Title of Invention

A METHOD AND PLANT FOR REDUCING THE SOx EMISSION FROM A PLANT FOR MANUFACTURING CEMENT CLINKER

Abstract A method for reducing the SO<sub>x</sub> emission from a plant for manufacturing cement clinker by which cement raw meal is preheated and burned in a plant comprising a cyclone preheater and a kiln, characterized in that a catalyst in the forn1 of a chloride compound and/or a mixture of several chloride compounds, having the property that it will be present in solid or melted forn1 in the zone of the preheater where SO<sub>2</sub> is forn1ed and it thus must be effective and in vaporized forn1 in the kiln, is introduced into the preheater at its uppern1ost or next-to-uppern1ost cyclone stage, that the catalyst is directed down through the preheater to the kiln, that a partial amount of the kiln exhaust gas stream containing the catalyst in vaporized forn1 is extracted from the kiln, that the extracted exhaust gas stream is cooled off so that the catalyst is present in solid forn1, that solid matter is separated from the cooled exhaust gas stream and that at least some of the separated solid matter containing the catalyst is recirculated for renewed introduction into the preheater.
Full Text

METHOD FOR REDUCING THE SOx EXMISSION FROM A PLANT FOR MANUFACTURING CEMENT CLINKER AND SUCH PLANT
The present invention relates to a method for reducing the SOx emission from a
plant for manufacturing cement clinker by which cement raw meal is preheated
and burned in a plant comprising a cyclone preheater and a kiln. The invention
Plants of the aforementioned kind for manufacturing cement clinker are generally known from the literature.
The emission of S02 from such modern kiln plants for manufacturing cement clinker is normally relatively low due to the fact that the sulphur contained in the fuel input for the kiln and for any calciner is bound very effectively in the form of sulphate which is discharged from the kiln embedded in the clinker. However, a certain emission from the preheater may occur if the utilized raw materials contain sulphide as is the case in the frequently occuring minerals pyrite and marcasite.
The reason for this is that pyrite FeS2 is decomposed in the preheater at temperatures around 550°C according to the equation:

whereafter the evaporated S is immediately converted by burning into S02. FeS is somewhat more resistant and reaches the calcining zone before it is bumed, and the S02 thus generated is subsequently bound by CaO in similar way as that produced from the fuel. This happens in accordance with the reaction equation:

In case of a pyrite content' in the raw materials, there is a risk that about one half of the sulphur content may escape in the form of S02.

To reduce the extent of any such S02 escape, it is known practice to introduce an absorbent in the form of CaO, Ca(OH)2 or other basic components at some location in the preheater so that S02 can be bound in the form of sulphite:
(3) CaO + S02 = CaS03
At a subsequent stage of the process, sulphite will be converted into sulphate.
A significant disadvantage of this known method is that it involves use of a surplus amount of absorbent, making the method relatively costly, particularly if the absorbent which is being used has to be purchased from an external source.
From WO 93/10884 a method is known by which exhaust gases containing CaO-laden dust are extracted from a location near the calciner and directed to the location in the preheater where the absorption of S02 is to take place. The method works, but it requires a quite substantial surplus amount of CaO, thus somewhat reducing the efficiency of the preheater as a heat exchange unit
The Danish patent application No. PA 1999 00867 provides an improved method by which calcined cement raw meal is extracted, slaked and ground before it is introduced into the preheater. However, this method also has the disadvantage of reduced efficiency of the preheater as a heat exchange unit
The purpose of the present invention is to provide a method as well as a plant for manufacturing cement clinker by means of which a cheap and effective reduction of the SOx emission is achieved without entailing a noteworthy reduction in the efficiency of the preheater.
This is achieved by a method of the kind mentioned in the introduction, and being characterized in
- that a catalyst in the form of a chloride compound and/or a mixture of several chloride compounds, having the properly that it will be present in solid or

must be effective, and in vaporized form in the kiln, is introduced into the preheater at its uppermost or next-to-uppermost cyclone stage,
- that the catalyst is directed down through the preheater to the kiln,
- that a partial amount of the kiln exhaust gas stream containing the catalyst in
vaporized form is extracted from the kiln,
- that the extracted exhaust gas stream is cooled off so that the catalyst is
present in solid formf
- that solid matter is separated from the cooled exhaust gas stream and
- that at least some of the separated solid matter containing the catalyst is recirculated for renewed introduction into the preheater.
Hereby is obtained an effective reduction of the S02 emission. The reason for this is the surprising observation that chloride compounds and/or a mixture of several chloride compounds having the aforementioned properties in respect to melting point and boiling point will promote the reaction catalytically according to the equation

and it will further promote the reaction:

So, surprisingly, it has proved possible to catalyze that S02 reacts with calcium carbonate CaC03l which, as rt is, constitutes about 80% of the raw materials. Since one reactant, namely CaC03 is present in great abundance, the SOz reduction may be effected without any use of extraneous chemicals, and, furthermore, the reaction, and hence the S02 reduction must be assumed to be approximately complete.

The plant for carrying out the method according to the invention is characterized in that it comprises means for introducing a catalyst into the preheater at its uppermost or next-to-uppermost cyclone stage as well as a bypass system comprising means for extracting a partial exhaust gas stream from the kiln, means for cooling the extracted exhaust gas stream, means for separating solid matter from the cooled exhaust gas stream, and means for recirculating at least a part of the separated solid matter containing the catalyst for renewed introduction into the preheater.
Additional characteristics of the plant will be apparent from the detailed description provided in the following.
The catalyst may be separately introduced into the preheater. However, it is preferred that the catalyst is mixed with the raw materials, preferentially in the raw mill plant, thereby introducing it into the preheater together with the raw materials. It is also preferred that the separated solid matter containing the catalyst which is recirculated for renewed introduction, is mixed with the raw materials in the raw mill plant. In cases where the amount of recirculated catalyst is insufficient, it will be possible to supplement with fresh catalyst
Various chloride compounds such as CaCI2, KCI, NaCI, MnCI2 and FeCI3 may be used as the catalyst The chloride compounds may be separately used, but in order to attain a catalyst having the appropriate properties, particularly in respect to the melting point, it is preferred that a mixture of different chloride compounds is used. Since S02 is essentially formed in the preheater at a temperature above 550°C, the melting point of the catalyst should advantageously be less than 550°C at a pressure of 1 atmosphere.
A number of existing kiln plants incorporate a bypass system designed for venting chloride and alkali metals from the kiln system. In such cases, the bypass system will also be used for extracting, cooling and separating kiln exhaust gases which contain the catalyst. However, in this case the separated

solid matter will contain constituents such as CI, Na and K which are undesirable elements in the cement, and, therefore, only a portion of this material will be recirculated for renewed introduction into the preheater, and, furthermore, this will make it necessary to supplement with fresh catalyst.
The invention will be explained in further details in the following with reference being made to the drawing which is diagrammatic, with its only figure showing a plant for carrying out the method according to the invention.
In the figure is seen a cement manufacturing plant comprising a cyclone preheater 1 consisting of the cyclones 2, 3 and 4, a calciner 5 with a subsequent separating cyclone 6 and a rotary kiln 7. The plant further comprises a clinker cooler 9 for cooling of burned cement clinker, and a duct 11 for conducting preheated cooling air to the calciner 5. Raw material from a raw mill plant 21 is introduced into an exhaust gas duct 8, which connects the two uppermost cyclones 2, 3 of the preheater and it is preheated in counterflow to the exhaust gas on its passage through the three cyclones, whereafter it is calcined in the calciner 5. From the bottom outlet of the separating cyclone 6 the calcined raw material is routed to the rotary kiln 7. The exhaust gas from the rotary kiln 7 and the calciner 5 is drawn from the calciner 5 through the cyclone 6 and up through the preheater 1 by means of a fan 10.
According to the invention a catalyst is supplied in the form of a chloride compound and/or a mixture of several chloride compounds into the preheater at its uppermost or next-to-uppermost cyclone stage which constitute the zone of the preheater in which S02 is formed. The catalyst can be separately supplied into the exhaust gas duct 8 via an opening 8a or in the corresponding exhaust gas duct 12 which connects the cyclone 4 with cyclone 3. However, it is preferred that the catalyst is supplied to the raw mill plant 21 in order to attain an effective mixture with the raw materials and that the catalyst is thereby supplied to the preheater via the opening 8a intermingled with the raw materials.

Subsequently, the catalyst will be carried, together with the raw materials, down through the preheater 1 to the kiln 7. In the preheater the catalyst will catalyze the absorption of S02 by promoting its reaction with CaO for formation of CaS03 and also its reaction with CaC03 for formation of CaS03 and C02. The formed CaS03 will react further to form CaS04 which will be discharged from the kiln embedded in the clinker.
Having completed its task in the preheater, the catalyst will end up in the rotary kiln where, due to the prevailing kiln temperature of more than 1100°C, the catalyst will be present in vaporized form which is an essential condition for extracting the catalyst from the kiln system. This is done by means of a duct 14 by extracting a partial exhaust gas stream which contains the catalyst in vaporized form and dust, and flowing out of the material inlet end of the rotary kiln.
The extracted exhaust gas stream is then cooled partly by injecting air into the duct 14 via the air injection means 16 and partly in a conditioning tower 15 subject to the injection of water, so that the catalyst is present in solid form. The catalyst will essentially be condensed to the dust in the form of alkali chloride during the cooling process.
After cooling, solid matter is separated from the cooled exhaust gas stream in a filter arrangement 17 wherefrom the filtered exhaust gas stream, via a fan 18 and a stack 19, is released into the atmosphere, whereas at least a portion of the filtered-off material containing the catalyst is recirculated to the raw mill plant 21 or alternatively directly to the preheater by means of unspecified conveying means 20 for renewed introduction into the preheater. Here the raw mill plant is shown merely as a box to which is added a number of raw material components A, B and C and possibly a catalyst




Claim
1. A method for reducing the SOx emission from a plant for manufacturing
cement clinker by which cement raw meal is preheated and burned in a plant
comprising a cyclone preheater (1) and a kiln (7), characterized in
- that a catalyst in the form of a chloride compound and/or a mixture of several chloride compounds, having the properly that it will be present in solid or melted form in the zone of the preheater where S02 is formed and it thus must be effective and in vaporized form in the kiln, is introduced into the preheater (1) at its uppermost or next-feMippermost cyclone stage (2, 3),
- that the catalyst is directed down through the preheater (1) to the kiln (7),
- that a partial amount of the kiln exhaust gas stream containing the catalyst in vaporized form is extracted from the kiln (7),
- that the extracted exhaust gas stream is cooled off so that the catalyst is present in solid form,
- that solid matter is separated from the cooled exhaust gas stream and
- that at least some of the separated solid matter containing the catalyst is recirculated for renewed introduction into the preheater (1).

2. A metod according to claim 1, characterized in that the catalyst is separately introduced into the preheater (1).
3. A method according to claim 1, characterized in that the catalyst is mixed with the raw materials, preferentially in the raw mill plant (21), and is introduced into the preheater (1) mixed with the raw materials.
4. A method according to claim 1, characterized in that the separated solid matter containing the catalyst which is recirculated for renewed introduction, is mixed with the raw materials in the raw mill plant (21).
5. A method according to claim 4, characterized in that fresh catalyst is supplemented.

6. A method according to claim 1, characterized in that the catalyst comprises one or several chloride compounds such as CaCI2, KCI, NaCI, MnCI2 and FeCI3.
7. A method according to claim 6, characterized in that the catalyst has its melting point at less that 550°C at a pressure of 1 atmosphere.
8. A plant for carrying out the method according to claim 1 comprising a cyclone preheater (1) and a kiln (7), characterized in that it comprises means (8a) for introducing a catalyst into the preheater at its uppermost or next-to-uppermost cyclone stage as well as a bypass system comprising means (14) for extracting a partial exhaust gas stream from the kiln, means. (15,16) for cooling the extracted exhaust gas stream, means (17) for separating solid matter from the cooled exhaust gas stream, and means (20) for recirculating at least a part of the separated solid matter containing the catalyst for renewed introduction into the preheater.

9. A method for reducing the sox emission from a plant for manufacturing cement clinker, substantially as hereinabove described and illustrated with reference to the accompanying drawings.


Documents:

459-chenp-2003-abstract.pdf

459-chenp-2003-claims duplicate.pdf

459-chenp-2003-claims original.pdf

459-chenp-2003-correspondnece-others.pdf

459-chenp-2003-correspondnece-po.pdf

459-chenp-2003-description(complete) duplicate.pdf

459-chenp-2003-description(complete) original.pdf

459-chenp-2003-drawings.pdf

459-chenp-2003-form 1.pdf

459-chenp-2003-form 26.pdf

459-chenp-2003-form 3.pdf

459-chenp-2003-form 5.pdf

459-chenp-2003-other documents.pdf

459-chenp-2003-pct.pdf


Patent Number 209635
Indian Patent Application Number 459/CHENP/2003
PG Journal Number 50/2007
Publication Date 14-Dec-2007
Grant Date 05-Sep-2007
Date of Filing 02-Apr-2003
Name of Patentee F.L. SMIDTH A/S
Applicant Address Vigerslev Alle 77, DK-2500 Valby
Inventors:
# Inventor's Name Inventor's Address
1 SKAARUP JENSEN, Lars Hyrdeengen DK-2625 Vallensbaek
2 SKYUM JONS, Ebbe Skovmose Alle 52A DK-3500 Vaerlose
PCT International Classification Number B01D 53/86
PCT International Application Number PCT/IB2001/001713
PCT International Filing date 2001-09-19
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 PA 2000 01479 2000-10-05 Denmark