Title of Invention

METHOD AND DEVICE FOR DETECTING IMPURITIES IN A LOOSENED FIBRE STREAM OF MAINLY TEXTILE FIBRES

Abstract The invention relates to a method and a device for detecting impurities (F) in a fibre stream (1) of mainly textile fibres, wherein the fibre stream and at least one reference quantity (15) are artificially visually sensed. To enable even impurities which are difficult to detect to be removed with improved efficiency, the reference quantity is to be adapted at least periodically.
Full Text

METHOD AND DEVICE FOR DETECTING IMPURITIES IN A FIBRE STREAM OF MAINLY TEXTILE FIBRES
The invention relates to a method and a device for detecting impurities in a loosened fibre stream of mainly textile fibres, wherein the fibre stream and at least one reference quantity are artificially visually sensed.
From DE-A-4340165 and DE-A-4340173 such methods are known, by means of which, for example, cotton or wool in the form of flocks polluted to a greater or lesser extent with impurities may be freed of said impurities. With said methods it is possible to distinguish between external impurities, which relate to different material, and internal impurities, which relate to the same material but in a different state or a different colour. Internal impurities are, for example, cotton or woollen fibres which are partially rotten, agglutinated or contaminated. External impurities are stones, soil, glass, stalk residues, leaves, packaging material, hair, feathers etc. Whereas crude impurities are removed in the known spinning preparation devices, impurities which are more difficult to separate are, according to the known methods, to be detected and removed from the stream of loose material. To said end, the fibres or flocks are conveyed continuously past colour sensors which are to detect impurities. Material containing constituents, to which the colour sensors have responded, is then removed.
A perceived drawback of such known methods is that many impurities are not detected thereby. One reason is, for example, that impurities, in order to be detected, have to vary in colour to a relatively great extent from the textile fibres or the background, which is not always the case. Such known methods do not operate very selectively.
The invention, as it is characterized in the claims, now achieves the object of providing a method and a device which

allow impurities, which are difficult to separate, to be detected in the fibre stream with greater efficiency.
The object is achieved in that the fibre stream is artificially visually sensed together with a reference quantity, which is adapted at least at intervals or from time to time. This may be effected on the one hand in that the fibre stream, which is to be opened into flocks or into individual fibres, is to be sensed against a background, which is likewise formed by the fibre stream and acts as a reference quantity. On the other hand, the reference quantity may be formed, for example, also by a background which is periodically or continuously adapted to the material to be measured. A possible construction comprises, for example, a channel for a loosened fibre stream and a channel, arranged parallel thereto, for a retained fibre stream. The channel for the loosened fibre stream is to be permeable to light and the channel for the retained fibre stream is to be permeable to exactly the same light at one side. The loosened fibre stream is then sensed or viev/ed against the background of the retained part of the same stream or of a further fibre stream.
The advantages achieved by the invention are in particular that the comparison process or processes, which precede a decision about the absence or presence of impurities, automatically adapt continuously to the true conditions of the fibres carried along in the fibre stream. The adaptability is to be regarded as stable and robust so long as the precondition is met that, from a statistical viewpoint, impurities are rare in comparison to good fibre material. The same advantages are achieved when a fibre stream, which has already been cleaned and freed of impurities, is used as a reference quantity.

There follows a detailed description of the invention by way of example and with reference to the accompanying drawings. The drawings show:
Figure 1 a diagrammatic view of a device according to
the invention,
Figure 2 a simplified view of basic structural
features of the device and
Figures 3 to 6 simplified views of further embodiments of
the device according to the invention*
Fig. 1 shows, by way of example, part of a cleaning machine for flocks which produces a highly loosened fibre stream 1, The machine comprises, for example, a retaining channel 2, an exhaust air channel 3 and a channel 4 for cleaned flocks or fibres. Also shown are two small feed rollers 5 and 6, a cleaning roller 7, a cutter screen 8 and a drive 9 for the feed rollers 5, 6 and the cleaning roller 7. To said extent, the machine is a known cleaning machine. In one region 10, however, the retaining channel 2 and the channel 4 are each provided with a window 11, 12, 13 so that said channels are permeable to light in the direction of a double arrow 14, i.e. are, for example, of a transparent design. Said arrangement is used to enable sensing of the fibre stream 1 in the channel 4 from the direction of the arrow 14, e.g. by means of a sensor. For said purpose, the retained fibres 15 in the retaining channel 2 form a background or even a reference quantity for the flocks or fibres in the fibre stream 1, which reference quantity is continuously adapted at least at intervals or, in the present case, by the slow, continuous forward motion of the fibres 15.

Fig. 2 shows in a simplified manner a path of rays 16 sych as cirises during the detection of impurities in the device according to Fig. 1 and also in the devices to be described below. Disposed along an optical axis 17 are a line or point sensor 18, an objective 19, a foreground or object surface 20 and a background 21 or reference surface. Disposed as light sources on both sides of the optical axis 17 in front of the foreground 2 0 and in front of the background 21 are, for example, gaseous discharge tubes or tubular incandescent lamps with approximately elliptical reflectors 22, 23, 24 and 25. One tubular light source 26 lies in each case at a focal point of the ellipse of the associated reflector 27, while the other focal point is situated in such a way that the background 21 is uniformly lit. The light sources 22, 23 and 24, 25 are all of an identical design and are intended to illuminate the foreground 20 and the background 21 equally brightly. According to Fig. 1, the object surface 20 lies approximately in the centre plane of the channel 4, while the background 21 lies approximately in the window 13 of the side wall of the retaining channel 2. The depth of focus is preferably so great that, instead of the object surface, it is possible to talk of an object zone 28 which corresponds approximately to the depth of a channel for the flock flow. By means of the illustrated path of rays 16, the object zone 28 is imaged in a clearly defined manner and the background is imaged in a poorly defined, indistinct manner on the point or line sensor 18. A diffusing screen 29 may optionally also be disposed in the path of rays 15 between the object zone 28 and the background 21. The understanding is that, in the practical realization, a plurality of point sensors forming a line or a plurality of point or line sensors forming a field is provided.
Fig. 3 shows a further device for detecting impurities in a fibre stream. A loosened fibre stream 30, which in the present case comprises fibres combined into flocks 33 and

conveyed preferably pneumatically, e.g. in a laminar air flow, more or less loosely in the direction of an arrow 31, is fed in a channel 32. In said flow there are possibly also impurities F. The channel 32 has two windows 34, 35 lying opposite one another. Disposed next to or behind the channel 32 is a further channel 36 with a window 37, The windows 34, 35 and 37 are positioned relative to one another in such a way as to afford a view through the channel 32 into the channel 36. In the channel 36, flocks or fibres are retained in front of the window 37. Feed rollers 38, 39 are also used to control the flow of the retained fibres in the channel 36 in such a way that there are always fibres behind the window 37. Disposed in front of the channels 3 2 and 36 are, in each case, two light sources 40, 41 and 42, 43 which may, for example, take the form of standard tubular light sources and are used to illuminate the fibre streams behind the transparent windows 34 and 37 in the channels 32 and 36 in a uniform, equally powerful, shadow-free manner. A sensor 44 which may be a camera, for example, has a view through the channel 3 2 into the channel 36, Thus, the window 34 forms a first location for acquiring measured values and the window 37 forms a second location for acquiring mean values or reference quantities from a fibre stream. The sensor 44 is connected by a line 45 or a bus to an evaluation unit 46, which in turn is connected to a data output unit 47 such as, for example, a visual display unit or printer and to a data input unit 48 such as, for example, a keyboard. The evaluation unit 46 may, for example, comprise an image processing system which, on the bcisis of statistical features, further improves the differentiation between impurities and flocks. A line sensor may be provided for sensing radiation which is reflected or diffused by the fibre stream in the channel 32. The sensor 44, the evaluation unit 46, the data output unit 47 and the data input unit 48 are elements which are known as such and therefore not shown in greater detail here.

Fig, 4 shows a further construction of the device, in which however only one channel 50 is provided. Here, instead of the channel 36 (Fig. 3), a container 51 is provided which is filled with textile fibres corresponding to fibres in the channel 50. Said container 51 is designed so as to be transparent or open by means of a window 52 in the direction of the channel 50 and serves as a background for viewing the flock stream in the channel 50. The container 51 or its contents 53 may be periodically exchanged in order to adapt the background to variations in the flock stream in the channel 50 which are not to be detected as impurities, Also shown here is a sensor 54 for sensing the flock stream in the channel 50 using the contents 53 as a reference quantity. As contents 53, fibres or flocks are conceivable, which contain impurities or from which the impurities have already been removed.
Fig. 5 shows a further construction of the device which, as in Fig. 4, has only one channel 55 for a loosened flock stream. Here, instead of the channel 36 (Fig. 3), a surface 56 is provided which is illuminated by light sources 57, 58. For controlling the intensity and colour of the lighting of the surface 56, said light sources 57, 58 are connected by lines 59, 60 and a controller 61 to one another so that flocks in the channel 55 disappear against said background. This applies particularly to the region of an imacje 62 which lies in the field of vision of a sensor 63. Here, it is a matter of generating or simulating an image of a collection of textile fibres such as might be seen, for example, in the retaining channel 2. For said purpose, the surface 56^ 62 could also take further forms, e.g. it could also receive a projection of an image or be formed by a display screen. A line 64 moreover connects the controller 61 to the sensor 63.
Fig. 6 shows a further construction and application of the invention in connection with a carding machine 65, Provided

next to the carding machine 6 5 there is once more a channel 66 for a loosened flock stream. Said channel 66 preferably lies upstream of the carding machine. A sensor 67 is disposed on one side and a picture tube 68 is disposed on the other side of the channel 66. The sensor 67 and the picture tube 68 are connected by lines 69, 70 to a controller 71, which in turn is connected by a line 7 2 to a further sensor 73. The latter is disposed, in the present case, in the region of a stripping roller 74 in the carding machine. There are however additional places where such a sensor might be disposed. They are occupied by sensors 75 and 76. Sensor 75 is provided, for example, in the region of the outgoing fibre fleece, sensor 76 in the retaining chamber.
The mode of operation of the device is as follows: A fibre or flock stream containing impurities is loosened as far as possible so that the flocks are fed as separately as possible in an air stream such as arises in the channels 4, 32, 50, 55, 66. The manner in which the flocks are separated out is known as such and therefore not shown in detail here, except for the cleaning roller 7 in Fig. 1. The fibre or flock stream thus treated is conveyed parallel to, in front of or next to a background and visually inspected, e.g. by a sensor, the background being periodically or continuously adapted to variations of the flock or fibre stream. This is effected in particular to take account of gradually occurring changes in the colour or brightness of the fibre or flock stream in that the colour or the brightness of the background is adapted to the fibre or flock stream. To guarantee this, the fibre or flock stream is viewed against an adaptable background which preferably comprises the same fibre or flock material. Thus, in the fibre or flock stream there is a first location for measuring or sensing said stream and a second location where said stream acts as a reference quantity or as a background. In the device according to Fig. 1, the first

location is to be found in the region 10 and the second location in the retaining channel 2 by the window 13. Here, the two locations are placed in series along the fibre or flock stream. In the device according to Fig. 3, said locations (windows 34 and 37) are disposed next or parallel to one another and the fibre or flock stream is conveyed in two parallel streams. It is preferably to be ensured that the intensity of the lighting is equally high at both locations. For viewing the flock stream, said lighting is to be concentrated on a region around the axis 17 in the object zone 28 (Fig. 2). For the reference quantity or the background 21, the region between light sources 24 and 25 is to be uniformly lit.
In the device according to Fig. 3, a fibre stream 30 consisting of more or less large flocks 33, which for example substantially comprise cotton fibres possibly interspersed with impurities F, is fed in the channel 32. In the channel 36, the flocks or fibres are retained and moved only slowly in a downward direction. In the channel 32, they are moved more quickly in as loose a formation as possible. The purpose of said arrangement is that the retained fibres in front of the window 37 in the channel 36 form a background, which is adapted as time passes, for visual sensing by the sensor 44 of the flocks moving separately through the channel 32.
The same effect may be achieved by an arrangement of channels 2, 4 according to Fig. 1. Unlike the construction according to Fig. 3 where the channel 36 serving as a background and the channel 3 2 in which the fibre stream is sensed are connected in parallel, here the retaining channel 2 serving as a background is connected in series to the channel 4 for sensing the fibre stream. Furthermore, in said construction, the compressed flocks or fibres 15 are conveyed out of the retaining channel 2 by the feed rollers 5, 6 of a cleaning roller 7, which together with the cutter

screen 8 opens the flocks in a known manner. The opened flocks are sucked into the channel 4 where they move in a very separated-out manner past the windows 11, 12 and so may be viewed from direction 14-
The reference quantity, i.e. the background for the viewed flock stream is therefore adaptively variable because it always corresponds to the colour or the image of fibres provided on average. This may alternatively be simulated, in the manner possible with the devices according to Figs. 4 and 5- According to Fig. 4, the adaptation is simulated in that it may be effected, not continuously, but in discrete steps by exchanging the contents 5 3 or the container 51. According to Fig. 5, the material too is simulated in that, instead of real textile flocks or fibres with impurities, an image thereof is generated which preferably imitates only mean values of colour or brightness of the fibres and flocks. The image preferably shows the same material, e.g. in that it is a picture of the same cotton bale or the same delivery taken by a single sensor or by a camera and projected onto the surface 56. In the simplest case, the surface 56 is lit so brightly by the light sources 57, 58 that the individual flocks in the channel 55, which contain no impurities, do not stand out visually from the surface 56. The luminosity and colour of the light sources 57, 58 may be controlled by the controller 61, namely, for example, in such a way that flocks passing in front of the image 62 in the channel 55 do not stand out from the image 62 and that in the image 62 an average colour or brightness is generated. A signal from the sensor 63, which passes through the line 64 to the controller 61, adjusts the lighting in such a way that only greater colour variations stand out from the image 62 but the lighting is adapted to smaller gradual variations in the fibre stream.
In the construction according to Fig. 6, an - in terms of time and location - averaged colour or brightness image of a

fibre stream of the kind which may be generated at various points, for example, in a carding machine 6 5 by a single sensor or a camera is generated in the picture tube 68. The signal from said recording passes through line 7 2 to the controller 71 and from there through line 70 to the picture tube 68. The sensor 67 therefore detects impurities which stand out from the image in the picture tube 68. Through the line 69 the sensor 67 supplies a signal, which is used for a continuous colour or brightness adjustment in the controller 71 and hence corrects the colour and luminosity. The basic colour adjustment is set once at the sensor 73. Through a line 77 the sensor 67 produces a signal for the removal of impurities.
In conclusion, it should be stated that the signal produced in a sensor by the fibre flocks moving past is evaluated in a manner, which is known as such and therefore not described in greater detail here, and may be used for control of a removal of impurities from the flock stream in the channels 4, 32 in the manner already described in the publications cited in the introduction. The method and the device according to the invention however considerably improve the mode of operation of known sensors.



We Claim:
1. Method of detecting impurities (F) in a loosened fibre stream (1) of mainly textile fibres, wherein the fibre stream and at least one reference quantity are artificially visually sensed, characterized in that said reference quantity (15, 21, 53, 62, 68) is adapted at least from time to time.
2. Method according to claim 1, characterized in that mainly textile fibres are used as a reference quantity.
3. Method according to claim 2, characterized in that the reference quantity is represented as an image (62).
4. Method according to claim 1, characterized in that the reference quantity is derived from the fibre stream (1) itself*
5. Method according to claim 1, characterized in that the reference quantity is disposed in a reference surface (21) and the fibre stream is disposed at a distance from said reference surface in an object zone (28) in the same path of rays (16).
6. Method according to claim 5, characterized in that the object zone (28) is sensed in a clearly defined manner and the reference surface (21) is sensed in an indistinct manner.
7. Method according to claim 5, characterized in that a fibre stream (15, 1) flows in the object zone and in the reference surface.
8. Device for effecting the method according to claim 1, having a channel (4) for a loosened fibre stream (1), characterized in that the channel for the loosened

fibre streaxn is permeable to light and that a background is disposed as a reference quantity (15).
9. Device according to claim 8, characterized in that a channel (2, 36) which is of a transparent design at one side is provided for a retained fibre stream serving as a background.
10. Device according to claim 8, characterized in that associated with the channel for the loosened fibre stream (32, 55, 66) and with the background are light sources (40, 41, 42, 43, 57, 58, 68) .
11. Device according to claim 8, characterized in that the background is formed by an image (62) of a fibre stream on a surface (56).
12. Device according to claim 1, characterized in that a controlled picture tube (68) is provided as a background.
13. Device according to claim 9, characterized in that at two sides of the channel for the loosened fibre stream and at one side of the channel for the retained fibre stream there is a window (34, 35, 37), all of the windows being positioned relative to one another so as to afford a view through the channel (32) for the loosened fibre stream into the channel (36) for the retained fibre stream.
14. Device according to claim 8, characterized in that associated with the background is at least one lighting element (57, 58, 68), the luminosity of which is controllable by means of a controller (61, 71) .

15. Method of detecting impurities in a loosened fibre stream, substantially as hereinabove described and i1 lustrated with reference to the accompanying drawings.


Documents:

1628-mas-1997-abstract.pdf

1628-mas-1997-assignement.pdf

1628-mas-1997-claims filed.pdf

1628-mas-1997-claims granted.pdf

1628-mas-1997-correspondnece-others.pdf

1628-mas-1997-correspondnece-po.pdf

1628-mas-1997-description(complete)filed.pdf

1628-mas-1997-description(complete)granted.pdf

1628-mas-1997-form 1.pdf

1628-mas-1997-form 26.pdf

1628-mas-1997-form 3.pdf

1628-mas-1997-other documents.pdf


Patent Number 213898
Indian Patent Application Number 1628/MAS/1997
PG Journal Number 13/2008
Publication Date 31-Mar-2008
Grant Date 23-Jan-2008
Date of Filing 22-Jul-1997
Name of Patentee USTER TECHNOLOGIES AG
Applicant Address WILSTRASSE 11, CH-8610 USTER,
Inventors:
# Inventor's Name Inventor's Address
1 PETER F AEMMER BAUMLISACHERSTRASSE 36 CH-8907 WETTSWIL,
PCT International Classification Number B07C 05/342
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA