Title of Invention


Abstract A latching-valve system (10) includes a piezoelectric transducer (44) mounted on its housing (16). To change the valve's state, a microcontroller (54) causes a valve driver (58) to drive current through the actuator's coil (12). It continues driving current through the coil (12) until the transducer's output reaches a magnitude characteristic of the disturbance that typically results when the actuator's armature (22) reaches the end of its travel. At that point, the microcontroller (54) stops driving current through the coil. If the characteristic sound does not occur within a predetermined duration, the microcontroller (54) causes a voltage-multiplier circuit (Q1, L1, D1) to increase the voltage that the valve driver (58) applies to the coil.
Full Text FORM 2
[39 OF 1970]
COMPLETE SPECIFICATION [See Section 10; Rule 13]
ARICHELL TECHNOLOGIES, INC., an US Corporation of 55 Border Street MA 02165, United States of America,
The following specification particularly describes the nature of the invention and the manner in which it is to be performed:-

The present invention relates to an actuator system and in particular it relates to reduced energy consumption actuator.
For many automatic flow-control installations, such as automatic toilet and urinal flushers, one particularly stringent design requirement is that the system consume as little power as possible. The reason for this varies from case to case, but it is typically that the circuitry and other apparatus required to make the flusher"s operation automatic are quite frequently provided on a retrofit basis. That is, manual flushers are being converted to automatic operation. Unless the retrofit unit can be battery-operated or otherwise self-contained, the installation process is quite expensive, typically requiring that walls be opened to provide the necessary wiring. That expense can be avoided if the automatic system is battery-operated, but a battery-operated system"s acceptability depends greatly on battery life.
A significant determinant of the battery"s longevity is the energy that valve actuation consumes. So retrofit systems tend to employ valves of the latching variety, i.e., valves whose actuators require power to open or close the valve but not to keep it open or closed. The use of valves that employ such actuators has greatly extended the feasibility of employing battery-operated systems. Still, such systems would be more attractive if battery longevity could be extended further.
The present invention achieves this result by reducing the energy waste that usually occurs in driving the actuator"s armature. The approach employed by the invention involves determining when the annature has reached the end of its travel, in accordance with one of the invention"s aspects, actuator-coil drive ends when it has. This can reduce energy consumption greatly, because coil-drive duration thereby does not always need to be long enough to meet worst-case requirements. This can result in a significant battery-longevity increase.

WO 01/29464 PCT/US00/28139
In accordance with another of the invention"s aspects, the drive applied to the actuator coil is increased if the armature has not reached the end of its travel within a predetermined duration. This allows less coil drive to be used ordinarily, since the coil drive does not always need to be great enough to overcome the resistance that can oc-casionally result from, for instance, accretion of foreign matter. This coil-drive reduc-tion, too, can contribute to longevity,
The invention description below refers to the accompanying drawings, of which:
Fig. 1 is a cross-sectional view of a latching valve on which a piezoelectric transducer has been mounted; and
Fig. 2 is a block diagram of a control system for the valve"s actuator.
Fig. 1 shows in cross section a valve system 10 that includes a latching actuator. The actuator includes a coil 12 wound on a bobbin 14 mounted in an actuator hous-ing 16. In the illustrated position, a latching magnet 18 mounted on the bobbin 14 acts through a rear pole piece 20 to hold an armature 22 in an upper position against the force that a return spring 24 exerts on a shoulder 26 formed near the armature"s lower end. In the Fig. 1 position, a resilient valve member 28 at the bottom of the armature is spaced from a valve seat 30 formed about a valve inlet 32. Fluid can therefore flow through inlet 32 and an annular cavity 34 to the valve"s outlet 36.
To close the valve, a drive voltage applied through terminals 37 and 38 drives current through the coil 12. Terminal 38 is in ohmic contact with the conductive hous-ing 16, which a contact spring 39 in turn connects to one end of the coil 12. A lead 40 connects the coil 12"s other end to terminal 37, and a non-conducting bushing 41 insu-lates terminal 37 from the housing 16.
The drive voltage"s polarity is such that the resultant magnetic flux, guided largely by the ferromagnetic housing 16, rear pole piece 20, and front pole piece 42, opposes that of the permanent magnet 18. This breaks the magnet 18"s hold on the ar-

WO 01/29464 PCT/US00/28139
mature 22 and allows the return spring 24 to urge the valve member 28 onto the valve seat 30. Once the valve has thus closed, the return spring keeps it closed without any further assistance from the coil; the armature 22"s increased distance from the magnet makes the magnetic force on the armature 22 less than that of the return spring 24.
5 To open the valve, coil drive is applied to leads 37 and 38 in the opposite direc-
tion, so the resultant flux reinforces that of the permanent magnet 18 and overcomes the force of the return spring. The armature 22 therefore returns to the Fig. 1 position, where the permanent magnet 18"s force is great enough to hold the armature 22 against the return spring 24"s force without assistance from the coil.
10 Because of the latching valve"s bistable nature, control circuits that operate it
typically discontinue current flow after the valve has reached the desired state. Since the time required for the valve to reach the desired state can vary widely, conventional control circuits make the current-flow duration relatively long so that it will be ade-quate for worst-case conditions. Since most actuations are not performed under worst-is case circumstances, though, coil drive typically continues for some time after the valve reaches its stable position. This is a waste of battery energy. To reduce this waste, a system that employs the present invention monitors the armature to determine whether the armature has reached its endpoint, and it stops applying coil drive when that occurs. To this end, the illustrated embodiment takes advantage of the sound that the armature 20 makes when it reaches either end of its travel.
We use the term sound here in the broad sense of a pressure or strain wave. In most embodiments, moreover, the predominant frequency components of the "sound" are typically above the audible range. The illustrated embodiment"s sensor is a pie-zoelectric transducer 44 that responds to vibrations in the housing wall. The piezoelec-25 trie element 44"s size and shape have typically been so chosen as to maximize its re-sponse to the predominant frequency components, and it normally is mounted in a lo-cation where the sounds to be detected are greatest in amplitude or most distinguishable from noise.
A terminal 46 provides electrical communication to one of the transducer 44"s 30 electrodes through a contact spring 48 that a plastic cap 49 secured to the housing holds in place. The transducer 44"s other electrode can share terminal 38 with the coil be-

WO 01/29464 PCT/US00/28139
cause the transducer is secured to the housing 16 by conductive bonding between the housing and that electrode.
As Fig. 2 shows, a control circuit for the valve includes a sensor amplifier and envelope detector 50, which receives the transducer output. The amplifier and enve-5 lope detector 50 includes an amplifier tuned to the expected sound"s predominant (typi-cally ultrasonic-range) frequency components, rectifies the resultant filtered signal, and low-pass filters the result to produce an output representative of the tuned-amplifier output"s envelope. When the armature 22 reachesan endpoint and causes housing vi-bration, the resultant envelope value exceeds a threshold that a comparator 52 applies. 10 Since in the illustrative embodiment the sonic amplitude is higher when the valve opens than when it closes, a microcontroller 54 sets a comparator threshold whose value when the valve is being opened is different from the value it has when the valve is being closed,
A microcontroller 54 may operate the valve in response to triggering by an ob¬15 ject sensor 56. For example, it may open the valve when the sensor detects user"s leaving the flusher"s vicinity, and it may then close it once the valve has been open for a predetermined duration. To open the valve, the microcontroller sets an OPEN signal applied to a valve-driver circuit 58. This causes that circuit to drive current through the actuator 60"s coil in the direction that will cause the valve to open.
20 When that current starts flowing, comparator 52"s output initially indicates that
amplifier 50"s output is less than the threshold, so the amplifier is not receiving sound of a magnitude consistent with the armature"s reaching the end of its travel. The mi¬crocontroller 54 therefore keeps the OPEN signal asserted. But comparator 52"s output changes in response to the sound made by the armature 22 at the end of its travel.
25 When the armature 22 has reached that point, the valve will stay open without current flow, so the microcontroller de-asserts its OPEN output and thereby causes the valve driver 58 to stop applying drive current to the actuator 60"s coil. The result usually is that the current-flow duration has been much less than the time required to open the valve under worst-case conditions, so the system has saved considerable energy.
30 To close the valve, the microcontroller 54 asserts its CLOSE output and thereby
causes the valve driver 58 to drive the actuator 60 in the opposite direction. Again, the

WO 01/29464 PCT/US00/28139
microcontroller allows current flow only until comparator 52 informs it that the arma-ture has reached the end of its travel.
The invention can be used to control not only the drive signal"s duration but also its magnitude. A coil-drive level high enough for ordinary operation may occa-5 sionally be inadequate, and the coil-drive level can be increased if the armature fails to reach the endpoint. One way to increase the coil-drive level is to increase the voltage on capacitors discharged through the actuator coil.
Fig. 2 depicts the valve driver 58 as being powered by a battery 62. The valve driver 58 typically includes energy-storage capacitors, which the battery 62 charges up 10 between actuations through an inductor L1 and a Shottky diode D1. When the micro-controller 54 asserts its OPEN or CLOSE signal, the driver discharges the capacitors through the actuator 60"s coil. Ordinarily, it is the voltage of battery 62 itself that de-termines the voltages to which the capacitors will be charged, and this in turns deter-mines coil current and thus armature force.
15 Now, factors such as the accretion of foreign matter may make it harder than
usual to open or close the valve. But energy use that normally is unnecessarily high would result if the battery voltage were set high enough to deal with such more-difficult circumstances. The illustrated embodiment therefore uses a battery-voltage level that is adequate for normal situations but not for more-difficult ones.
20 Instead, it increases the capacitor voltage if the armature has not reached the end
of its travel within a predetermined maximum current-flow duration. Specifically, the microcontroller 54 turns the valve driver off temporarily when the predetermined maximum current-flow duration is reached, and it begins to pulse a transistor Ql through a current-limiting resistor Rl. During each pulse, the transistor draws current
25 from the battery through inductor LI. Because of diode Dl, though, it does not dis-charge the valve driver"s capacitors. At the end of each pulse, transistor Q1 turns off, and the resultant electromotive force in inductor LI causes current to continue to flow and thereby charge the drive circuit"s capacitors through diode D2 even if those batter-ies" voltage exceeds that of the battery 62. So those capacitors can be charged to volt-
30 ages that exceed the battery"s.

WO 01/29464 PCT/US00/28139
To achieve the appropriate capacitor voltage, a comparator 64 compares the ca-pacitor voltage to a level that microcontroller 54 sets. In response to the comparator"s resultant output, the microcontroller increases the pulses" duty cycle if the capacitor voltage is less than the threshold, and it decreases their duty cycle if the capacitor volt-5 age exceeds the threshold. The threshold is set higher than the battery voltage, so the force on the armature is greater and more likely to open or close the valve when the mi-crocontroller then turns the valve driver on again.
The illustrative embodiment is only one of many that can employ the present invention"s teachings. For example, although we prefer to use a sonic sensor—in par-
10 ticular, an ultrasonic transducer other ways of detecting the end of armature travel can be used instead. Also, although the illustrated embodiment controls coil-drive duration both when the valve is being opened and when it is being closed, some embodiments may control that duration only during opening or only during closing. And latching-actuator systems that operate mechanisms other than valves can also benefit from the
15 present invention"s teachings.
Moreover, although we have employed a simple amplitude criterion to deter-mine whether the armature has reached the end of its travel, other criteria may be found preferable for some applications. For instance, the sonic signal could be sampled and compared by signal processing with a stored waveform known to be characteristic of 20 the armature"s reaching one of its endpoints. The stored signal may be different for dif-ferent endpoints, and there may be circumstances in which it will be considered valu-able to use such a comparison to distinguish between the actuator"s two states.
The present invention can thus be employed in a wide range of embodiments and constitutes a significant advance in the art.
25 What is claimed is

We Claim:
1. An actuator system comprising:
a) an actuator (60) having an armature (22) and a coil (12) operable by application of a coil drive thereto in a first drive direction to conduct current in a first current direction and thereby tend to drive the armature to a first end position;
b) an endpoint detector (44) that detects the armature"s reaching the first end position and responds thereto by generating a detector output indicative thereof; and
c) a control circuit operable to begin application of coil drive to the coil in the first direction at a normal first-direction drive level and, if the detector output has not indicated within a predetermined first drive duration thereafter that the armature has reached the first end position, to apply coil drive to the coil in the first direction at an elevated first-direction drive level higher than the normal first-direction drive level.
2. An actuator system as claimed in claim 1 wherein:
the coil is operable by application of a coil drive thereto in a second drive direction to conduct current in a second current direction and thereby tend to drive the armature to a second end position:
the endpoint detector responds to the armature"s reaching the second end position by generating a detector output indicative thereof; and
the control circuit is operable to begin application of coil drive to the coil in the second direction at a normal second-direction drive level and, if the detector output has not indicated within a predetermined second drive

duration thereafter that the armature has reached the second end position, to apply coil drive to the coil in the second direction at an elevated second-direction drive level higher than the normal second direction drive level.
3. An actuator system as claimed in claim 2 wherein the first and second drive durations are the same.
4. An actuator system as claimed in claim 2 wherein the first and second drive durations differ.
5. An actuator system as claimed in claim 1 wherein the control circuit is constructed to stop applying the coil drive in the first direction after the predetermined normal first-direction drive duration before driving the coil at the elevated first-direction drive level.
6. An actuator system as claimed in claim 2 wherein the control circuit stops applying the coil drive in the second direction after the predetermined normal second-direction drive duration before driving the coil at the higher level.
7. An actuator system as claimed in claim 1 wherein the detector comprises a sound sensor.
8. An actuator system as claimed in claim 7 wherein the sound sensor comprises a piezoelectric transducer.
9. An actuator system as claimed in any one of the above claims wherein the actuator is a latching actuator including a latching magnet (18).
10. An actuator system as claimed in any one of the above claims arranged to control operation of a valve between an opened state and a closed state in a flow control system.

11. An actuator system as claimed in claim 10 coupled to an object sensor that produces an object-sensor output; and the control circuit being constructed to provide application of the coil drive to the coil depending on the object-sensor output.
12. An actuator system as claimed in any one of the above claims wherein said control circuit comprises a microcontroller.
13. An actuator system as claimed in claim 12 comprising a valve driver (58) constricted to provide said coil drive upon receiving a signal from said microcontroller.
14. An actuator system as claimed in claim 12 or 13 comprising:
a power controller, including a capacitor, constructed to deliver a voltage signal to said valve driver, and
a comparator (64) constructed to compare a level of said voltage signal to a signal level set by said microcontroller.
Dated this 15th April, 2002





in-pct-2002-00471-mum-cancelled pages(12-12-2005).pdf






in-pct-2002-00471-mum-form 1(12-12-2005).pdf

in-pct-2002-00471-mum-form 13(07-01-2008).pdf

in-pct-2002-00471-mum-form 13(14-08-2007).pdf

in-pct-2002-00471-mum-form 19(11-10-2004).pdf

in-pct-2002-00471-mum-form 2(granted)-(12-12-2005).doc

in-pct-2002-00471-mum-form 2(granted)-(12-12-2005).pdf

in-pct-2002-00471-mum-form 3(15-04-2002).pdf

in-pct-2002-00471-mum-form 5(15-04-2002).pdf



in-pct-2002-00471-mum-petition under rule 138(12-12-2005).pdf

in-pct-2002-00471-mum-power of authority(05-12-2002).pdf

in-pct-2002-00471-mum-power of authority(12-12-2005).pdf

Patent Number 213498
Indian Patent Application Number IN/PCT/2002/00471/MUM
PG Journal Number 09/2008
Publication Date 29-Feb-2008
Grant Date 07-Jan-2008
Date of Filing 15-Apr-2002
Applicant Address 55 BORDER STREET, WEST NEWTON, MA 02165, USA
# Inventor's Name Inventor's Address
PCT International Classification Number F16K31/08
PCT International Application Number PCT/US00/28139
PCT International Filing date 2000-10-11
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/422,553 1999-10-21 U.S.A.