Title of Invention

A MANGANESE DRY BATTERY

Abstract A manganese dry battery which is stable and has an excellent gas tightness with any type of heat-shrinkable tube. The manganese dry battery comprises an anode zinc can (1), a cathode mixture (2) contained in the can, a separator (14) interposed between the can and the mixture, a carbon rod (3) inserted in the center of the mixture, a gasket (5) sealing the opening of the can and having a hole in the center thereof through which the carbon rod is inserted and a heat-shrinkable tube (6) covering the circumference of the can with the outer periphery of the gasket. The heat-shrinkable tube comprises at least one selected from the group consisting of polystyrene, polypropylene, polyethylene and a copolymer of ethylene and propylene, and a sealant (9) is applied at least between the opening end of the can and the gasket
Full Text

DESCRIPTION
MANGANESE DRY BATTERY
Technical Field
The present invention relates to a manganese dry battery with excellent gas tightness, in particular, to a cylindrical manganese dry battery.
Background Art
An of a manganese dry battery in accordance with a prior art is described in reference to FIG. 1, which is a partial cross sectional view of a cylindrical manganese dry battery.
In FIG. 1, a cathode mixture 2 is contained in an anode zinc can 1 via a separator 14. In the center of the cathode mixture 2, a carbon rod 3 is inserted. The opening 4 of the anode zinc can 1 is sealed by a geisket 5, The carbon rod 3 fits with the gasket 5 through the hole in the center thereof. The opening end 4 of the anode, zinc can fits with the gasket 5 at groove having a shape corresponding to the opening end 4, or is fixed onto the gasket 5 by pressing it against the gasket 5 and burying it in the gasket- The circumference of the anode zinc can 1 and the outer surface of the gasket 5 are covered with a heat-shrinkable tube 6 up to the middle point between the periphery of the gasket and the

carbon rod for securing the insulation- The tube 6 can also serve to fix the gasket 5* Here, the numeral 16 denotes an insulating paper.
A sealant 9 is applied on the outer surface of the gasket 5 in order that the end periphery 10 of the tube 6 is buried therein. Furthermore, the sealant 9 is applied around the hole of the gasket 5, i.e., on the outer surface 7 and inner surface 8 of the geisket 5.
The sealant 9 is applied in the following manner, for example. The carbon rod 3 is inserted into the cathode mixture 2 in the center thereof. Then, a proper amount of sealant 9 is applied to a part of the carbon rod 3 ditch is to fit with the gasket 5. Next, the opening of the anode zinc can 1 is sealed by the gasket 5 which has the hole by putting the gasket 5 onto the opening, and fitting the carbon rod 3 with the gasket 5 through the hole. As a result, the gap between the carbon rod 3 and the gasket 5 is tightly sealed with the sealant 9. At this time, the se2Llant 9 gathers to the inner surface 8 of the gasket arom the hole. Next, a predetermined portion is wrapped with the tube 6. After that, a proper amount of the sealant 9 is applied to the outer surface of the gasket 5 in order that the end periphery 10 of the tube 6 and the outer surface 7 around the hole are buried in the sealant 9.
A cap 12 covers the gasket 5 and the protruding part 11 of the carbon rod 3, via the sealant 9 and the tube 6. The

side of the battery is entirely covered with a metal jacket 13 via the tube 6* Further, the curled edge of the metal jacket 13 is fixed to the outer periphery of the cap 12 via an insulating ring 15.
Conventionally, polyvinyl chloride, that is to say PVC, has been used for the heat-shrinkable tube 6- However, PVC has the problem that it generates hydrogen chloride in incineration- Therefore, in recent years, a heat-shrinkable tube ccwnprising polystyrene has gained attention as a substitute (Japanese Laid-Open Patent No. Hei 6-349501).
However, in the case where a battery having the same structure as that of the prior art is assembled by using a tube comprising polystyrene, a problem arises that the battery performance easily deteriorates- The problem of the deterioration was considered to be based on the difference in sealing property between the tube comprising polystyrene and the one comprising PVC Therefore, from that point of view, studies have been carried out for improving the battery performance without obtaining a satisfactory result.
Further, asphalt has been conventionally used as the sealant 9. However, asphalt easily becomes hard while preserving the battery and easily becomes cracked. The gas tightness of the battery is lowered even by a slight crack.
Disclosure of Invention
Under the above circumstances, the relations between

the oxygen permeability of the heat-shrihfcable tube and the battery performance have been studied. As a result, it has turned out that the cause of the deterioration of the battery performance is that the oxygen permeability of the tube comprising polystyrene is higher than that of PVC- That is to say, when a tube comprising polystyrene is used, comparatively large amount of oxygen permeates through this tube. Then, the oxygen leaks into inside of the anode zinc can from the space between the opening end of the anode zinc can and the gasket, so as to cause the deterioration of the battery.
The present invention is based on the above finding. That is to say, the present invention relates to a manganese dry battery comprising an anode zinc can of a bottomed cylindrical shape, a cathode mixture contained in the anode zinc can, a separator interposed between the anode zinc can and the cathode mixture, a carbon rod inserted in the center of the cathode mixture, a gasket sealing the opening of the anode zinc can and having a hole in the center thereof through which the carbon rod is inserted, and a heat-shrinkable tube covering the circumference of the anode zinc can and the outer periphery of the gasket, veteran the heat-shrinkable tube comprises at least one selected from the group consisting of polystyrene, polypropylene, polyethylene and a copolymer of ethylene and propylene, and a' sealant is applied at least between the opening end of the anode zinc can and the gasket. The sealant preferably comprises polybutene*

Here, polyethylene terephthalate, that is to say, PET, is known as a material of which the oxygen permeability is lower than that of PVC, However, PET has a low resistance against the electrolyte of the battery, and easily causes cracks* Further, it is easily decomposed in the presence of acid or alkali. The pH value inside the manganese dry battery varies between 2 to 7 with the battery reaction. When PET contacts with the electrolyte having pH value of 2 to 3 by the liquid leaking due to an excessive discharging, PET is easily decomposed- Accordingly, it is difficult to use PET for a heat-shrinkable tube of a manganese dry battery.
While the novel feature of the invention are set forth particularly in the appended claims, the invention, both as to organization and content, will be better understood and appreciated, along with other objects and features thereof, from the following detailed description taken in conjunction with the drawings.
Brief Description of Drawings
FIG. 1 is a partial cross sectional view of one example of a cylindrical manganese dry battery in accordance with a prior art; and
FIG, 2 is a partial cross sectional view of one exile of a cylindrical manganese dry battery in accordance with the present invention.

Best Mode for Carrying Out the Invention
An example of a manganese dry battery in accordance with the present invention is described in reference to FIG, 2 which is a partial cross sectional view of a cylindrical manganese dry battery. In FIG- 2, the descriptions of the same components as in FIG. 1 are omitted.
In a manganese dry battery of FIG. 2, a sealant 9 is applied to the portion between the opening end 4 of the anode zinc can and the gasket 5 and iji the vicinity thereof-Fxirther, a sealant 9 is applied to the portion between the carbon rod 3 and the gasket 5, and around the hole of the caskets 5 on the inner surface 8.
The sealcint 9 is applied in the following manner, for example. In the same member as in a prior art, the carbon rod 3 is inserted into the cathode mixture 2 in the center thereof. Then, a proper amount of sealant 9 is applied to a part of the carbon rod 3 which is to fit with the gasket 5* Further, a proper amoimt of sealant 9 is applied in advance to the opening end 4 of the anode zinc can 1 which is to fit with the gasket 5, Next, the opening of the anode zinc can 1 is sealed by the gasket 5 which has a predetermined hole by putting the gasket 5 onto the opening, and fitting the carbon rod 3 with the gasket 5 through the hole. As a result, the gap between the carbon rod 3 and the gasket 5, and the gap between the opening end of the anode zinc can and gasket 5 are tightly sealed with the sealant 9. At this time, the sealant

9 gathers to the inner surface 8 of the gasket around the hole ^- In this case of FIG. 2, oxygen permeates through the tube 6 and passes through the gap between the end portion 10 of the tube 6 and the gasket 5, into the space between the tube 6 and the anode zinc can 1. However, since the sealant 9 is applied to the portion between the opening end 4 of the anode zilch can 1 and the gasket 5 and to the vicinity thereof, oxygen can be prevented from leaking into the inside of the anode zinc can 1.
Further, the manganese dry battery of the present invention does not need any sealing between the end portion 10 of the tube 6 and the gasket 5, unlike in a conventional manganese dry battery. It is also unnecessary to cover, with the tube 6, the outer stir face of the gasket 5 up to the middle point between the periphery of the gasket 5 and the carbon rod 3. As shown in FIG, 2, it is sufficient to cover the outer periphery of the gcisket 5 with the tube 6,
Here, from the viewpoint of the gas tightness, an additional sealant 9 may be applied on the outer surface 7 around the hole of the geisket 5, or between the end portion 10 of the tube 6 and the gasket 5. The amount of the sealant 9 may be any that can sufficiently secure the gas tightness of the inside of the anode zinc can*
As for the tube material, a resin comprising at least one selected from the group consisting of polystyrene, polypropylene, polyethylene and a copolymer of ethylene and

propylene is used from the point of view that a tube having an excellent adherent property and heat-shrink ability that are proper for fixing the gasket 5 can be obtained. Among these, the resin comprising polystyrene and the resin comprising a copolymer of ethylene and propylene are particularly preferable. The resin comprising polystyrene is further preferable since, when the battery is inserted into the tube comprising polystyrene, wrinkles and breaks are not likely to generate on the tube.
The resin comprising polystyrene preferably contains a block copolymer of a styrene type hydrocarbon and a conjugated diene type hydrocarbon. The styrene type hydrocarbon includes, for exile, styrene and methylstyrene. These may be used alone or may be used in a animation of two or more* The conjugated diene type hydrocarbon includes, for example, butadiene, isoprene, 1, 3-pentadiene* These may be used alone or may be used in a combination of two or more.
Further, the block copolymer includes, for example, a copolymer of styrene and butadiene. The block copolymer may be blended with polystyrene or a high impact polystyrene.
More specifically, a preferable resin comprising polystyrene is exemplified by a resin composite containing 15 to 25 parts by weight of a block copolymer comprising 20 to 40 wt% of styrene and 60 to 80 wt% of butadiene, 70 to 80 parts by weight of a random copolymer comprising 85 to 95 wt% of styrene and 5 to 15 wt% of butylacrylate and 2 to 10 parts by

weight of a high impact polystyrene.
As for the resin comprising a copolymer of ethylene and propylene, a resin containing 100 parts by weight of a copolymer of ethylene and propylene and 2 to 50 parts by weight of petroleum resin is preferable- The petroleum resin includes an aliphatic type petroleum resin, an aromatic type petroleum resin, an alicyclic type petroleum resin and reformed resins thereof by a hydrogenation.
The copolymer of ethylene and propylene preferably contains 0.2 to 10 mol% of ethylene unit.
As for the sealant 9, a sealant
polybutene is preferable from the point of view that it is
difficult to harden, it has an excellent gas tightness, and
the like. As for the sealant comprising polybutene, for
example, a blend of polybutene and polyethylene and a blend of
polybutene and polyisobutylene are preferable- In these
blends, it is preferable to use 5 to 30 parts by weigh of a
polymer other than polybutene per 100 parts by weight of
polybutene.
The favorable ranges of properties of the salacity comprising polybutene are such as a viscosity of 10 to 1000 cP
at 140*0 and a weight average molecular weight of 1000 to 5000.
The anode zinc can, the cathode mixture, the carbon rod, the gasket, the metal jacket, and the like, used in the dry battery of the present invention do not have any particular restrictions- As for these, conventionally used

materials can be used.
In the following, based on examples, the manganese dry battery of the present invention is described in further detail. However, the present invention is not limited to these examples•
In the following examples and comparative examples, the followings are used as the sealants and the heat-shrinkable tubes:
sealant X: a sealant comprising 60 wt% of asphalt, and 40 wt% of mineral oil as a plasticizer
sealant Y: a sealant comprising 95 wt% of polybutene, and 5 wt% of petroleum resin as a reforming agent
tube A: a tube comprising 100 parts by wit of a resin containing polystyrene, 5 parts by weight of an additive comprising a rubber and 0 • 1 to 5 parts by weight of a lubricant
tube B: a tube comprising PVC
tube C: a tube comprising a copolymer of ethylene and propylene.
Here, oxygen permeability of PET, polystyrene (PS), a copolymer (PO) of ethylene and polypropylene, polypropylene (PP), polyethylene (PE) and PVC are shown in Table 1 for reference. The thickness of each sample is 25 Wm.

Table 1

Tube material Oxygen permeability (cc • mm/m • day • atm)
PET 3
PS 1 20
PO 70
PP 50
PE 95
PVC 6
Example 1
A manganese dry battery R20 of A size, as shown in
FIG* 2, is produced as follows.
A mixture of manganese dioxide, carbon powder and electrolyte including zinc chloride, as a cathode mlxtxire, was charged in an anode zinc can via a separator. An ensilaging paper was provided on the cathode mixture. A carbon rod was inserted into the cathode mixture in the center thereof- A gasket having a predetermined hole was prepared. Then, a proper amount of sealant X was applied to the carbon rod on the part supposed to fit with inside of the hole of the gasket. Further, a proper amount of sealant X weirs applied to the opening end of the anode zinc can which was supposed to fit with the gasket- Next, the opening of the anode zinc can was sealed by the gasket by putting the gasket onto the opening, and fitting the carbon rod with the gasket through the hole. As a result, the gap between the carbon rod and the gasket, and the gap between the opening end of the anode zinc can and

gasket were tightly sealed with the sealant X. At this time, the sealant X gathered to the inner surface of the gasket aroid the hole. Here, a groove having a shape corresponding to the opening end of the anode zinc can was provided in advance on the portion of the gasket which was supposed to fit with the opening end of the anode zinc can.
Next, the portion ranging from the outer periphery of the gasket to the side surface of the anode zinc can was covered with the tube A. Then, the tube A was made to closely fit with the anode zinc can by heating it at approximately
180*C to fix the gasket. After that, the outer surface of the gasket together with the protruding part of the carbon rod was covered with a cap. An insulating ring was arranged on the periphery of the cap. Then, the side surface of the battery wrapped with the tube A was covered with a metal jacket so that the curled edge of the metal jacket was fixed to the outer periphery of the cap via the insulating ring.
50 articles of the same dry batteries were produced and the open circuit voltages, at the initial time and after one month of preservation at 45*C, were measured for each battery. The average value of the voltages, the O value as the standard deviation thereof and the R value as the difference between the minimum value and the maximum value thereof were found.
The results are shown in Tables 2 and 3.

Table 2

Time point ' Initial
Example No- 1 2 3 4 Comparative Example No.
1 2 3
va (v) 1-604 1.604 1.604 1.604 1.604 1.604 1.604
0 0,001 0.001 0.001 0.001 0.001 0.001 0.001
R 0.003 0.003 0.003 0.002 0.001 0.003 0.003
Va: mean value of open circuit voltages
Table 3

Time point After one month of the preservation at 45^0
Exanple No. 1 2 3 4 Comparative Exan^le No.
1 2 3
Va (v) 1.591 1.590 1.591 1.591 1.583 1.580 1.583
0 0.002 0.001 0.002 0.001 0,003 0.004 0.004
R 0.008 0.004 0.008 0.002 0.009 0.016 0.016
Va: mean veLLue of open circuit voltages
Example 2
The same nimbler of dry batteries were produced in
accordance with the same procedure as in Example 1 except for the usage of the sealant Y in place of the sealant X, and the
average value of the voltages, the 0 value thereof and the R value thereof were found in the same procedure.
The resxlLts are shown in Tables 2 and 3.

Example 3
The same number of dry batteries were produced in accordance with the same procedure as in Example 1 except for the usage of the tube C in place of the tube A. Then, the
average value of the voltages, the o value thereof and the R value thereof were found in the same procedure.
The results are shown in Tables 2 and 3.
Example 4
The same number of dry batteries were produced in accordance with the same procedure as in Example 2 except for the usage of the tube C in place of the tube A. Then, the
average value of the voltages, the a value thereof and the R value thereof were found in the same procedure.
The results are shown in Tables 2 and 3.
Comparative Example 1
The same number of dry batteries were produced in accordance with almost the same procedure as in Example 1. Here, the tube B was used in place of the tube A, Further, not only the outer periphery of the gasket, but also the portion closer to the center thereof was covered with the tube B* Further, the sealant X was applied on the outer surface of the gasket up to around the hole in order that the end periphery of the tube B was buried therein. On the other hand, the opening end of the anode zinc can was joined with the

gasket without applying any of the sealant X thereto-
Then, in the same procedure, the average value of
the voltages, the o value thereof and the R value thereof were found.
The results are shown in Tables 2 and 3.
Comparative Example 2
The same number of dry batteries were produced in accordance with the same procedure as in Comparative Example 1 except for the usage of the tube A in place of the tube B.
Then, the average value of the voltages, the o value thereof and the R value thereof were found in the same procedure . The results are shown in Tables 2 and 3.
Comparative Example 3
The same number of dry batteries were produced in accordance with the same procedure as in Comparative Example 1 except for the usage of the tube C in place of the tube B.
Then, the average value of the voltages, the O value thereof and the R value thereof were found in the same precedence.
The results are shown in Tables 2 and 3*
From the results of Tables 2 and 3, it can be seen
that the batteries of the examples have a smaller unevenness
of the open circuit voltage after preservation than that of
the comparative examples. It is considered that this is
because the batteries of the examples resist the influence of

oxygen
Industrial Applicability
In accordance with the present invention, a manganese dry battery which is stable and has an excellent gas tightness can be obtained without being affected by types of heat-shrinkable tubes. Accordingly, in the case where a resin of ditch oxygen permeability is high in comparison with PVC is used for the tube, a manganese dry battery which has an excellent gas tightness can be obtained*
Although the present invention has been described in terms of the presently preferred embodiments, it is to be understood that such disclosure is not to be interpreted as limiting. Varieties alterations and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains, after having read the above disclosure. Accordingly, it is intended that the appended claims be interpreted as covering all alterations and modifications as fall within the true spirit and scope of the invention.



CLAIMS
1. A manganese dry battery comprising an anode zinc can of a bottomed cylindrical shape, a cathode mixture contained in said anode zinc can, a separator interposed between said anode zinc can and said cathode mixture, a carbon rod inserted in the center of said cathode mixture, a gasket sealing the opening of said anode zinc can and having a hole in the center thereof through vatic said carbon rod is inserted, and a heat-shrinkable tube covering the circumference of said anode zinc can and the outer periphery of said gasket,
wherein said heat-shrinkable tube comprises at least one selected from the group consisting of polystyrene, polypropylene, polyethylene, and a copolymer of ethylene and propylene, and
a sealant is applied at least between the opening end of said anode zinc can and said gasket.
2. A manganese dry battery in accordance with claim 1, wherein said sealant comprises polybutene.

3* A manganese dry battery substantially as herein described with reference to the accompanying drawings.


Documents:

abs-in-pct-2002-1657-che.jpg

in-pct-2002-1657-che-abstract.pdf

in-pct-2002-1657-che-claims filed.pdf

in-pct-2002-1657-che-claims granted.pdf

in-pct-2002-1657-che-correspondnece-others.pdf

in-pct-2002-1657-che-correspondnece-po.pdf

in-pct-2002-1657-che-description(complete)filed.pdf

in-pct-2002-1657-che-description(complete)granted.pdf

in-pct-2002-1657-che-drawings.pdf

in-pct-2002-1657-che-form 1.pdf

in-pct-2002-1657-che-form 26.pdf

in-pct-2002-1657-che-form 3.pdf

in-pct-2002-1657-che-form 5.pdf

in-pct-2002-1657-che-other document.pdf

in-pct-2002-1657-che-pct.pdf


Patent Number 209507
Indian Patent Application Number IN/PCT/2002/1657/CHE
PG Journal Number 50/2007
Publication Date 14-Dec-2007
Grant Date 04-Sep-2007
Date of Filing 10-Oct-2002
Name of Patentee M/S. MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD
Applicant Address 1006, Oaza Kadoma Kadoma-shi, Osaka 571-8501
Inventors:
# Inventor's Name Inventor's Address
1 ISHIDA, Tsutomu Room 502, Shonanmakimachi-pulattsu 2-1-12, Tsujido-nishikaigan Fujisawa-shi, Kanagawa 251-0046
PCT International Classification Number H01M 2/02
PCT International Application Number PCT/JP2001/001836
PCT International Filing date 2001-03-08
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 2000-076932 2000-03-17 Japan