of the formula I is selected from:
(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6a-ylamino)-aceticacid-tert.-butylester
(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6p-ylamino)-aceticacid-tert.-butylester
(4,5a-epoxy-3-hydroxy-14(3-methoxy-17-methylmorphinan-6a-ylamino)-aceticacid
(4,5a-epoxy-3-hydroxy-14(3-methoxy-17-methylmorphinan-6P-ylamino)-aceticacid
(2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6a-ylamino)-propionicacid-tert.-butylester
(2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6p-ylamino)-propionicacid-tert.-butylester
(2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6a-ylamino)-propionicacid
(2"S)-2"-(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6p-ylamino)-propionicacid
(2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6a-ylamino)-3"-phenylpropionicacid-tert.-butylester
(2"S)-2"-(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6p-ylamino)-3"-phenylpropionicacid-tert.-butylester
(2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6a-ylamino)-3"-phenylpropionicacid (2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6p-ylamino)-3"-phenylpropionicacid

6a-amino-4,5a-epoxy-14p-methoxy-17-methylmorphinan-3-ol
6|3-dibenzylamino-4,5a-epoxy-14(3-methoxy-17-methylmorphinan-3-ol
6(3-amino-4,5a-epoxy-14(3-nnethoxy-17-methylmorphinan-3-ol
4,5a-epoxy-6p-[N,N"-bis-{tert.-butoxycarbonyl)guanidinyl]-14p-methoxy-17-methylmorphinan-3-ol 4,5a-epoxy-6(3-guanidinyl-14p-methoxy-17-methylmorphinan-3-ol
4,5a-epoxy-6a-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyi]-14p-methoxy-17-methylmorphinan-3-ol 4,5a-epoxy-6a-guanidinyl-14(3-methoxy-17-methylmorphinan-3-ol
1,3-bis-(tert.-butoxycarbonyl)-2-{4,5a-epoxy-6p-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyl]-14(3-methoxy-17-methyl nnorphinan-3-yl}-isourea
1,3-bis-(tert.-butoxycarbonyl)-2-{4,5a-epoxy-6a-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyl]-14(3-methoxy-17-methylmorphinan-3-yl}-isourea
(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6a-ylamino)-aceticacid-ethylesterdihydrochloride
(4,5a-epoxy-3-hydroxy-14(3-methoxy-17-methylmorphinan-6p-ylamino)-aceticacid-ethylesterdihydrochloride
(4,5a-epoxy-3-hydroxy-14P-ethoxy-17-methylmorphinan-6a-ylamino)-aceticacid-tert.-butylester
(4,5a-epoxy-3-hydroxy-14p-ethoxy-17-methylmorphinan-6p-ylamino)-aceticacid-tert.-butylester
(4,5a-epoxy-3-hydroxy-14p-ethoxy-17-methylmorphinan-6a-ylamino)-aceticacid bis(tetrafluoroborate)
(4,5a-epoxy-3-hydroxy-14p-ethoxy-17-methylmorphinan-6p-ylamino)-acetic acid bis(tetrafluoroborate)
(2"S)-2"-(17-cyclopropylmethyl-4,5a-epoxy-3,14p-dihydroxymorphinan-6p-ylamino)-3-phenyl-propionicacid-tert.-butylester
(2"S)-2"-(17-cyclopropylmethyl-4,5a-epoxy-3,14p-dihydroxymorphinan-6p-ylamino)-3-phenyl-propionicacid bis(tetrafluoroborate)

{17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14P-[(3-phenylpropyl)oxy]-morphinan-6a-ylamino}-aceticacid-tert.-butylester
{17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14(3-[(3-phenylpropyl)oxy]-morphinan-6a-ylamino}-aceticacid-tert.-butylester
(2"S)-2"-(17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14p-[(3-phenylpropyl)oxy]-morphinan-6a-ylamino)-3-phenylpropionic acid-tert.-butylester
{17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14(3-[(3-phenylpropyl)oxy]-morphinan-6p-ylamino}-aceticacid dihydrochloride.
( It has now been found that the compounds of the pertinent invention represent effective opioid receptor ligands of the type 6-aminomorphinan and exhibit a high therapeutic application potential as analgesics, as immunomodulators with immunostimulating or immunosuppressive effect, as cancer therapeutics, inflammation inhibitors, as anti-rheumatics, diuretics, anorectics, as an agent against diarrhoea, anaesthetics or as neuroprotective active substances, j
(The compounds quoted in the claims are therefore potentially applicable to the treatment of pain, functional intestinal diseases, such as abdominal pain, intestinal obstruction (ileus) or oDStipation, for the treatment of mammals, in particular humans, for the treatment of Raynaud"s disease, for the treatment of complaints caused by vasoconstriction, for the treatment of dysmenorrhoea, angina pectoris, myocardial infarct, emphysema, bronchial spasms, chronic obstructive bronchitis, rheumatic complaints, nephrosis, nephritis in conjunction with rheumatic diseases, for the treatment of tumours, phaeochromocytoma, Addison"s disease, hepatic cirrhosis, chronic inflammation of the small and large intestines (e.g. irritable colon syndrome - colon irritabile, colitis ulcerosa, morbus Crohn), addiction withdrawal of, for example, opiates, cocaine or alcohol, or for the treatment of psychic diseases such as dysphoria or schizophrenia.)
(The compounds of this invention are suitable for application in the production of a medicament for the treatment of pain, including acute and chronic pain, on the locomotor system such as pain in the neck, back, hip, knee, shoulder or myofacial pain, treatment of complex regional pain syndromes, phantom pain, facial neuralgia, rheumatalgia, cancer pain, pain from burns, pain after accidents, pain due to chronic inflammation, visceralgia, headaches such as for example tension headaches, cervically related headache or migraine, pain after central lesions such as for example with paraplegia or thalamic lesions, neuralgic pain such as zoster neuralgia, postzoster neuralgia, ischaemic pain such as angina pectoris or peripheral occlusive arterial disease, postoperative pain, neuropathic pain such as pain with diabetic neuropathy, pain after virus infections or pain after nerve lesions."j

/ or a pharmaceutically acceptable salt of it as active ingredient together with a pharmaceutically acceptable carrier substance, are suitable for the treatment of the conditions quoted in the description.
The application according to the invention includes application as analgesic, immunomodulating, antitumour, antiproliferative, anti-inflammatory, antirheumatic, diuretic, anorectic, antidiarrhoeal, anaesthetic, neuroprotective active substance and as active substance for the prevention and treatment of intestinal obstruction (ileus).
Preferred applications take place for the production of a medicament for the treatment of pain, functional intestinal diseases, of the Raynaud"s disease, for the treatment of complaints caused by vasoconstriction, angina pectoris, myocardial infarct, emphysema, bronchial spasms, chronic obstructive bronchitis, rheumatic complaints (including rheumatoid arthritis, arthrosis, osteoarthritis, spondylosis, lumbago, lupus erythematosus, spondyarthropathy), nephrosis, nephritis in conjunction with rheumatic diseases, for the treatment of tumours, cancer, phaeochromocytoma, Addison"s disease, hepatic cirrhosis, chronic inflammation of the small and large intestines (e.g. irritable colon syndrome - colon irritabile, colitis ulcerosa, morbus Crohn), for the treatment of drug abuse, psychic diseases, erectile dysfunction and / or for the suppression of rejection of transplants after transplantation on mammals, particularly on humans.
Surprisingly it was also found that the compounds of this invention were not capable of overcoming the blood-brain barrier or only to a slight extent, and therefore a special significance could be attributed to them with regard to their application as peripherally effective therapeutics, for example as medicaments for the treatment of pain, rheumatic therapy, suppression of organ rejection after transplantations on mammals, particularly humans and also for the treatment of erectile disturbances. The limited access to the central nervous system is accompanied by a much reduced rate of side effects relating to central side effects such for example nausea, vomiting, sedation, dizziness, confusion, respiratory depression and mania.
In addition, it was surprisingly found that the compounds of this invention have a very long analgesically effective period. This enables a lower dosage and less frequent administration of the medicament, which results in a lower rate of side effects and toxicity as well as a higher readiness of patients to take the medicament.

Production of the compounds
The compounds according to this invention, which are represented by the formula (1), can be obtained with the aid of the following methods:
Starting from thebaine of the formula (11),

this compound is reacted with dialkylsulphates, fluorosulphonic acid alkylesters, alkylsulphonic acid alkylesters, arylsulphonic acid alkylesters, alkylhalogenides, aralkylhalogenides, alkylsulphonic acid aralkylesters, arylsulphonic acid aralkylesters, arylalkenylhalogenides, chloroformic acid esters or similar in solvents such as tetrahydrofuran, 1,2-dimethoxyethane, diethyiether or similar in the presence of a strong base such as n-butyltithium, lithium diethylamide, lithium diisopropylamide or similar at low temperatures (-20°C to -SOX) (see Boden et a!., J. Org. Chem., Vol 47, pp. 1347-1349, 1982; Schmidhammer et al., Helv. Chim. Acta, Vol. 71, pp. 642-647, 1988; Gates et a!., J. Org. Chem., Vol. 54, pp. 972-975, 1984) to obtain the compounds of formula (III), where R3 is d-Ce-alkyl; C2-C6-alkenyl; Cy-Cie-arylalkyI, where aryl is Ce-Cio-aryl

and alkyl is Ci-Ce-alkyI; Ca-Cie-arylalkenyl, where aryl is Ce-Cio-aryi and alkenyl is C2-C6-alkenyl; alkoxyaikyl, where alkoxy is Ci-Ce-alkoxy and alkyl is Ci-Ce-aikyl; COzlCi-Ce-alkyI); CO2H.

The compounds of formula (III) or thebaine (formula (II)) can be converted into the corresponding 14-hydroxycodeinones of formula (IV),

where R3 represents hydrogen; Ci-Ce-alkyI; Cz-Ce-alkenyl; Cr-Cig-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-aikyI; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is Ca-Ce-alkenyl; alkoxyaikyl, where alkoxy is Ci-Ce-alkoxy and alkyl is Ci-Ce-alkyI; C02(Ci-C6-alkyl). This reaction is carried out with performic acid (see H. Schmidhammer et al., Helv. Chim. Acta, Vol. 71, 1801-1804, 1988), m-

chloroperbenzoic acid or similar at temperatures between 0°C and 60°C. The preferred method is the reaction with performic acid at 0°C to 40°C.
These 14-hydroxycodeinones of formula (IV) are following reacted with dialkylsulphates, alkylhalogenides, alkenylhalogenides, alkinylhalogenides, arylalkylhalogenides, arylalkenylhalogenides, arylaikinylhalogenides or chloroformiates in solvents such as N,N-dimethylformamide (DMF) or tetrahydrofuran (THF) in the presence of a strong base such as sodium hydride, potassium hydride or sodium amide in order to obtain the compounds of formula (V),

where R3 is defined as above; and R2 represents hydrogen; Ci-Ce-alkyI; Ca-Ce-aikenyl; Cz-Ce-alkinyl; C4-C16-cycloalkylalkyl, where cycloaikyl is Ca-Cio-cycloalkyI and alkyl is CrCe-alkyl; Cs-Cie-cycioalkylalkenyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkenyl is C2-C6-alkenyl; Cs-CiB-cycloalkylalkinyl, where cycloaikyl is C3-Cio-cycloalkyl and alkinyl is C2-C6-alkinyl; C7-Ci6-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-ary! and alkenyl is C2-C6-alkenyl; Cg-Cig-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-C6-alkinyl; Ci-Ce-alkanoyI; Ca-Ce-aikenoyl; Cs-Cg-alkinoyl; C7-Ci6-arylalkanoyl, where aryl is Ce-Cio-aryl and alkanoyl is CrCe-alkanoyI; Cg-Cis-arylalkenoyI, where aryl is Ce-Cio-aryl and alkenoyl is Ca-Ce-alkenoyI; Cg-Cie-arylalkinoyI, where aryl is Ce-Cio-aryl and alkinoyl is Cs-Ce-alkinoyl.
These compounds are then reduced to compounds of formula (VI) using catalytic hydrogenation via a catalyst such as Pd/C, PdO, Pd/AljOa, Pt/C, Pt02, Pt/AbOa or similar in solvents such as alcohols, alcohol/water mixtures, glacial acetic acid or similar.


where R2 and R3 are defined as above.
The following N-demethylation is carried out with chloroformiates or bromocyanogens in solvents such as 1,2-dichloromethane, chloroform or similar and compounds of the formula (VII) are obtained,

where Ri represents C02CH(CI)CH3, CO2CH = CH2, CO2CH2CCI3, CO2CH2CH3, C02Ph. CN or similar; and R2 and R3 are defined as above.
The carbamates of formula (VII) are split either by reflux heating in alcohols (in the case of 1-chloroethylcarbamates) or by the addition of hydrogen halogenides or halogens followed by reflux heating in alcohols (in the case of vinylcarbamates) and the cyanamides of formula (VII) are obtained by acid or alkali hydrolysis, whereby N-Nor compounds of formula (VIII) are obtained.


in which R2 and R3 are defined as above.
The N-all
where R2 and R3 are defined as above; and Ri represents hydrogen; Ci-Ce-alkyl; C2-C6-alkenyl; C2-C6-alkinyl; C4-Ci6-cycloalkylalkyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkyl is Ci-Ce-alkyI; C5-C16-cydoalkylalkenyl, where cycloalkyi is Ca-Cio-cycloalkyI and aikenyl is C2-C6-alkenyl; Cs-C-ie-cycloalkyialkinyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkinyl is C2-C6-alkinyl; Cy-Cie-arylalkyI, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and aikenyl is C2-C6-alkenyl; Cs-Cie-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-C6-alkinyl.
Ether splitting of these compounds of the formula (IX) with boron tribromide (in a solvent with dichloromethane or chloroform) at 0°C, 48% hydrobromic acid (reflux heating), with sodium alkanthiolates (in

a solvent such as N,N-dimethylformamide) or with other generally well-known ether splitting reagents, gives phenolic compounds of the formula (X),

in which Ri, R2 and R3 are defined as above.
The 3-0 alkylation of the compounds of formula (X) are achieved with aikylhalogenides, dialkylsulphates, alkenylhalogenides, alkinylhalogenides, cycloalkylal kylhalogenides, cycloalkylalkenylhalogenides, arylalkylhalogenides, arylalkenylhalogenides, arylalkinylhalogenides or similar in solvents such as dichloromethane, chloroform, acetone ot N,N-dimethylformamide in the presence of a base such as sodium bicarbonate, potassium carbonate, triethylamine or similar; 3-0 acylation of the compounds of the formula (X) is achieved with carboxylic acid halogenides, carboxylic acid anhydrides or similar in solvents such as dichloromethane, chloroform, acetone or N,N-dimethylformamide, pyridine or similar and therefore compounds of the formula (XI) are obtained,


where Ri, R2 and R3 are defined as above; R4 represents Ci-Ce-alkyI; C2-C6-alkenyl; Ca-Ce-alkinyl; C4-C16-cycloalkylalkyl, where cycloalkyi is Ca-Cio-cycioalkyl and alky! is Ci-Ce-aikyi; Cs-Cig-cycioalkyialkenyl, where cycloalkyi is Ca-Cio-cycloaikyI and alkenyl is C2-C6-alkenyl; Ce-Cie-cycioaikylaikinyi, where cycloalkyi is C3-Cio-cycloalkyl and alkinyl is C2-C6-alkinyl; Cr-Cie-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is C-i-Ce-alkyl; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Cs-Cie-arylalkinyl, where aryl is CQ-Cio-aryl and alkinyl is C2-C6-alkinyl; Ci-Ce-alkanoyI; Ca-Ce-aikenoyl; Ca-Ce-alkinoyi; Cr-Cie-arylalkanoyl, where aryl is Ce-Cio-aryl and alkanoyi is Ci-Cs-alkyl; Cg-Cie-arylalkenoyl, where aryl is Cg-Cio-aryl and alkenoyl is Ca-Cs-alkenoyI; Cg-Cie-arylaikinoyl, where aryl is Ce-Cio-aryl and alkinoyl is Ca-Ce-alkinoyJ.
The compounds of the formula (XI) are reacted with ammonium acetate, primary and secondary amines, hydroxyamine hydrochloride, amino acids, amino acid esters or similar in solvents such as alcohols, N,N-dimethylformamide or toluol and imines of the formula (XII) and iminium salts of the formula (XIII) are

in which Ri, R2, R3 and R4 are defined as above; and R5 and Re, which may be the same or different, represent hydrogen, hydroxyl, Ci-Ce-alkyI; C2-C6-alkenyl; C2-C6-alkinyl; C4-Ci6-cycloalkylalkyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkyl is CrCe-alkyl; Cs-Cis-cycloalkylalkenyi, where cycloalkyi is C3-C10-cycloalkyl and alkenyl is C2-C6-alkenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkinyl is C2-C6-alkinyl; C7-Ci6-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Cs-Cie-arylalkinyl, where aryt is Ce-Cio-aryl and alkinyl is C2-C6-aikinyl; CH(A)C02B, where A is hydrogen; hydroxyl; Ci-Cg-alkyI; Cz-Ce-alkenyl; C2-C6-alkinyl; C4-Ci6-cycloalkylalkyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkyl is Ci-Ce-alkyI; Cs-Cie-cycloalkylalkenyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkenyl is C2-C6-alkenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkinyl is C2-C6-alkinyl; Cy-Cie-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyl; Cs-Cie-arylalkenyl, where aryl is Cg-Cio-aryl and alkenyl is Cs-Cg-alkenyl; Cs-Cie-arylalkinyl, where aryl is Ce-Cio-aryi and alkinyl is Cz-Ce-alkinyl; amino; Ci-Ce-alkylamino; guanidino; Ci-Cg-alkylguanidino; Ci-Cg-alkyl-C02B; and B represents hydrogen; Ci-Ce-alkyI; Cz-Ce-alkenyl; C2-C6-alkinyl; C4-Ci6-cycloalkylalkyl,

lere cycloalkyi is Ca-Cio-cycloalkyI and alkyl is CrCe-aikyi; Cs-Cie-cycloalkylaikenyl, wliere cycioalkyi is C3-lo-cycloalkyl and aikenyl is C2-C6-alkenyl; Cs-Cie-cycloaikylalkinyi, where cycloalkyi is Cs-Cio-cycloalkyI and 18 reduction of the imines and iminium salts occurs with complex metal hydrides such as lithium aluminium "dride, lithium boron hydride, sodium boron hydride and sodium cyanoboron hydride or similar in alcohols, th borane tetrahydrofuran or similar in tetrahydrofuran (THF), with cyclohexene or cyclohexadien or similar the presence of a hydrogenating catalyst such as Pd/C, with hydrogen in the presence of a hydrogenation catalyst such as Pd/C, PdO, Pd/AbOa, Pt/C, Pt/C (sulphidised), PtO?, Pt/AlzOj, Rh/C, Rh/AbOaor similar in solvents such as alcohols, glacial acetic acid or similar and the corresponding amines of formula (XiV) are obtained,
in which Ri, R2, R3 and R4 are defined as above; and R5 and Re, which may be the same or different, represent hydrogen; Ci-Ce-alkyI; C2-C6-aikenyl; Cz-Ce-alkinyl; C4-Ci6-cycloalkylalkyl, where cycloalkyi is C3-Cio-cycloalkyl and alkyl is Ci-Ce-alkyI; Cs-Cie-cydoalkylalkenyl, where cycloalkyi is Ca-Cio-cycloalkyI and aikenyl is C2-C6-alkenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkinyl is C2-C6-alkinyl; Cz-Cie-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Cs-Cie-arylalkenyi, where aryl is Ce-Cio-aryl and aikenyl is C2-C6-alkenyl; Ce-Cie-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is Ca-Ce-alkinyl; CH(A)C02B, where A is hydrogen; hydroxyl; Ci-Ce-alkyI; Ca-Ce-alkenyl; C2-C6-alkinyl; C4-Cie-cycloalkylalkyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkyl is Ci-Ce-alkyl; Cs-Cie-cycloalkylalkenyl, where cycloalkyi is C3-Cio-cycloalkyl and aikenyl is C2-Ce-alkenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkinyl is C2-C6-alkinyl; C7-Ci6-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Cg-alkyl; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and aikenyl is Cz-Ce-alkenyl; Ca-Cie-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-C6-alkinyl; amino; Ci-Ce-alkylamino; guanidino; Ci-Ce-alkylguanidino; Ci-C6-alkyl-C02B; and B represents hydrogen; Ci-Ce-aikyI; C2-Ce-aikenyl; Ca-Ce-alkinyl; C4-Ci6-cycloalkylalkyl, where cycloalkyi is C3-Cio-cycloalkyl and alkyl is Ci-Ce-alkyl; Cs-Cie-cycloalkylalkenyl, where cycloalkyi is Cs-Cio-cycloalkyI and aikenyl is C2-Ce-alkenyl; Cs-Cig-cycloalkylalkinyl, where cycloalkyi is C3-Cio-cycloalkyl and alkinyl is C2-C6-

alkinyl; Cr-Cie-arylalkyI, where aryl is Cg-Cio-aryl and alkyl is Ci-Cg-aikyl; Ca-Cie-aryiaikenyl, where aryl is Cg-Cio-aryl and alkenyl is C2-C6-alkenyl; CB-Cie-aryialkinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-C6-alkinyl. These compounds correspond to the compounds of formula (I) according to the invention,

where Ri, R2, R3, R4, R5 and Re are defined as above and X and Y are oxygen.
If R5 and Re in the compounds of formula (I) according to the invention are hydrogen and X and Y oxygen, these 6-amino compounds of formula (XV),

in which Ri, R2, R3 and R4 are defined as above, can be reacted with guanidination agents such as N,N"-bis-(tert.-butoxycarbonyl)-S-methylisothiourea in the presence of salts such as mercury(ll) chloride, silver nitrate or similar as well as bases such as triethylamine, N-ethyldiisopropylamine or similar in solvents such as N,N-dimethylformamide or similar and, depending on the amount of guanidination agent used, either compounds of formula (XVI) or compounds of formula (XVIa) are obtained.


in which Ri, R2, R3 and R4 are defined as above; and R5 and Re, which may be the same or different, represent hydrogen; a protective group such as for example tert.-butoxycarbonyl (Boc) or benzyloxycarbonyl (Z); C2-C7-all The following splitting of the protective groups (R5, Re) with acids such as hydrohalic acids, trifluoroacetic acid, tetrafluoroboric acid or similar in solvents such as dichloromethane, diethylether, alcohols, alcohol/water mixtures or similar produces the 6-guanidinyl compounds of formula (XVII),


in which Ri, R2, R3 and R4 are defined as above. These compounds correspond to the compounds of formula (I) according to the invention, in which Ri, R2, R3 and R4 are defined as above and R5 is formamidinyl, Re hydrogen, X and Y oxygen.
If R5 and Re are hydrogen in the compounds of fornnula (I) according to the invention and X and Y are oxygen, these 6-amino compounds of formula (XV),

in which Ri, R2, R3 and R4 are defined as above, e.g. with N-acyl-2-(methylmercapto)-2-imidazoline (which can be easily represented by commercially available 2-(methylmercapto)-2-imidazoline hydro-iodide; see Mundia et al.. Tetrahedron Lett., Vol. 41, p. 6563, 2O00) or similar can be reacted in solvents such as acetic acid, acetic acid / ethanol 1:10; acetic acid / isopropanol 1:10 or similar and the compounds of formula (XVIII) obtained.


in which Ri, R2, R3 and R4 are defined as above; and R5 is hydrogen; a protective group such as for example tert.-butoxycarbonyl (Boc) or benzyloxycarbonyl (Z); C2-C7-alkyloxycarbonyl; Ca-Cs-aikenyioxycarbonyi; C3-Cs-aikinyloxycarbonyl; Ca-Cu-aryiaikyioxycarbonyl, where aryl is Ce-Cio-aryl and alkyloxy is Ci-Ce-aikyioxy; C9-Ci7-arylalkenyloxycarbonyl, where aryl is Ce-Cio-aryl and alkenyloxy is C2-C6-alkenyloxy; C9-C17-arylalkinyloxycarbonyl, where aryl is Ce-Cio-aryl and alkinyloxy is C2-C6-alkinyloxy; C2-C7-alkanoyl; C8-C17-aralkanoyl, where aryl is Ce-Cio-aryl and alkyl is C2-C7-alkyl; Ci-Ce-alkyI; C2-C6-alkenyl; C2-C6-alkinyl; C4-C16-cycloalkylalkyl, where cycloalkyi is Ca-Cio-cycloalky! and alkyl is Ci-Ce-alkyI; Cs-Cie-cycioalkylaikenyl, where cycloalkyi is Ca-Cio-cycioalkyl and alkenyl is C2-C6-alkenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi is C3-Cio-cycloalkyl and alkinyl is C2-C6-alkinyl; Cy-Cie-arylalkyI, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyl; Ca-Cie-arylalkenyi, whereby aryl is Ce-Cio-aryl and alkenyl is C2-C6-aikenyl; Cs-Cie-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-Ce-alkinyl; n is a number between 2 and 4.
The following splitting of the protective group (R5) takes place by reflux heating of the compounds of formula (XVIII) in solvents such as acetic acid/ethanol 1:10, acetic acid / isopropanol 1:10, methanol/water 3:1 or similar and the compounds of formula (XIX) are obtained,


in which Ri, R2, R3 and R4 are defined as above; n is a number between 2 and 4. These compounds correspond to the compounds of the formula (I) according to the invention, in which Ri, R2, R3 and R4 are defined as above, R5 is either 4,5-dihydro-1/-/-imidazol-2-yl (n = 2), 1,4,5,6-tetrahydropyrimidine-2-yl (n = 3) or 4,5,6,7-tetrahydro-1H-[1,3]diazepine-2-yl (n = 4), Re is hydrogen and X and Y are oxygen.
An alternative path starts with compounds of formula (XX), in which Ri and R3 are defined as above (see, for example, formula IX) (see Weiss et al., J. Amer. Chem. Soc, Vol. 11, p. 5891, 1955; lijima et al., J. Med. Chem., Vol. 21, pp. 398-400, 1978; Coop et ai., J. Org. Chem., Vol. 63, pp. 4392-4396, 1998; Schmidhammer et al., Helv. Chim. Acta, Vol. 71, pp. 1801-1804, 1988; Schmidhammer et al., Helv. Chim. Acta, Vol. 73, pp. 1986-1990, 1990).

The ketones of formula (XX) are reacted in the presence of an acid such as methane sulphonic acid or similar with ethylene glycol (as reagent and solvent) to form the compounds of formula (XXI),


in which R-, and R3 are defined as above.
The introduction of a 3-0 protective group in compounds of formula (XXI) is achieved, for example, with benzyl halogenides or triaikyi halogen siianes in solvents such as dichloromethane, chloroform, acetone or N,N-dimethylformamide or similar in the presence of a base such as sodium bicarbonate, potassium carbonate, triethylamine or similar and therefore compounds of the formula (XXII) are obtained,

where Ri and R3 are defined as above; R4 is a protective group such as benzyl, tri-(Ci-C6-alkyl)silyl or tris-(C7-Ci6-arylalkyl)silyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyl.
These 14-hydroxy compounds are following reacted with dialkylsulphates, alkylhalogenides, alkenylhalogenides, alkinylhalogenides, arylalkylhalogenides, arylaikenylhalogenides, arylalkinylhalogenides or chloroformiates in solvents such as N,N-dimethylformamide (DMF) or tetrahydrofuran (THF) in the presence of a strong base such as sodium hydride, potassium hydride or sodium amide to obtain the compounds of formula (XXIII),


where R,, R2 and R3 are defined as above (see, for example, formula (IX)), R4 is defined as in formula (XXII). If R2 and R4 are benzyl, compounds of the formula (XXI) can be directly reacted with two equivalents of benzyl bromide in DMF in the presence of sodium hydride, forming 3,14-0-dibenzyl derivatives of the formula (XXIII), in which R2 and R4 are benzyl and Ri and R3 are defined as above.
The acidic splitting of the 3-0 protective group and the keta! function of the compounds with the formula (XXIII) is carried out in one step with an acid such as hydrochloric acid in methanol, tetrafluoroboric acid in dichloromethane, trifluoroacetic acid and compounds of the formula (X) are obtained (see 1st route),

in which Ri, R2 and R3 are defined as above.
Alternatively to this, if R4 in the compounds of formula (XXIII) is benzyl, one can, through hydrogenolysis of
the 3-0-benzyl binding with hydrogen gas in the presence of a catalyst such as Pd/C, PdO, Pd/Al203, Pt/C,

followed by acid hydrolysis of the ketal function in position 6 with, for example, methanol and concentrated hydrochloric acid obtain compounds of the formula (X).
The compounds of the formula (X) are reacted corresponding the first scheme via the compounds of the formulae (XI) to (XIV) to the compounds of formula (I) according to the invention.
The following examples describe the manufacture of the compounds according to the invention in detail.
Example 1
Synthesis of (4,5a-epoxy-3-hydroxy-14p-methoxy-1 7-methylmorphinan-6a-ylamino)-acetic acid-tert.-butylester (Compound 1) and (4,5a-epoxy-3-hydroxy-14(3-methoxy-17-methylmorphinan-6|3-ylamino)-acetic acid-tert.-butylester (Compound 2).

A solution of 14-O-methyloxymorphone hydrobromide (H. Schmidhammer et al., Helv. Chim. Acta 1990, Vol. 71, pp. 1179-1783) (2.36 g, 5.96 mmol) and glycine-tert.-butylester hydrochloride (1.11 g, 6.62 mmol) in absolute MeOH (100 ml) was stirred for 1 hour under N2 at room temperature. Then a solution of NaCNBHa (0.55 g, 8.75 mmol) in MeOH (50 ml) was added in drops over 20 min. and the solution stirred further under N2 at room temperature. After 19 h H2O (20 ml) was added and the mixture evaporated. The residue was

mixed wnn n2U ^"^uu mi;, aiKaiizea wim concentraiea ammonia, saturated with NaCI and extracted with Et20 (1 X 100 ml, 3 X 50 ml). The combined organic phases were washed with H2O (1 x 200 ml) and saturated NaCI solution (1 x 200 ml), dried (Na2S04) and evaporated. The aqueous phase was extracted with CH2Cl2/i-PrOH 4:1 (1 x 100 ml, 3 x 50 ml). The combined organic phases were treated in the same way as the ether phase described above. From the 1st extraction (Et20) 1.05 g of a yellow oil were obtained, containing the two products (Compound 1 and Compound 2). From the second extraction (CH2Cl2/i-PrOH) 0.72 g of a yellow oil were obtained, containing, apart from the two products, also the corresponding 6-hydroxy derivatives. The two products were separated and purified by MPLC (p = 5 bar, silica gel 60, CH2CI2/ MeOH 10:1).
Compound 1: Yield: 0.28 g (11%) of orange foam resin. IR (KBr): 3407 (OH), 1731 (C = O) cm"^ ^H-NMR (CDCI3): 6 6.66 (d, J = 8.1, 1 arom. H); 6.48 (d, J = 8.1, 1 arom. H); 5.05 (s, br, 0H-C(3), -NH-C(6)); 4.65 (d, J = 3.6, H-C(5)); 3.42(s. C(6)-NH-CH,-): 3.21 (s, CH30-C(14)); 2.36(s, CH3N); 1.43(s, -COOC(CH3)3); CI-MS: m/z431 (M" + 1).
Compound 2: Yield: 0.63 g (24%) of yellow foam resin. IR (KBr): 3421 (OH), 1729 (C = O) cm"^ ^H-NMR (CDCI3): 5 6.68 (d, J = 8.0, 1 arom. H); 6.53 (d, J = 8.0, 1 arom. H); 4.71 (s, br, 0H-C(3), C(6)-NH-); 4.47 (d, J = 7.0, H-C(5)); 3.48 (d, J = 17.3, 1 H, C(6)-NH-Cli-); 3.32 (d, J = 17.3, 1 H, C(6)-NH-CH2-); 3.19 (s, CH3O-C(14)); 2.42 (s, CH3N); 1.42 (s, -C00C(CH3)3); CI-MS: m/z 431 (M" + 1).
Example 2
Synthesis of (4,5a-epoxy-3-hydroxy-14(3-methoxy-1 7-methylmorphinan-6a-ylamino)-acetic acid sesqui(trifluoroacetate) (Compound 3 • 1,5 TFA).

A mixture of compound 1 (0.18g,0.42 mmol) and 30% trifuuoroacetic acid (TFA) in ch2cl2 (7ml) was stirred













out of i-PrOH / Et20 / MeOH. The expected bis(trifluoroacetate) is not obtained, but instead tine sesqui(trifluoroacetate), which has been proven by several elementary analyses. Yield 0.13 g (57%) of beige 3-1,5 TFA: Fp > 190°C (Brkd.); IR (KBr): 3428 (OH), 1677 (C = 0) cm""; "H-NMR (D2O); 6 6.90 (d, J = 8.4, 1 arom. H); 6.81 (d, J = 8.4, 1 arom. H); 4.47 (dd, ^J = 3.0, "j = 1.0, H-C(5)); 3.87 (d, J = 1.4, C(6)-NH-CH2-); 3.35 (s, CH30-C(14)); 2.94 (s, CH3N); ESI-MS: m/z 375 (M"" + 1).
Example 3
Synthesis of (4,5a-epoxy-3-hydroxy-14(3-methoxy-17-methylmorphinan-6(3-ylamino)-acetic acid sesqui(trifluoroacetate) (Compound 4-1,5 TFA).


A mixture of Compound 2 (0.30 g, 0.70 mmol) and 30% trifluoroacetic acid (TFA) in CH2CI2 (11 ml) was stirred at room temperature for 5 li and then evaporated. The residue (0.43 g of yellow foam resin) was crystallised out of i-PrOH / EtaO / MeOH. The expected bis(trifluoroacetate) is not obtained, but instead the sesqui(trifluoroacetate), which has been proven by several elementary analyses. Yield 0.21 g (55%) of beige 4 210°C (Brkd.); IR (KBr): 3419 (OH), 1677 (C = 0) cm"\- ^H-NMR (D2O): 6 6.89 (d, J = 8.6, 1 arom. H); 6.83 (d, J = 8.6, 1 arom. H); 4.90 (d, J = 7.8, H-C(5)); 4.04 (s, C(6)-NH-CH2-); 3.32 (s, CH3O-C(14)); 2.91 (s, CH3N); ESI-MS: m/z 375 (M^ + 1).
Example 4
Synthesis of (2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6a-ylamino)-propionic acid-tert.-butylester (Compound 5) and (2"S)-2"-(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6p-ylamino)-propionic acid-tert.-butylester (Compound 6).

A mixture of 14-0-methyloxymorphone hydrobromide (H. Schmidhammer et al. Helv. Chim. Acta 1990, Vol. 71, pp. 1779-1783) (2.54 g, 6.41 mmol), L-aianine-tert.-butyiester hydrochloride (1.75 g, 9.63 mmol).

absolute EtOH (150 ml), N-ethyldiisopropylamine (2.8 ml, 16.07 mmol) and molecular sieve (2.8 g) was stirred for 5 h under N2 at room temperature. Then a solution of NaCNBHa (0.51 g, 8.12 mmol) was added drop by drop to EtOH (20 ml) over 20 min. and the solution stirred further under N2 at room temperature. After two days H2O (5 ml) was added and the mixture evaporated. The residue was mixed with H2O (200 ml) and extracted with Et20 (2 x 100 ml, 2 x 50 mi). The combined organic phases were washed with saturated NaCI solution (1 x 200 ml), dried (Na2S04) and evaporated. The aqueous phase was extracted with CH2CI2 (2 x 100 ml, 2 x 50 ml). The combined organic phases were treated in the same way as the ether phase. From the first extraction (Et20) 1.34 g of a yellow oil were obtained, containing the two products (Compound 5 and Compound 6). From the second extraction (CH2CI2) 0.68 g of a yellow oil were obtained, containing, apart from the two products, also the corresponding 6-hydroxy derivatives. The two products were separated and purified by MPLC (p = 5 bar, silica gel 60, CH2CI2/ MeOH 10:1). Compound 5 was crystallised out of methanol and only an analytical amount (50 mg) of Compound 6 could be crystallised out of i-PrOH, the residue (0.75 g) was obtained as a white foam resin.
Compound 5: Yield: 0.32 g (11%) of colourless crystals: Fp 196-200°C; IR (KBr); 3203 (OH), 1729 (C = O) cm ■"; ^H-NMR (CDCI3): 6 6.69 (d, J = 8.2, 1 arom. H); 6.47 (d, J = 8.2, 1 arom. H); 4.70 (d, J = 3.2, H-C(5)); 3.55 (q, J = 6.8, C(6)-NH-CH(CH3)-); 3.19 (s, CH30-C(14)); 2.35 (s, CH3N); 1.47(s, -COOC(CH3)3); 1 26 (d, J = 6.8, C(6)-NH-CH(CH3)-); CI-MS; m/z 445 (M* + 1).
Compound 6: Yield: 0.80 g (24%) of colourless crystals and white foam resin: Fp 235-240°C (Brkd.); IR (KBr): 3423 (OH), 1722 (C = O) cm""; ""H-NMR (CDCI3): 5 6.69 (d, J = 8.0, 1 arom. H); 6.54 (d, J = 8.2, 1 arom. H); 4.39 (d, J = 7.2, H-C(5)); 3,32 (q, J = 7.0, C(6)-NH-CH(CH3)-); 3.20 (s, CH30-C(14)); 2.39 (s, CH3N); 1.41 (s, -COOC(CH3)3); 1.26 (d, J = 6.8, C(6)-NH-CH(CH3)-); CI-MS: m/z 445 (M" + 1).
Example 5
Synthesis of (2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6a-ylamino)-propionic acid bis(tetrafluoroborate) (Compound 7 • 2 HBF4).


A solution of Compound 5 (0.30 g, 0.70 mmol) in CH2CI2 (3 ml) was mixed with 54% tetrafluoroboric acid (HBF4) in Et20 (0.33 ml, 2.39 mmol) and the mixture subjected to ultrasound for 1 h at room temperature. The resulting precipitate was filtered off and dried. Yield 0.21 g (79%) of white 7 > 2 HBF4: Fp > 290°C (Brkd.); IR (KBr): 3423 (OH), 1741 (C = O), 1064 (B-F) cm"\- ^H-NMR (D2O): 6 6.90 (d, J = 8.0, 1 arom. H); 6.81 (d, J = 8.0, 1 arom. H); 5.02 (d, J = 2.8, H-C(5)); 4.24 (q, J = 7.0, C(6)-NH-CIH(CH3)-); 3.35 (s, CH3O-C(14)): 2.94 (s, CH3N); 1.63 (d, J = 7.0, C(6)-NH-CH(CH3)-).
Example 6
Synthesis of (2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6p-ylamino)-propionic acid bis(tetrafluoroborate) (Compound 8 • 2 HBF4).


Compound 8
A solution of Compound 6 (0.25 g, 0.56 mmol) in CH2CI2 (4 ml) was mixed with 54% tetrafluoroboric acid (HBF4) in Et20 (0.39 ml, 2.85 mmol) and the mixture subjected to ultrasound for 1 h at room temperature. The resulting precipitate was filtered off and dried. Yield 0.28 g (89%) of white 8 • 2 HBF4: Fp > 290°C (Brkd.); IR (KBr): 3423 (OH), 1720 (C = 0), 1083 (B-F) cm"; "H-NMR (D2O): 6 6.87 (s, 2 arom. H); 4.86 (d, J = 7.6, H-C(5)); 4.31 (q, J = 7.0, C(6)-NH-CH(CH3)-); 3.33 (s, CH30-C(14)); 2.92 (s, CH3N); 1.58 (d, J = 7.0, C(6)-NH-CH(CH3)-).
Example 7
Synthesis of (2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6a-ylamino)-3"-phenylpropionic acid-tert.-butylester (Compound 9) and (2"S)-2"-(4,5a-epoxy-3-hydroxy-14(3-methoxy-17-methylmorphinan-6p-ylamino)-3"-phenylpropionic acid-tert.-butylester (Compound 10).


A mixture of 14-0-methyloxymorphone hydrobromide (H. Schmidhammer et al., Helv. Chim. Acta 1990, Vol. 71, pp. 1779-1783) (2.70 g, 6.81 mmol), L-phenylalanine-tert.-butylester hydrochloride (2.74 g, 10.63 mmol), absolute EtOH (150 ml), N-ethyldiisopropylamine (3.04 ml, 17.49 mmol) and molecular sieve (3.0 g) was stirred for 2.5 h under N2 at room temperature. Then a solution of NaCNBHa (0.47 g, 7.48 mmol) added drop by drop to EtOH (20 ml) over 20 min. and the solution stirred further under N2 at room temperature. After three days H2O (10 ml) was added and the mixture evaporated. The residue was mixed with H2O (300 ml) and extracted with CH2CI2 (1 x 100 ml, 4 x 50 ml). The combined organic phases were filtered through Celite, washed with saturated NaCI solution (1 x 200 ml), dried (Na2S04) and evaporated. 3.96 g of a yellow oil were obtained from which the two products were each obtained in pure form using MPLC (p = 5 bar, silica gel 60, CH2CI2/ MeOH 10:1). 0.68 g of the initial compound (14-0-methyloxymorphone) were retrieved as a brown foam resin.
Compound 9: Yield: 0.34 g (10%) of orange foam resin: IR (KBr): 3336 (OH), 1725 (C = O) cm"\ ^H-NMR (CDCI3): 6 7.31-7.17 (m, 5 arom. H); 6.71 (d, J = 8.0, 1 arom. H); 6.47 (d, J = 8.0, 1 arom. H); 4.71 (d, J = 3.2, H-C(5)); 3.77-3.69 (m, C(6)-NH-CH(CH2Ph)-); 3.12 (s, CH30-C(14)); 2.94-2.90(m, C(6)-NH-CH(CH2Ph)-); 2.35 (s, CH3N); 1.32 (s, -COOC(Chb)3); CI-MS: m/z 521 (M" + 1).
Compound 10: Yield: 0.81 g (23%) of orange foam resin: IR (KBr): 3409 (OH), 1724 (C = O) cm"\ ^H-NMR (CDCI3): 5 7.29-7.17 (m, 5 arom. H); 6.70 (d, J = 8.0, 1 arom. H); 6.54 (d, J = 8.0, 1 arom. H); 4.39 (d, J = 7.4, H-C(5)); 3.51-3.43 (m, C(6)-NH-CH(CH2Ph)-); 3.20 (s, CH30-C(14)); 2.98-2.78(/77, C(6)-NH-CH(CH2Ph)-); 2,44 (s, CH3N); 1.28 (s, -COOC(CH3)3); CI-MS: m/z 521 (M* + 1).
Example 8
Synthesis of (2"S)-2"-(4,5a-epoxy-3-hydroxy-14(3-methoxy-17-methylmorphinan-6a-ylamino)-3"-phenylpropionic acid bis(tetrafluoroborate) (Compound 11-2 HBF4).


Compound 11
A solution of Compound 9 (0.16 g, 0.31 mmol) in CH2CI2 (3 ml) was mixed with 54% tetrafluorobonc acid (HBF4) in Et20 (0.25 ml, 1.81 mmol) and the mixture subjected to ultrasound for 30 min. at room temperature. Then the mixture was evaporated, the residue (0.21 g orange coloured oil) dissolved in H2O and freeze dried. Yield 0.18 g (90%) of white lyophilisate: ""H-NMR (D2O): 5 7.46-7.35 (m, 5 arom. H); 6.86 (d, J = 8.2, 1 arom. H); 6.77 (d, J = 8.2, 1 arom. H); 4.90 (d, J = 3.4, H-C(5)); 4.46 (t, J = 6.8, C(6)-NH-CH(CH2Ph)-); 3.35 (d, J = 6.8, C(6)-NH-CH(CH2Ph)-); 3.25 (s, CH30-C(14)); 2.90 (s, CH3N).
Example 9
Synthesis of (2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6p-ylamino)-3"-phenylpropionic acid bis(tetrafluoroborate) (Compound 12-2 HBF4).


Compound 12
A solution of Compound 10 (0.41 g, 0.79 mmol) in CH2CI2 (5 ml) was mixed with 54% tetrafluoroboric acid (HBF4) in Et20 (0.60 ml, 4.35 mmol) and the mixture subjected to ultrasound for 30 min. at room temperature. Then the mixture was evaporated, the residue (0.54 g orange coloured oil) dissolved in H2O and freeze dried. Yield 0.46 g (90%) of white lyophilisate: ^H-NMR (D2O): 5 7.28 (s, 5 arom. H); 6.88 (d, J = 8.4, 1 arom. H); 6.81 (d, J = 8.4, 1 arom. H); 4.83 (d, J = 7.6, H-C(5)); 4.54 (t, J = 7.0, C(6)-NH-CH(CH2Ph)-); 3.25 (s, CH30-C(14)); 2.86 (s, CH3N).
Example 10
Synthesis of 6a-amino-4,5a-epoxy-14P-methoxy-17-methylmorphinan-3-ol (Compound 13).


A mixture of 14-O-methyloxymorphone hydrobromide (H. Sch mid hammer at al., Helv. Chim. Acta 1990, Vol. 71, pp. 1779-1783) (6.22 g, 15.70 mmol), ammonium acetate (12.00 g, 156 mmol), NaCNBHa (0.81 g, 7.64 mmol) and absolute MeOH (100 ml) were stirred for 23 h under N2 at room temperature. Then the solution acidified (beige precipitate) with concentrated HCI and the mixture evaporated. The residue was dissolved in H2O (550 ml) and extracted with CH2CI2 (1 x 200 ml) for removal of the components insoluble in water. The aqueous phase was alkalized with cone, ammonia, saturated with NaCI and extracteo with CH2CI2 / i-PrOH 4:1 (2 X 250 ml, 3 x 125 ml). The combined organic phases were washed with saturated NaCI solution (1 x 200 ml), dried (Na2S04) and evaporated. The evaporation residue (beige crystals) was recrystallised out of methanol. Yield: 1.95 g (39%) of white powder: Fp > 300""C (Brkd); IR (KBr): 3421 (OH) cm"^ ^H-NMR (Me2SO-d6): 5 6.55 (d, J = 8.0, 1 arom. H); 6.29 (d, J = 8.0, 1 arom. H); 4.33 (dd, ^J = 4.0, ""j = 0.8, H-C(5)); 3.38 (s, br, OH-C(3), NH2-C(6)); 3.13 (s, CH30-C(14)); 2.24 (s, CH3N); CI-MS: m/z 317 (M* + 1).
Example 11
Synthesis of 6p-dibenzylamino-4,5a-epoxy-14(3-methoxy-17-methylmorphinan-3-ol (Compound 14).


Compound 14
A solution of 14-O-methyloxymorphone hydrobromide (H. Schmidhammer et al., Helv. Chim. Acta 1990, Vol. 71, pp. 1779-1783) (2.00 g, 5.05 mmol) in MeOH / H2O 9:1 (80 ml) was mixed with silver benzoate (1.17 g, 5.11 mmol) and stirred for 90 min. at 40°C. The resulting precipitate of silver bromide was filtered off and the filtrate evaporated. The residue was mixed with EtOH / toluol 2:3 (50 ml) and the solvent drawn off. In this way 2.35 g of 14-O-methyloxymorphone benzoate were obtained as a yellow foam resin. This was mixed with toluol (250 ml), benzoic acid (0.93 g, 7.62 mmol), dibenzyiamine (1.49 g, 7.54 mmol) and the tip of a spatula of p-toluol sulphonic acid monohydrate and the mixture was reflux heated for 20 h with the application of a water separator. Then the solution was reduced to a volume of 50 ml, absolute EtOH (220 ml), NaCNBHa (0.30 g, 4,77 mmol) and a molecular sieve were added and the solution stirred for 6 hours under N2 at room temperature. The mixture was diluted with MeOH (100 ml), filtered and the filtrate evaporated. The residue was mixed with H2O (550 ml), alkalized with cone, ammonia, and extracted with CH2CI2 (1 X 200 ml, 3 x 100 ml). The combined organic phases were washed with H2O (5 x 300 ml) and saturated NaCI solution (1 x 200 ml), dried (Na2S04) and evaporated. The evaporation residue (2.42 g of brown oil) was crystallised out of methanol. Yield: 1.43 g (57%) of beige crystals: Fp 124-128°C; IR (KBr): 3178 (OH) cm"""; ^H-NMR (CDCI3): 5 7.45-7.20 (m, 10 arom. H); 6.56 (d, J = 8.1, 1 arom. H); 6.44 (d, J = 8.1, 1 arom. H); 4.72 (d, J = 6.8, H-C(5)); 3.87 (d, J = 14.0, 2 H, (PhCH2)2N-C(6)); 3.61 (d, J = 14.0, 2 H, (PhCH2)2N-C(6)); 3.20 (s, CH30-C(14)); 2.34 (s, CH3N); CI-MS: m/z 497 (M^ + 1).
Example 12
Synthesis of 6|3-amino-4,5a-epoxy-14|3-methoxy-17-methylmorphinan-3-ol (Compound 15).


Compound 15
A mixture of Compound 14 (1.02 g, 2.05 mmol), 10% Pd/C catalyst (0.52 g), cyclohexene (30 ml) and absolute MeOH (30 ml) were reflux heated for 16 hours under N2. Then the catalyst was filtered off and the filtrate evaporated. The residue (0.66 g of white foam resin) was crystallised out of i-PrOH / Et20 1:1 (2ml). Yield: 0.33 g (42%) of beige crystals: Fp > 235-239°C; IR (KBr): 3348 (OH) cm"\- ^H-NMR (CDCI3): 6.62 {d, J = 8.0, 1 arom. H); 6.54 {d, J = 8.0, 1 arom. H); 4.26 (d, J = 7.0. H-C(5)); 3.22 (s, CH30-C(14)); 2.36 (s, CH3N); CI-MS: m/z 317 (M* + 1).
Example 13
Synthesis of 4,5a-epoxy-6(3-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyl]-14p-methoxy-17-methylmorphinan-3-ol (Compound 16).


Compound 16
A solution of Compound 15 (0.94 g, 2.97 mmol), N,N"-bis-(tert.-butoxycarbonyl)-S-methylisothiourea (0.92 g, 3.17 mmol) and N-ethyldiisopropylamine (0.58 ml, 3.33 mmol) in absolute N,N-dimethylformamide (40 ml) was mixed with silver nitrate (0.54 g, 3.18 mmol) and the mixture stirred for 4 hours. Then the silver mercaptane was filtered off through Celite and washed afterwards with CH2CI2 (4 x 50 ml). The filtrate was washed with H2O (10 x 150 ml) and saturated NaCI solution (2 x 150 ml), dried (Na2S04) and evaporated. In this way 1.46 g of a yellow foam resin was obtained which was purified through MPLC (p = 5 bar, silica gel 60, CH2CI2 / MeOH / cone, ammonia 95:4, 5:0.5). Yield: 0.77 g (46%) of green foam resin: ^H-NMR (CDCI3): 5 11.49 (s, br, NH-COO(CH3)3); 8.59 (d, J = 8.0, C(6)-NH-); 6.71 (d, J = 8.4, 1 arom. H); 6.56 (d, J = 8.4, 1 arom. H); 4.41 (d, J = 7.2, H-C(5)); 3.22 (s, CH30-C(14)); 2.38(s, CH3N); 1.51 (s, C(CH3)3), 1.47 (s, C(Chf3)3).
Example 14
Synthesis of 4,5a-epoxy-6(3-guanidinyl-14p-methoxy-17-methylmorphinan-3-ol dihydrochloride (Compound 17 • 2 HCL).


Compound 17
A solution of Compound 16 (50 mg, 0.089 mmol) in Et20 (3 ml) was mixed through to a clear acidic reaction with ethereal HCI and with 4 drops of H2O. The mixture was subjected to ultrasound for one hour at room temperature and then evaporated. The residue (40 mg of white foam resin) was dissolved in H2O and freeze dried. Yield: 30 mg (79%) 17 • 2 HCI as white lyophitisate: ^H-NMR (CDCIs): 6 9.59 (s, 0H-C(3)); 9.29 (s, br, NH*); 8.53 (d, J = 8.0, C(6)-NH-); 7.29 (s, br, C(6)-NH-C(NH2)2*), 6.78 (d, J = 8.1, 1 arom. H); 6.69 (d, J = 8.1, 1 arom. H); 4.49 (d, J = 7.2, H-C(5)); 3.26 (s, CH30-C(14)); 2.84 (s, CH3N).
Example 15
Synthesis of 4,5a-epoxy-6a-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyl]-14P-methoxy-17-methylmorphinan-3-ol (Compound 18).


Compound 18
A solution of Compound 13 (1.00 g, 3.16 mnnol), N,N"-bis-(tert.-butoxycarbonyl)-S-methylisothiourea (1.00 g, 3.44 mmol) and N-ethyldiisopropylamine (0.60 ml, 3.44 mmol) in absolute N,N-dimethylformamide (60 ml) was mixed with silver nitrate (0.55 g, 3.24 mmol) and the mixture stirred for 1.5 h. Then the silver mercaptane was filtered off through Celite and washed afterwards with CH2CI2 (4 x 50 ml). The filtrate was washed with H2O (6 x 200 ml) and saturated NaCI solution (1 x 200 ml), dried (Na2S04) and evaporated. In this way 1.85 g of a yellow oil were obtained which was purified through MPLC (p = 5 bar, silica gel 60, CH2Cl2/MeOH 10:1). Yield: 0.67 g (38%) of white foam resin: ^H-NMR(CDCl3): 5 11.53 (s, br, NH-COO(CH3)3); 8.81 (d, J = 8.0, C(6)-NH-); 6.73 (d, J = 8.2, 1 arom. H); 6.56 (d, J = 8.2, 1 arom. H); 4.66 (dd, ^J = 2.6, ""j = 1.6. H-C(5)); 3.25 (s, CH30-C(14)); 2.35 (s, CH3N); 1.50 (s, 2 x C(CH3)3).
Example 16
Synthesis of 4,5a-epoxy-6a-guanidinyl-14p-methoxy-17-methylmorphinan-3-ol dihydrochloride (Compound 19 • 2 HCl).


Compound 19
A solution of Compound 18 (50 mg, 0.089 mmol) in EtsO (3 ml) was mixed through to a clear acidic reaction with ethereal HCI and with 4 drops of H2O. The mixture was subjected to ultrasound for 1.5 h at room temperature and then evaporated. The residue (40 mg of white foam resin) was dissolved in H2O and freeze dried. Yield: 35 mg (92%) 19 • 2 HCI as white lyophilisate: ^H-NMR (CDCI3): 5 9.29 (s, br, NH*); 9.20 (s, OH-0(3)); 7.57 (d, J = 8.8. C(6)-NH-); 7.46 (s, br, C(6)-NH-C(Nid2)2l 6.76 (d, J = 8.1. 1 arom. H); 6.62 (d, J = 8.1, 1 arom. H); 4.70 (d. J = 4.0. H-C(5)); 3.36 (s, CH30-C(14)); 2.88 (s. CH3N).
Example 17
Synthesis of 1.3-bis-(tert.-butoxycarbonyl)-2-{4,5a-epoxy-6(3-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyl]-14(3-methoxy-17-methylmorphinan-3-yl}-isourea (Compound 20).


Compound 20
A solution of Compound 15 (0.12 g, 0.38 mmol), N,N"-bis-(tert.-butoxycarbonyl)-S-methylisothiourea (0.24 g, 0.83 mmol) and triethylamine (0.12 ml, 0.86 mmol) in absolute N,N-dimethylformamide (4 ml) was mixed with silver nitrate (0.14 g, 0.82 mmol) and the mixture stirred for 17 h. Then the silver mercaptane was filtered off through Celite and washed aftenwards with CH2CI2 (4 x 50 ml). The filtrate was washed with H2O (5 x 200 ml) and saturated NaCI solution (1 x 200 ml), dried (Na2S04) and evaporated. In this way 0.10 g of a yellow foam resin was obtained which was purified through MPLC (p = 5 bar, silica gel 60, CH2CI2 / MeOH / cone, ammonia 100:5:0.5). Yield: 45 mg (15%) of white foam resin: ^H-NMR (CDCI3): 5 11.54 (s, NH-COO(CH3)3); 10.44 (s, br, NH-COO(CH3)3); 8.59 (d, J = 8.8, C(6)-NH-); 6.91 (d. J = 8.0,1 arom. H); 6.64 (d, J = 8.0, 1 arom. H); 4.51 (d, J = 4.4. H-C(5)); 3.28 (s, CH30-C(14)); 2.37 (s, CH3N); 1.51 (s, 2 x C(CH3)3), 1.47 (s, 2 x C(CH3)3). FAB-MS: m/z801 (M* + 1).
Example 18
Synthesis of 1,3-bis-(tert.-butoxycarbonyl)-2-{4,5a-epoxy-6a-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyl]-14(3-methoxy-17-methylmorphinan-3-yl}-isourea (Compound 21).


Compound 21
A solution of Compound 13 (0.50 g, 1.58 mmol), N,N"-bis-(tert.-butoxycarbonyl)-S-methylisothiourea (1.00 g, 3.54 mmol) and triethylamine (0.5 ml, 4.94 mmol) in absolute N,N-dimethylformamide (15 ml) was mixed with silver nitrate (0.58 g, 3.12 mmol) and the mixture stirred for 20 h. Then the silver mercaptane was filtered off through Celite and washed aftera/ards with CH2CI2 (5 x 50 ml). The filtrate was washed with H2O (5 x 200 ml) and saturated NaCI solution (1 x 200 ml), dried (Na2S04) and evaporated. In this way 1.14 g of a yellow foam resin was obtained which was purified through MPLC (p = 5 bar, silica gel 60, CH2CI2 / MeOH / cone, ammonia 100:5:0.5). Yield: 0.75 g (62%) of white foam resin: ^H-NMR (CDCI3): 5 11.56 (s, NH-COO(CH3)3)-10.69 (s, br. NH-COO(CH3)3); 8.68 (d, J = 8.8, C(6)-NH-); 6.87 (d, J = 8.0, 1 arom. H); 6.66 (d, J = 8.0, 1 arom. H); 4.63 (d, J = 3.6, H-C(5)); 3.27 (s, CH30-C(14)); 2.36 (s, CH3N); 1.51 (s, 4 x C(CH3)3). ESI-MS: m/z 801 (M^ + 1).
Example 19
Synthesis of (4,5a-epoxy-3-hydroxy-14(3-methoxy-1 7-methylmorphinan-6a-ylamino)-acetic acid-ethyiester dihydrochloride (Compound 22 • 2 HCI) and (4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6P-ylamino)-acetic acid-ethylester dihydrochloride (Compound 23 • 2 HCI).


Compound 22 Compound 23
A mixture of 14-0-methyloxymorphone hydrobromide (H. Schmidhammer et al., Helv. Chim. Acta 1990, Vol. 71, pp. 1779-1783) (2.00 g, 5.05 mmol), glycine ethylester hydrochloride (1.06 g, 7.59 mmol), absolute EtOH (100 ml), triethylamine (1.8 ml, 12.91 mmol) and nnolecular sieve (2.5 g) was stirred for 3.5 h under N2 at room temperature. Then NaCNBHa (0.49 g, 7.80 mmol) was added in a number of portions and the solution stirred further under N2 at room temperature. After 4 days H2O (5 ml) was added and the mixture evaporated. The residue was mixed with H2O (200 ml) and extracted with CH2CI2 (2 x 100 ml, 2 x 50 ml). The combined organic phases were washed with saturated NaCI solution (2 x 100 ml), dried (Na2S04) and evaporated, giving 0.76 g of a brown oil. The two products were separated and purified through MPLC (p = 4 bar, silica gel 60, CH2CI2 / MeOH 10:2). Then they were dissolved in a little MeOH and converted into the dihydrochlorides using ethereal HCI. Since no crystallisation of 22 • 2 HCI occurred, the solvent was drawn off, the residue dissolved in H2O and freeze dried. The mother liquor of 23 • 2 HCI was also evaporated, the residue dissolved in H2O and freeze dried.
Compound 22 • 2 HCI: Yield: 0.20 g (8%) of yellow lyophilisate: IR (KBr): 3423 (OH), 1743 (C = O) cm"\- ^H-NMR (DMSO-de): 6 9.81, 9.50, 9.34 (3 s, 4 H, OH, NH^ NH2*), 6.81 (d, J = 8.1, 1 arom. H); 6.64 (d, J = 8.1, 1 arom. H); 4.50 (d, J = 3.6, H-C(5)); 4.23 (q, J = 6.9, -COOCH2CH3); 3.13 (s, CH30-C(14)); 2.88 (d, J = 4.4, CH3N); 1.26 (t, J = 6.9, -COOCH2CH3).
Compound 23 • 2 HCI: Yield: 0.20 g (8%) of white crystals (0.11 g) and yellow lyophilisate (0.09 g): Fp > 200°C (Brkd.); IR (KBr): 3413 (OH), 1745 (C = O) cm""; "H-NMR(DMS0-d6): 6 10.02, 9.61, 9.51 (3 s, 4 H, OH, NH^ NHz^), 6.82 (d, J = 8.0, 1 arom. H); 6.70 (d, J = 8.0, 1 arom. H); 4.95 (d, J = 7.4, H-C(5)); 4.22 (q, J = 7.0, -COOCH2CH3); 3.26 (s, CH30-C(14)); 2.85 (s, CH3N); 1.25 (t, J = 7.0, -COOCH2CH3).
Example 20

oyiiuicaio ui ^t.^u-ciJUAy-o-ilyuioAy- iHp-t!inu;^y-1 /-iTieinyimorpninan-Da-yiamino)-acetic acid-tert.-butylester (Compound 24) and (4,5a-epoxy-3-hydroxy-14p-ethoxy-17-methylmorphinan-6p-ylamino)-acetic acid-tert.-butylester (Compound 25).

Compound 24 Compound 25
A mixture of 14-0-ethyloxymorpiione (H. Schmidhammer, R. Krassnig, Sci. Pharm. 1990, Vol. 58, pp. 255-257) (1.02 g, 3.09 mmol), giycine-tert.-butylester hydrochloride (0.7 g, 4.63 mmol), absolute EtOH (100 ml), N-ethyldiisopropylamine (0.9 ml, 5.0 mmol) and molecular sieve (2 g) was stirred for 3 h under N2 at room temperature. Then a solution of NaCNBHs (0.25 g, 3.98 mmol) in ethanol (20 ml) was added drop by drop and the solution stirred further under N2 at room temperature. After 2 days H2O (5 ml) was added, filtered through Celite and the mixture evaporated. The residue was mixed with H2O (150 ml) and extracted with Et20 (2 X 100 ml, 1 X 80 ml, 2 X 50 ml). The combined organic phases were washed with saturated NaCI solution (3 X 100 mi), dried (Na2S04) and evaporated. The aqueous phase was extracted with CH2CI2 / i-PrOH 4:1 (2 x 100 ml). The combined organic phases were treated in the same manner as for the ether phase described above. From the 1st extraction (Et20) 1.05 g of a yellow foam resin was obtained and from the 2nd extraction (CH2CI2 / i-PrOH) 0.17 g of a white foam resin. The two products were separated and purified through MPLC (p = 5 bar. silica gel 60, CH2CI2 / MeOH 10:1).
Compound 24: Yield: 0.09 g (7%) of white foam resin: IR (KBr): 3425 (OH), 1735 (C = O) cm"\- ^H-NMR (CDCI3): 6 6.66 (d, J = 8.0, 1 arom. H); 6.47 (d, J = 8.0, 1 arom. H); 4.68 (d, J = 2.6, H-C(5)); 3.43 (s, C(6)-NH-CH2-); 2.32 (s, CH3N); 1.45 (s, -COOC(CH3)3);1.15 (t, J = 7.0. C(14)-OCH2CH3); CI-MS: m/z 445 (M* +
D-
Compound 25: Yield: 0.19 g (14%) of white foam resin IR (KBr): 3440 (OH), 1734 (C = O) cm""; ^H-NMR (CDCI3): 6 6.67 (d, J = 8.0, 1 arom. H); 6.53 (d, J = 8.0, 1 arom. H); 4.48 (d, J = 7.0, H-C(5)); 3.50 (d, J = 17.2. 1 H, C(6)-NH-CH2-); 3.23 (d, J = 17.2, 1 H, C(6)-NH-CH2-); 2.33 (s, CH3N); 1.44 (s, -COOC(CH3)3); 1.19 (t, j = 7.0, C(14)-OCH2CH3); CI-MS: m/z 445 (N" + 1).

Synthesis of (4,5a-epoxy-3-hydroxy-14|3-ethoxy-17-methylmorphinan-6a-ylamino)-acetic acid bis(tetrafluoroborate) (Compound 26 • 2 HBF4).

Connpound 26
A solution of Connpound 24 (0.05 g, 0.11 mmol) in CH2CI2 (3 ml) was mixed with 54% tetrafiuoroboric acid (HBF4) in EtaO (0.08 ml) and the mixture subjected to ultrasound for 15 min. at room temperature. Then the resulting precipitate was filtered off and dried. Yield: 0.03 g (53%) of white 3 • 2 HBF4: Fp > 286°C (Brkd.); IR (KBr): 3466 (OH), 1735 (C = O), 1067 (B-F) cm"\ ^H-NMR (D2O): 6 6.90 (d, J = 8.0, 1 arom. H); 6.81 (d, J = 8.0, 1 arom. H); 5.07 (d, J = 3.6, H-C(5)); 4.02 (s, C(6)-NH-CH2-); 2.96 (s, CH3N); 1.24 (t, J = 7.0, C(14)-OCH2CH3); ESI-MS: m/z 389 (M* + 1).
Example 22
Synthesis of (4,5a-epoxy-3-hydroxy-14p-ethoxy-17-methylmorphinan-6p-ylamino)-acetic acid bis(tetrafluoroborate) (Compound 27 • 2 HBF4).


Compound 27
A solution of Compound 25 (0.10 g, 0.22 mmol) in CH2CI2 (6 ml) was mixed with 54% tetrafiuoroboric acid (HBF4) in Et20 (0.16 ml) and the mixture subjected to ultrasound for 15 min. at room temperature. Then the resulting precipitate was filtered off and dried. Yield: 0.09 g (73%) of white 3 • 2 HBF4: Fp > 280°C (Brkd.); IR (KBr): 3426 (OH), 1758 (C = O), 1064 (B-F) cm"""; ^H-NMR (D2O): 5 6.90 (d, J = 8.0, 1 arom. H); 6.85 (d, J = 8.0. 1 arom. H); 4.92 (d, J = 7.6, H-C(5)); 4.03 (s, C(6)-NH-CH2-); 2.94 (s, CH3N); 1.29 (t, J = 6.8, C(14)-OCH2CH3); ESI-MS: m/z 389 (M* + 1).
Example 23
Synthesis of (2"S)-2"-(17-cyclopropylmethyl-4,5a-epoxy-3,14(3-dihydroxymorphinan-6P-ylamino)-3-phenylpropionic acid-tert.-butylester (Compound 28).


Compound 28
A mixture of naltrexone hydrochloride (Brit. Patent GB 1119270, 1968) (5.46 g, 13.23 mmol), L-phenylalanine-tert.-butylester hydrochloride (5.46 g, 21.18 mmol), absolute EtOH (250 ml), N-ethyldiisopropylamine (6 ml, 43.4 mmol) and molecular sieve (5 g) was stirred for 6 h under N2 at room temperature. Then NaCNBHs (0.91 g, 14.48 mmol) was added and the solution stirred further under N2 at room temperature. After 6 days H2O (20 ml) was added, filtered and the filtrate evaporated. The re&idue was mixed with H2O (300 ml), alkalized with cone, ammonia and extracted with CH2CI2 (1 x 100 ml, 4 x 50 ml). The combined organic phases were washed with H2O (2 x 200 ml), dried (Na2S04) and evaporated. From the evaporation residue (8.44 g) 2 g were purified using circular chromatography (silica gel 60, CH2Ci2 / MeOH / cone, ammonia of 250:1:0.1 to 150:2.5:0.2). Yield 0.33 g (19% referred to the complete raw product) of pure 28 as white foam resin: ^H-NMR (DMSO-de): 5 8.98 (s, 0H-C(3)), 7.22 (m, 5 arom. H), 6.56 (d, J = 8.0, 1 arom. H); 6.46 (d, J = 8.0, 1 arom. H); 4.78 (s, OH-C(14)); 4.14 (d, J = 6.0, H-C(5)); 1.20 (s, -COOC(CH3)3); 0.84 (m, CH (cyclopropyl)); 0.47 (m, CH2 (cyclopropyl)); 0.09 (m, CH2 (cydopropyl)); CI-MS: m/z547(M* + 1).
Example 24
Synthesis of (2"S)-2"-(17-cyclopropylmethyl-4,5a-epoxy-3,14P-dihydroxymorphinan-6(3-ylamino)-3-phenylpropionic acid bis(tetrafluoroborate) (Compound 29 • 2 HBF4).


Compound 29
A solution of Compound 28 (0.18 g, 0.33 mmol) in CH2CI2 (5 ml) was mixed with 54% tetrafluoroboric acid (HBF4) in Et20 (0.22 ml) and the mixture was stirred for 1 h at 0°C. The resulting precipitate was filtered off and dried. The raw product was purified by circular chromatography (silica gel 60, CH2CI2 / MeOH from 7:3 to 3:7, then MeOH alone). Yield 0.06 g (27%) of pure 29 • 2 HBF4 as yellow foam resin. ^H-NMR (DMSO-dg): 6 7.17 (m, 5 arom. H), 6.45 (d, J = 8.2, 1 arom. H); 6.35 (d, J = 8.2, 1 arom. H); 4.73 (s, 0H-C(14)); 4.08 (d, J = 7.4, H-C(5)); 0.80 (m, CH (cyclopropyl)); 0.44 (m, CH2 (cyclopropyi)); 0.09 (m, CH2 (cydopropyl)); HR-FAB-MS: m/z calculated for C29H35N2O5 (M* + 1): 491.2536, found 491.2540.
Example 25
Synthesis of 3-benzyloxy-17-cyclopropylmethyl-4,5a-epoxy-14(3-hydroxy-morphinan-6-spiro-2"-1,3-dioxolane (Compound 30).


Compound 30
A mixture of 17-cyclopropyl-4,5a-epoxy-3,14|3-dihydroxymorphinan-6-spiro-2"-dioxolane (H.Schmidhammer et al., Heterocycles 1998, Vol. 49, pp. 489-497) (6.90 g, 17.90 mmol), K2CO3 (6.70 g, 48.48 mmol), benzylbromide (2,34 ml, 19.66 mmol) and absolute DMF (70 ml) was stirred for 21 h under N2 at room temperature. The inorganic material was filtered off, rinsed with CH2CI2 and the filtrate evaporated. The residue (yellow coloured crystals) was recrystallised out of MeOH. Yield 7.37 g (87%) of pure 30 as yellow crystals. Fp 130-131 "C; IR (KBr): 3352 (OH) cm"VH-NMR (CDCI3): 6 7.42-7.27 (m, 5 arom. H); 6.75 (d, J = 8.3, 1 arom. H); 6.54 (d, J = 8.3, 1 arom. H); 5.17 (d, J = 11.7, 0CH2Ph), 5.10 (d, J = 11.7, OCHzPh), 4.58 (s, H-C(5)); 4.19-3.73 (m, C(6)-0-CH2-Ctb-0-C(6)): CI-MS: m/z476 (M* + 1).
Example 26
Synthesis of 3-benzyloxy-17-cyclopropylmethyl-4,5a-epoxy-14p-{[(E)-3-phenylprop-2-enyl]oxy}morphinan-6-spiro-2"-1,3-dioxolane hydrochloride (Compound 31 • HCI).


Compound 31
A mixture of Compound 30 (4.00 g, 8.41 mmol), absolute DMF (50 ml), NaH (0.60 g, 25.23 mmol, from 1.00 g of 60% NaH dispersion through multiple washing with petrolether) was stirred for 20 min. under N2 at 0°C. Then a solution of cinnamyl bromide (2.15 g, 10.93 mmol) in DMF (20 ml) was added drop by drop and the mixture stirred further for 3 h at room temperature under N2. After the decomposition of the excess NaH by the careful addition of small pieces of ice, the mixture was poured onto 400 ml of H2O and extracted with CH2CI2 (4 X 75 ml). The combined organic phases were washed with H2O (5 x 300 ml) and saturated NaCI solution (1 X 100 ml), dried (Na2S04) and evaporated. The evaporation residue (5.25 g orange coloured oil) was purified by column chromatography (silica gel 60, CH2CI2 / MeOH / cone, ammonia 250:2:0.5). Yield 1.86 g (37%) of pure 31. For analytical purposes 0.2 g were dissolved in ether and 31 • HCI precipitated as ochre coloured powder by the addition of ethereal HCI. Fp 133-136°C; ^H-NMR (DMSO-dg): 5 8.33 (br s, NH^); 7.53-7.24 (m, 10 arom. H); 6.93 (d, J = 8.4, 1 arom. H); 6.72-6.68 (m, 1 arom. H. 2 oief. H); 5.15 (s, OCHzPh); 4.65 (s, H-C(5)); 4.31-4.21 (m, C(6)-0-CH2-CH2-0-C(6)); 1.09 (m, CH (cyclopropyl)); 0.72-0.44 (m, 2 X CH2 (cyclopropyl)); CI-MS: m/z 592 (M* + 1).
Example 27
Synthesis of 17-cyclopropylmethyl-4,5a-epoxy-3-hycJroxy-14P-[3-(phenylpropyl)oxy]morphinan-6-spiro-2"-1,3-dioxolane hydrochloride (Compound 32 • HCI).


Compound 32
A mixture of 31 (0.89 g, 1.51 mmol), MeOH (50 ml), THF (15 ml) and 10% Pd/C (90 mg) was hydrogenated at room temperature and 30 psi for 2 h. Then the catalyst was filtered off and the filtrate evaporated. The evaporation residue (1.0 g of yellow oil) was purified by column chromatography (silica gel 60, CH2CI2 / MeOH / cone, ammonia 250:5:0.5). Yield 0.41 g (53%) of pure 32. For analytical purposes 70 mg were dissolved in ether and 32 • HCI precipitated as a white powder by the addition of ethereal HCI. Fp 158-162°C; ^H-NMR (DMSO-de): 6 9.24 (s, OH); 7,79 (br, s, NH*); 7.35-7.19 (m, 5 arom. H); 6.68 (d, J = 8.0, 1 arom. H); 6.57 (d, J = 8.0, 1 arom. H); 4.51 (s, H-C(5)); 4.31-4.21 (m, C(6)-0-CH2-CH2-0-C(6)); Cl-MS: m/z 504 (M* + 1).
Example 28
Synthesis of 17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14p-[3-(phenylpropyl)oxy]morphinan-6-on hydrochloride (Compound 33 • HCI).


Compound 33
A solution of 32 (4.00 g, 7.94 mmol) in 28 ml of MeOH and 12 ml of cone. HCI was reflux heated for 1.5 h, then poured over 100 mi of ice / water and alkalized with cone, ammonia. The mixture was extracted with CH2CI2 (4 X 100 ml), the combined organic phases washed with water (2 x 100 ml) and saturated NaCI solution (2 x 100 ml), dried (Na2S04) and evaporated. The evaporation residue (3.98 g of brown oil) was purified by column chromatography (silica gel 60, CH2CI2 / MeOH / cone, ammonia 250:3:0.5) Yield 3.05 g (83%) of pure 33. For analytical purposes 90 mg were dissolved in ether and 33 • HCI precipitated as colourless crystals by the addition of ethereal HCI. Fp 220-230°C; ^H-NMR (DMSO-dg): 6 9.52 (s, OH); 8.20 (s, NH"^); 7.30-7.18 (m, 5 arom. H); 6.71 (d, J = 8.0, 1 arom. H); 6.64 (d, J = 8.0, 1 arom. H); 4.89 (s, H-C(5)); CI-MS: m/z 460 (M* + 1).
Example 29
Synthesis of {17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14p-[(3-phenylpropyl)oxy]-morphinan-6a-ylamino}-acetic acid-tert.-butylester (Compound 34) and {17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14(3-[(3-phenyipropyl)oxy]-morphinan-6|3-ylamino}-acetic acid-tert.-butylester (Compound 35).


Compound 34 Compound 35
A mixture of Compound 33 (0.7 g, 1.41 mmol), glycine-tert.-butylester hydrochloride (0.26 g, 1.55 mmol), absolute EtOH (20 ml), triethylamine (0.49 ml, 3.53 mmol) and molecular sieve (0.7 g) was stirred for 23 h at room temperature under N2. Then NaCNBHa (0.13 g, 2.07 mmol) was added and the solution stirred further under N2 at room temperature. After 3 days H2O (5 ml) was added, filtered and the filtrate evaporated. The residue was mixed with H2O (20 ml), alkalized with cone, ammonia and extracted with CH2CI2 (1 x 50 ml, 3 x 30 ml). The combined organic phases were washed with saturated NaCI solution (3 x 200 ml), dried (Na2S04) and evaporated. The evaporation residue (0.62 g of brown oil) was separated and purified by column chromatography (silica gel 60, CH2CI2 / MeOH / cone, ammonia 250:2:0.5).
Compound 34: Yield 70 mg (9%). ""H-NMR (CDCI3): 5 7.28-7.16 (m, 5 arom. H); 6.67 (d, J = 8.1, 1 arom. H); 6.45 (d, J = 8.1, 1 arom. H); 4.70 (d, J = 3.4, H-C(5)); 1.44 (s. -COOC(CH3)3); CI-MS: m/z 575 (M^ + 1). Compound 35: Yield 40 mg (5%). ""H-NMR (DMSO-ds): 6 8.96 (s, OH); 7.31-7.16 (m, 5 arom. H); 6.54 (d, J = 8.3, 1 arom. H); 6.45 (d, J = 8.3,1 arom. H); 4.25 (d, J = 6.6, H-C(5)); 1.39 (s, -COOC(CH3)3); CI-MS: m/z 575(M* + 1).
Example 30
Synthesis of (2"S)-2"-(17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14P-[(3-phenylpropyl)oxy]-morphinan-6a-ylamino)-3-phenylpropionic acid-tert.-butylester (Compound 36) and (2"S)-2"-(17-cyclopropylmethyi-4,5a-epoxy-3-hydroxy-14p-[(3-phenylpropyl)oxy]-morphinan-6p-ylamino)-3-phenylpropionicacid-tert.-butylester (Compound 37).


Compound 36 Compound 37
A mixture of Compound 33 (0.7 g, 1.41 mmol), L-phenylalanine-tert.-butylester hydrochloride (0.55 g, 2.13 mmol), absolute EtOH (20 ml), triethylamine (0.49 ml, 3.53 mmol) and molecular sieve (0.7 g) was stirred for 23 h at room temperature under N2. Then NaCNBHa (0.13 g, 2.07 mmol) was added and the solution stirred further under N2 at room temperature. After 4 days H2O (5 ml) was added, filtered and the filtrate evaporated. The residue was mixed with H2O (20 ml), alkalized with cone, ammonia and extracted with CH2CI2 (1 x 50 ml, 3 X 30 ml). The combined organic phases were washed with saturated NaCI solution (3 x 100 ml), dried (Na2S04) and evaporated. The evaporation residue (brown oil) was separated and purified by column chromatography (silica gel 60, CH2CI2 / MeOH / cone, ammonia 250:2:0.5).
Compound 36: Yield 70 mg (7%). ""H-NMR (DMSO-de): 5 8.90 (s, OH); 7.31-7.12 (m, 5 arom. H); 6.56 (d, J = 8.2, 1 arom. H); 6.40 (d, J = 8.2, 1 arom. H); 4.52 (d, J = 3.6, H-C(5)); 1.22 (s, -COOC(CH3)3); CI-MS: m/z 665(M^ + 1).
Compound 37: Yield 0.33 g (35%). "H-NMR (DMSO-dg): 6 8.98 (s, OH); 7.27-7.13 (m, 5 arom. H); 6.54 (d, J = 8.0, 1 arom. H); 6.44 (d, J = 8.0, 1 arom. H); 4.21 (d, J = 7.0, H-C(5)); 1.20 (s, -COOC(CH3)3); CI-MS: m/z 665 (M* + 1).
Example 31
Synthesis of {17-cyciopropylmethyl-4,5a-epoxy-3-hydroxy-14p-[(3-phenylpropyl)oxy]-morphinan-6|3-ylamino}acetic acid dihydrochloride (Compound 38 • 2 HCI).


Compound 38
A mixture of Compound 35 (40 mg, 0.07 mmol) and 4 M HCI in dioxane (2 ml) was reflux heated for 6 h. The precipitate was filtered off and dried. Yield 10 mg (24%) of white 38 • 2 HCI: ""H-NMR (D2O): 6 7.38-7.26 (m, 5 arom. H); 6.89 (d, J = 8.0, 1 arom. H); 6.83 (d, J = 8.0, 1 arom. H); 4.91 (d, J = 7.4, H-C(5)); 4.00 (s, C(6)-NH-CH2-).
Example 32
Opioid receptor binding studies
Opioid receptor binding studies were carried out on rat"s brain homogenisates using [""H]DAMG0 (p-receptor agonist) as radio-ligand and with strict conformance to an earlier publication (M. Spetea et al., Neurochemical Research 1998, Vol. 23, pp. 1213-1218).
The compounds 1-4, 7, 8,11, 16, 17, 22, 23 and 38 indicate very high affinity to p-opioid receptors, which are principally responsible for analgesia (Table 1). In comparison to them, morphine clearly indicates lower affinity to p-opioid receptors.
Table 1. Opioid receptor binding studies of the compounds 1-4, 7, 8,11,16,17, 22, 23 and 38 and
morphine.


Example 33
Analgesia test
A test on rats was applied ("rat tail flick test"). This test was carried out as previously described (Zs. FiJrst at al., Eur. J. Pharmacol. 1993, Vol. 236, pp. 209-215).
The compounds 3, 4, 7 and 8 showed a very high analgesic activity. Compound 4 is 68 times as active as morphine after subcutaneous application (sc) and 238 times as active as morphine after intracerebroventricular application (icv) (Table 2). The high sc / icv ratio figures of Compounds 3, 4, 7 and 8 show that in comparison to morphine these compounds are preferentially distributed in the periphery and also preferentially develop their analgesic effect in the periphery. This means from these figures that Compound 3 can only overcome the blood-brain barrier in a very restricted manner and its effectiveness is therefore primarily evident in the periphery (outside of the central nervous system). This fits in with a very low rate of side effects, which relates to central side effects, such as for example, nausea, vomiting, sedation, dizziness, confusion, respiratory depression and mania.
The Compounds 3 and 4 indicate a substantially longer analgesic effective period than morphine. Whereas the Compounds 3 (0.5 pg / rat) and 4 (0.25 pg / rat) still showed 100% analgesic activity after 120 minutes,


Example 34
Randall-Selitto Test
The Randall-Selitto Test (L.O. Randall and J.J. Selitto, Arch. Int. Pharmacodyn. 1957, Vol. 111, pp. 409-419) was applied to study the analgesic effect on carrageen-induced hyperalgesia on the right hind paw of rats. In this way the "hind-paw withdrawal latency" (HWL; latency period for withdrawing the right hind paw) with mechanical stimulation (e.g. I. Bileviciute-Ljungar and M. Spetea, Br. J. Pharmcol. 2001, Vol. 132, pp. 252-258) is measured.

The Compounds 4 and the centrally effective reference substance, 14-methoxymetopone (Zs. FiJrst et a!., Eur. J. Pharmacol. 1993, Vol. 236, pp. 209-215), both show significant analgesic activity at a dosage in each case of 20 pg / kg after subcutaneous application (a rise in the latency period for withdrawal of the hind paw (HWL) of at least 100% is taken as being significant analgesic activity). Whereas Compound 4 shows a long lasting effect (approx. 14 hours), the effect of 14-methoxymetopone is substantially shorter at 2 hours.
The exclusively peripheral analgesic effect of Compound 4 was proved by the following test. The analgesic effect of Compound 4 (20 pg / kg) was completely neutralised by subcutaneous application of the selectively peripherally acting opioid antagonist naloxone methiodide (an equivalent), whereas the analgesic effect of the 14-methoxymetopone (20 pg / kg) through subcutaneous application of the selectively peripherally acting opioid antagonist naloxone methiodide (an equivalent) was not affected. This is proof that the analgesic effect of Compound 4 is passed via peripheral opioid receptors, whereas the analgesic effect of the 14-methoxymetopone is passed via opioid receptors of the central nervous system. This leads to the conclusion that Compound 4 cannot overcome the blood-brain barrier and therefore cannot show any side effects passed through the central nervous system (e.g. respiratory depression, dizziness, confusion, sedation, sleepiness, mania).
Example 35
Respiratory depression test in rats
In this test the respiratory volume and the frequency of respiration of anaesthetised rats was measured.
The Compounds 3 and 4 were examined for their property of being able to cause a respiratory depression (see Table 4). With subcutaneous application (sc) of the Compounds 3 and 4 very high doses were necessary to cause a respiratory depression. Since with intracerebroventricular application (icv) a respiratory depression is caused with substantially lower dosages, very high sc / icv ratios (1205 resp. 1190) result for Compounds 3 and 4. The sc / icv ratios for morphine and fentanyl are noticeably lower (34 resp. 0.2).
Whereas the analgesic ED50 values ("rat tail flick test") are very similar to the ED50 values of the respiratory depression test after intracerebroventricular application, these values are very different after subcutaneous application. If the high ED50 values of the respiratory depression test after subcutaneous application of 3 and 4 are compared with the low ED50 values of the "rat tail flick test" after subcutaneous application, then it can be seen that for Compound 3 a 12 times higher dose is necessary than the analgesic dose in order to initiate respiratory depression. In the case of Compound 4 a dose 18 times higher is required. Analgesic doses of the Compounds 3 and 4 are therefore not able to initiate a respiratory depression.


^sc = subcutaneous application, ""icv = intracerebroventricular application.
Example 36
Determination of the antiailodvnic effect
Two tests were carried out on rats:
a) Von Frey test (mechanical allodynia)
b) Cold water allodynia test (thermal allodynia)
The tests involve models to test the effect of a substance on neuropathic pain.
For both tests ligations were applied around the ischias nerve (G.J. Bennett and Y.K. Xie, Pain 1988, Vol.
33, 87-107).
a) Von Frev test (mechanical allodynia)
A slight pressure (2 to 60 g) was exerted on the skin of the hind paw of the rats (200-250 g) using Von Frey hairs and the latency period of withdrawal of the hind paw was studied at various time intervals (5,15, 30 and 60 minutes after the application of the substance). The substance to be investigated was applied via intraplant (ipl).
The Compound 4 shows significant anti-allodynic activity at a dosage of 100 pg / rat after subcutaneous application (a rise of at least 100% in the latency period of the withdrawal of the hind paw is taken as significant anti-allodynic activity). The peripherally acting opioid antagonist naloxone methiodide (ipl) was able to completely neutralise the anti-allodynic effect of Compound 4.
b) Cold water allodynia test Cthermal allodvnia")

Thermal stimulation (cold water) was used to initiate withdrawal of the hind paw of the rats (200-300 g). After 5,15 and 30 min (after application of the substance) the latency period of the withdrawal of the hind paw was studied (J.C. Hunter et al., Eur. J. Pharmacol., 1997, Vol. 324, 153-160). The substances to be investigated were applied via intraplant (ipl).
The Compound 4 shows significant anti-allodynic activity at a dosage of 100 pg / rat after subcutaneous application (a rise of at least 100% in the latency period of the withdrawal of the hind paw is taken as significant anti-allodynic activity). The peripherally acting opioid antagonist naloxone methiodide (ipl) was able to completely neutralise the anti-allodynic effect of Compound 4.


WE CLAIM: Compounds of formula (I),

in which the substituents have the following meaning:
Ri is hydrogen; Ci-Ce-alkyI; C2-C6-alkenyl; Ca-Ce-alkinyl; Ci-Ce-monohydroxyalkyI; Ca-Ce-dihydroxyalkyl; Ca-Ce-trihydroxyalkyl; C4-Ci6-cycloalkylalkyl, where cycloalkyi is C3-C10-cycloalkyl and alkyl is CrCe-alkyl; Cs-Cie-cycloalkyiaikenyl, where cycloalkyi is C3-C10-cycloalkyl and alkenyl is Ca-Ce-alkenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi is C3-C10-cycloalkyl and alkinyl is Ca-Ce-alkinyl; Cy-Cie-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyl; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is Ca-Ce-alkenyl; Cs-Cie-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is Ca-Ce-alkinyl;
the nitrogen joined with Ri can also be quarternised by two substituents Ri, which can be the same or different and which are defined as previously shown, and whereby the second, quarternised substituent can additionally have the meaning hydroxyl, oxyl (N oxide) as well as alkoxyl;
R2 is d-Ce-alkyl; CrCe-monohydroxyalkyl; C2-C6-dihydroxyalkyl; Cs-Ce-trihydroxyalkyI; Ca-Ce-alkenyl; C2-C6-alkinyl; C4-Ci6-cycloalkylalkyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkyl is

d-Ce-alkyl; Cs-Cie-cycloalkylalkenyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkenyl is C2-Ce-alkenyl; Cs-Cie-cycloalkylaikinyl, where cycloalkyi is C3-Cio-cycloalkyl and alkinyl is C2-C6-alkinyl; Cy-Cie-arylalkyI, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Ca-Cie-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-C6-alkinyi; C2-C6-alkanoyl; Ca-Ce-alkenoyI; Cs-Ce-alkinoyI; C7-C16-arylalkanoyl, where aryl is Ce-Cio-aryl and alkanoyl is CrCe-alkanoyI; Cg-Cie-arylalkenoyI, where aryl is Ce-Cio-aryl and alkenoyl is Ca-Ce-alkenoyI; Cg-Cie-arylalkinoyI, where aryl is Ce-Cio-aryl and alkinoyl is Ca-Ce-alkinoyI;
R3 is hydrogen; Ci-Ce-alkyI; C2-C6-alkenyl; Cz-Cie-arylalkyI, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; alkoxyalkyl, where alkoxy is Ci-Ce-alkoxy and alkyl is Ci-Ce-alkyI; C02(Ci-C6-alkyl); CO2H; CH2OH;
R4, subject to the definition of Y, is hydrogen; CrCe-alkyl; C2-C6-alkenyl; C2-C6-alkinyi; C4-Cie-cycloalkylalkyl, where cycloalkyi is Ca-Cio-cycioalkyI and alkyl is Ci-Ce-alkyI; Cs-Cie-cycloalkylalkenyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkenyl is C2-Ce-alkenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkinyl is C2-C6-alkinyl; Cy-Cie-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-Ce-alkenyl; Ce-Cie-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-Ce-alkinyl; C2-Ce-alkanoyl; Ca-Ce-alkenoyI; Ca-Ce-alkinoyI; Cy-Cie-arylalkanoyl, where aryl is Ce-Cio-aryl and alkanoyl is CrCe-alkanoyl; Cg-Cie-arylalkenoyI, where aryl is Ce-Cio-aryl and alkenoyl is Ca-Ce-alkenoyI; Cg-Cie-arylalkinoyI, where aryl is Ce-Cio-aryl and alkinoyl is Ca-Ce-alkinoyl; iminomethyl, formamidinyl, Ci-Ce-N-alkyl- and N,N"-dialkylformamidinyl; C2-Ce-N-alkenyl- and N,N"-dialkenylformamidinyl; Cz-Ce-N-alkinyl- and N,N"-dialkinylformamidinyl; C4-Cie-N-cycloalkylalkyl- and N,N"-dicycloalkylalkylformamidlnyi, where cycloalkyi is C3-C10-cycloalkyl and alkyl is Ci-Ce-alkyI; Cs-Cie-N-cylcoalkylalkenyl- and N,N"-dicycloalkylalkenylformamidinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkenyl is C2-Ce-alkenyl; Cs-Cie-N-cycloalkylalkinyl- and N,N"-dicycloalkylalkinylformamidinyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkinyl is C2-C6-alkinyl; Cz-Cie-N-arylalkyl- and N,N"-diarylalkylformamidinyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; R5 and Re, which can be the same or different, are hydrogen; furthermore, CH(A)C02B, where A is hydrogen; hydroxyl; Ci-Ce-alkyI; C2-C6-alkenyl; C2-C6-alkinyl; C4-Cie-cycloalkylalkyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkyl is d-Ce-alkyl; Cs-Cie-cycloalkylalkenyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkenyl is C2-Ce-alkenyl; Cs-Cie-cycloalkylalkinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkinyl is C2-Ce-alkinyl; Cz-Cie-arylalkyl, where aryl is Ce-

Cio-aryl and alkyl is CrCe-alkyI; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-ary! and alkenyl is C2-Ce-aikenyl; Cs-Cie-arylalkinyi, where aryl is Ce-Cio-ary! and alkinyl is C2-C6-alkinyl; amino; Ci-Ce-alkylamino; guanidino; Ci-C6-alkyl-C02B; and where B is hydrogen; C1-C30-, preferably Cr Ce-aikyj; C2-C30-, preferably C2-C6-alkenyl; C2-C30-, preferably C2-C6-alkinyl; C4-C16-cycloalkylalkyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkyl is Ci-Ce-alkyI; C5-C16-cycloalkylalkenyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkenyl is C2-C6-alkenyl; C5-C16-cycloalkylalkinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkinyl is C2-C6-alkinyl; C7-C16-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is CrCe-alkyI; Cs-Cie-arylalkenyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Cs-Cie-arylalkinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-C6-alkinyl; phenyl; substituted phenyl; CHzOCO-Ci-Ce-alkyI; CH(Ci-C6-alkyl)OCO-Ci-C6-alkyl; CH20COO-Ci-C6-alkyl; CH(CrC6-alkyl)OCOO-Ci-C6-alkyl; CH2CON(CrC6-alkyl)2; CH(CrC6-alkyl)CON(Ci-C6-alkyl)2; phthalidyl, (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl, also iminomethyl, formamidinyl, d-Ce-N-alkyl- and N,N"-dialkylformamidinyl; C2-C6-N-alkenyl- and N,N"-dialkenylformamidinyl; C2-C6-N-alkinyl- and N,N"-dialkinylformamidinyl; C4-C16-N-cycloalkylalkyl- and N,N"-dicycloalkylalkylformamidinyl, where cycloalkyi is Cs-Cio-cycloalkyI and alkyl is CrCe-alkyl; Cs-Cie-N-cylcoalkylalkenyl- and N,N"-dicycloalkylalkenylformamidinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkenyl is C2-C6-alkenyl; Cs-Cie-N-cycloalkylalkinyl-and N,N"-dicycloalkylalkinylformamidinyl, where cycloalkyi is Ca-Cio-cycloalkyI and alkinyl is C2-C6-alkinyl; Cr-Cie-N-arylalkyI- and N,N"-diarylalkylformamidinyl, where aryl is Ce-Cio-aryl and alkyl is CrCe-alkyl; Cs-Cie-N-arylalkenyl- and N,N"-diarylalkenylformamidinyl, where aryl is Ce-Cio-aryl and alkenyl is C2-C6-alkenyl; Cs-Cie-N-arylalkinyl- and N,N"-diarylalkinylformamidinyl, where aryl is Ce-Cio-aryl and alkinyl is C2-C6-alkinyl; C2-C7-N-alkyloxycarbonyl- and N,N"-bis(alkyloxycarbonyl)formannidinyl; Ca-Cs-N-alkenyloxycarbonyl-and N,N"-bis(alkenyloxycarbonyl)formamidinyl; Ca-Cs-N-alkinyloxycarbonyl- and N,N"-bis(alkinyloxycarbonyl)formamidinyl; Cs-Ciy-N-arylalkyloxycarbonyl- and N,N"-bis(arylalkyloxycarbonyl)formamidinyl, where aryl is Ce-Cio-aryl and alkyloxy is Ci-Ce-alkyloxy; Cg-Ci7-N-arylalkenyloxycarbonyl- and N,N"-bis(arylalkenyloxycarbonyl)formamidinyl, where aryl is Ce-Cio-aryl and alkenyloxy is C2-Ce-alkenyloxy; Cg-Cir-N-arylaikinyloxycarbonyl- and N,N"-bis(arylalkinyloxycarbonyl)formamidinyl, where aryl is Ce-Cio-aryl and alkinyloxy is C2-C6-alkinyloxy; Ci-Ce-N-alkanoyI- and N,N"-dialkanoylformamidinyl; Cs-Ce-N-alkenoyI- and N,N"-dialkenoylformamidinyl; Ca-Ce-N-alkinoyI- and N,N"-dialkinoylformamidinyl; Cr-Cie-N-arylalkanoyl- and N,N"-diarylalkanoylformamidinyl, where aryl is Ce-Cio-aryl and alkanoyl is C^-Ce-alkyl; Cg-Cie-N-arylalkenoyI- and N,N"-dlarylalkenoylformamidinyl, where aryl is Ce-Cio-aryl and alkenoyl is Ca-Ce-alkenoyI; Cg-Cie-N-arylalkinoyI- and N,N"-diarylalkinoylformamidinyl,

where aryl is Ce-Cio-aryl and alkinoyl is Ca-Ce-alkinoyi; 4,5-dihydro-1/-/-imidazol-2-yl, 1,4,5,6-tetrahydropyrimidin-2-yl, 4,5,6,7-tetrahydro-1 H-[1,3]diazepin-2-yl;
X is oxygen and
Y Is oxygen or the group (Y-R4) is H;
and pharmaceutically acceptable acid addition salts and easily accessible derivatives (e.g. esters or amides of amino acid derivatives).
2. Compounds of Claim 1 in which Ri is Ci-Ce-alkyI; R2 is CrCe-alkyI or Cz-Cie-arylalkyl, where aryl is Ce-Cio-aryl and alkyl is Ci-Ce-alkyI; R3, R4 and Re are hydrogen; R5 is CH(A)C02B where A is hydrogen; hydroxyl; d-Ce-alkyl; Cr-Cie-arylalkyI, where aryl is Ce-Cio-aryl and alkyl is d-Ce-alkyl; amino; or guanidino; B is hydrogen or Ci-Ce-alkyI; R5 can furthermore be formamidinyl; C2-C7-(alkyloxycarbonyl)formamidinyl; C3-C8-(alkenyloxycarbonyl)formamidinyl; C3-C8-(alkinyloxycarbonyl)formamidinyl; C8-C17-(arylalkyloxycarbonyl)formamidinyl, where aryl is Ce-Cio-aryl and alkyloxy is Ci-Ce-alkyloxy; C9-Ci7-(arylalkenyloxycarbonyl)formamidinyl, where aryl is Ce-Cio-aryl and alkenyloxy is C2-C6-alkenyloxy; C9-Ci7-(arylalkinyloxycarbonyl)formamidinyl, where aryl is Ce-Cio-aryl and alkinyloxy is Cs-Ce-alkinyloxy.
3. Compounds of Claim 1, selected from:
(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6a-ylamino)-acetic acid-tert.-butylester, (4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6p-ylamino)-acetic acid-tert.-butylester,
(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6a-ylamino)-acetic acid, (4,5a-epoxy-3-hydroxy-14[3-methoxy-17-methylmorphinan-6(3-ylamino)-acetic acid, (2"S)-2"-(4,5a-epoxy-3-hydroxy-14[3-methoxy-17-methylmorphinan-6a-ylamino)-propionic acid-tert.-butylester, (2"S)-2"-(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6P-ylamino)-propionic acid-tert.-butylester, (2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6a-ylamino)-propionic acid, (2"S)-2"-(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6P-ylamino)-propionicacid, (2"S)-2"-(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6a-ylamino)-3"-phenylpropionic acid-tert.-butylester, (2"S)-2"-(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6P-ylamino)-3"-phenylpropionicacid-tert.-

butylester, (2"S)-2"-(4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6a-ylamino)-3"-phenylpropionic acid, (2"S)-2"-(4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6p-ylamino)-3"-phenylpropionic acid, 6a-amino-4,5a-epoxy-14P-methoxy-17-methylmorphinan-3-ol, 6P-dibenzylamino-4,5a-epoxy-14p-methoxy-17-methylmorphinan-3-ol, 6P-amino-4,5a-epoxy-14p-methoxy-17-methylmorphinan-3-ol, 4,5a-epoxy-6p-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyl]-14P-methoxy-17-methylmorphinan-3-ol, 4,5a-epoxy-6P-guanidinyl-14p-methoxy-17-methylmorphinan-3-ol, 4,5a-epoxy-6a-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyl]-14P-methoxy-17-methylmorphinan-3-ol, 4,5a-epoxy-6a-guanidinyl-14p-methoxy-17-methylmorphinan-3-ol, 1,3-bis-(tert.-butoxycarbonyl)-2-{4,5a-epoxy-6P-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyl]-14p-methoxy-17-methylmorphinan-3-yl}-isourea, 1,3-bis-(tert.-butoxycarbonyl)-2-{4,5a-epoxy-6a-[N,N"-bis-(tert.-butoxycarbonyl)guanidinyl]-14P-methoxy-17-methylmorphinan-3-yl}-isourea, (4,5a-epoxy-3-hydroxy-14P-methoxy-17-methylmorphinan-6a-ylamino)-acetic acid-ethylester dihydrochloride, (4,5a-epoxy-3-hydroxy-14p-methoxy-17-methylmorphinan-6P-ylamino)-acetic acid-ethylester dihydrochloride, (4,5a-epoxy-3-hydroxy-14p-ethoxy-17-methylmorphinan-6a-ylamino)-acetic acid-tert.-butylester, (4,5a-epoxy-3-hydroxy-14p-ethoxy-17-methylmorphinan-6p-ylamino)-aceticacid-tert.-butylester, (4,5a-epoxy-3-hydroxy-14P-ethoxy-17-methylmorphinan-6a-ylamino)-aceticacid bis(tetrafluoroborate), (4,5a-epoxy-3-hydroxy-14p-ethoxy-17-methylmorphinan-6P-ylamino)-acetic acid b(s(tetrafluoroborate), (2"S)-2"-(17-cyclopropylmethyl-4,5a-epoxy-3,14P-dihydroxymorphinan-6p-ylamino)-3-phenylpropionic acid-tert.-butylester, (2"S)-2"-(17-cyclopropylnnethyl-4,5a-epoxy-3,14p-dihydroxymorphinan-6P-ylamino)-3-phenylpropionicacid bis(tetrafluoroborate), {17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14P-[(3-phenylpropyl)oxy]-morphinan-6a-ylamino}-acetic acid-tert.-butylester, {17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14P-[(3-phenylpropyl)oxy]-morphinan-6a-ylamino}-acetic acid-tert.-butylester, (2"S)-2"-(17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14p-[(3-phenylpropyl)oxy]-morphinan-6a-ylamino)-3-phenylproplonic acid-tert.-butylester, {17-cyclopropylmethyl-4,5a-epoxy-3-hydroxy-14p-[(3-phenylpropyl)oxy]-morphinan-6P-ylamino}-acetic acid dihydrochloride; or any pharmaceutically acceptable salt or an easily accessible derivative of them.
4. The compound as claimed in claims 1 to 3, for the preparation of a mgdicament.

Documents:

1539-chenp-2004 abstract-duplicate.pdf

1539-chenp-2004 abstract.jpg

1539-chenp-2004 abstract.pdf

1539-chenp-2004 claims.pdf

1539-chenp-2004 correspondence-others.pdf

1539-chenp-2004 correspondence-po.pdf

1539-chenp-2004 description(complete)-duplicate.pdf

1539-chenp-2004 description(complete).pdf

1539-chenp-2004 form-1.pdf

1539-chenp-2004 form-19.pdf

1539-chenp-2004 form-26.pdf

1539-chenp-2004 form-3.pdf

1539-chenp-2004 form-5.pdf

1539-chenp-2004 others-document.pdf

1539-chenp-2004 others.pdf

1539-chenp-2004 pct.pdf


Patent Number 214367
Indian Patent Application Number 1539/CHENP/2004
PG Journal Number 13/2008
Publication Date 31-Mar-2008
Grant Date 11-Feb-2008
Date of Filing 09-Jul-2004
Name of Patentee ALCASYNN PHARMACEUTICALS GMBH
Applicant Address Mitterweg 22, AT-6020 Innsbruck,
Inventors:
# Inventor's Name Inventor's Address
1 SCHUTZ, Johannes Hutterweg 6, A-6020 Innsbruck,
2 SCHMIDHAMMER, Helmut Unterbergstrasse 18, A-6020 Innsbruck,
PCT International Classification Number A61K 31/485
PCT International Application Number PCT/EP2002/014343
PCT International Filing date 2002-12-16
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 101 61 963.4 2001-12-17 Germany