Title of Invention

AROMATIC POLYURETHANE POLYOL

Abstract The present invention relates to a polyurethane polyol comprising the reaction product of (a) at least one diol component selected from the froup consisting of α, β diols, α, γ diols and mixtures thereof, (b) at least one triisocyanate, and (c) at least one diisocyanate wherein at least one of the isocyanates is aromatic and whrein the polyurethane polyol has a molecular weight Mn less than about 3,000.
Full Text The present invention relates to aromatic polyurethane polyols useful in coating compositions, and particularly useful in primers applied to metal substrates. More specifically, the present invention relates to aromatic pofyurethane polyols comprising the reaction product of diisocyanate, triisocyanates and idols wherein at least one of the isocyanates is aromatic. The resultant aromatic polyurethane polyols are low molecular weight oligomers (typically number average molecular weight (Mn) These aromatic polyurethane polyols are prepared from a special doss of idols (a,p and/or any) in order to provide selectivity, and produce a polyurethane polyol having low molecular weight and relatively low viscosity.
It should be noted that, as used herein, the term "polyurethane polyols" refers to a reaction product wherein the reactants (diol component and polyiisocyanate -component(s)) are linked substantially only via urethane linkage. This is in contrast to polyester-urethane and urethane-modified acrylic polyols, in which the reactants are linked via urethane as well as ester linkages.
Currently, the automotive and the car refinish industry are using coating systems comprising primers, basecoats and clear coats in ever-increasing amounts. In such systems, generally a pigmented coating is applied over appropriate primers and the coating system is completed by applying an unlimited, dear topcoat over the pigmented basecoat. In some instances, pigmented monocoats are utilized. These coating compositions are generally supplied as "one-pack" or "two-pack" systems. In a typical one-pack system, all of the coating ingredients are combined into one storage stable mixture. Upon application the polyol component is crosslinked, generally with an aminoplast resin (such as a melamine resin) or a blocked isocyanate, under heat cure conditions of 120 or above. In a typical two-pack system, the polyol component is combined with a cross linking agent, generally an

isocyanate, shortly before application, with curing being conducted at ambient or elevated temperatures up to 80 .
To achieve acceptable solution viscosities (20-30 seconds, #4 Ford Cup at about 25 ° C) for typical high solids coating systems, it is necessary that the film-forming polymer has a weight average molecular weight (Mw) lower than about 5,000. To achieve good film properties in such systems after crosslinking, it is also necessary that the number average molecular weight (Mn) should exceed about 800, and that each polymer should contain at least two reactive hydroxyl functional groups. These general principles apply to polyester polyols, acrylic polyols, and also to urethane polyols. In primer systems, the following properties are desirable, good adhesion, concoction resistance, and hardness. The use of urethane polyols (aliphatic) are generally cost prohibitive and seedily used in the primer systems. Durability of the complete coating system is mostly unaided by the topcoats. That's why epoxy primers are often used.
However, epoxies typically have high molecular weights and, thus, high viscosities. As is evident from the above discussion, the requirements for acceptable solution viscosities and good film properties lead to contradictory molecular weight requirements since in low solution viscosities the Molecular weight should be low, but for good film properties the Molecular weight should be high.
Many of the high performance, high solids automotive and car refinish coatings presently In use are based upon polymeric systems comprised of either epoxies (used extensively in primer systems) or polyester-based or polyacrylic-based polyols, We offer chemical and physical properties advantages over acrylics and polyesters such as excellent adhesion, improved hardness and excellent solvent resistance. We offer VOC advantages over high molecular weight epoxies,
A considerable amount of work has been done related to coatings containing polyurethane polyols. One way to make polyurethane polyols is to react a

diisocyanate or a multifunctional isocyanate with a significant stoichiometric excess of a diol After the reaction is complete, the excess of diol is removed. preferable by defilation. The obvious disadvantage of this method of making low molecular weight polyurethane polyols Is that the distillation of the diols is Inconvenient, not practical and cost prohibitive. U.S. Patents describing the production of polyurethane polyols by using stoichiometric excess of diols include: U.S. Patent 4,543,405 to Ambrose, et aL; issued September 24,1985; and U.S. Patent4,288,577 to McCabe, Jr., Issued Septembers, 1981.
U.S. Patent No. 5,155,201 discloses polyurethane polyols comprising reaction products of n-functional polylsocyanates (n=2-5) and substantially monomeric diols having hydroxyl groups separated by 3 carbon atoms or less, and is incorporated herein by reference.
U.S. Patent No. 5,175,227 discloses acid etch resistant coating compositions comprising polyurethane polyols and hydroxyl group-reactive cross linkers. The polyurethane polyols comprise reaction products of substantially monomeric asymmetric diols with hydroxyl groups separated by 3 carbon atoms or less and n functional polylsocyanates (n=2-5). This patent Is incorporated herein by reference.
Additionally, U.S. Patent No. 5,130,405 discloses add etch resistant coatings comprising (1) polyurethane polyols prepared from symmetric 1, 3-dioi components and polylsocyanates and (2) hydroxyl group-reactive crosslinking agents and is incorporated herein by reference.
WO 96/40813 discloses a film fuming polyurethane polyol composition prepared from an n-functional Isocyanate with at least one diol or trial or mixtures thereof and a compound containing isocyanate-reactive functional groups preferably a mono functional alcohol or thiol and a method of preparing such polyurethane polyols. WO 96/40813 is incorporated herein by reference.

In a number of the above described patents the polyurethane polyols are prepared from a,p and/or a diols and polyisocyanates. However, it has been established that polyurethane polyols prepared from a,p and/or a,y diols and aromatic triisocyanates alone have extremely high viscosities and cannot be used in low VOC coating compositions because high viscosity will result in high VOC.
It would, therefore, be advantageous to provide an economical polyol suitable for use in high solids coatings, which not only possesses a desirable spectrum of properties but also is quite convenient to prepare. It has now been discovered that polyurethane polyols prepared from a,p and/or any diols and blends of triisocyanates diisocyanate where at least one of the isocyanates is aromatic do not have the above-mentioned drawbacks.
Primers made from these polyurethane polyols exhibit enhanced performance. They have unexpectedly demonstrated fast ambient cure, improved hardness, excellent solvent resistance and excellent adhesion to the substrate, even metal substrates, compared to the conventional primers typically used In the industry.
SUMMARY OF THE INVENTION
In accordance with the present invention, there is provided a particularly advantageous aromatic polyurethane polyol suitable for use in high solids coating compositions, which, in its overall concept is a polyurethane polyol comprising the reaction product of
(A) at least one diol component selected from the group consisting of a,p diols, a.y
diols and mixtures thereof.
(B) at least one diisocyanate, and
(C) at least one diisocyanate
where at least one of the isocyanates is aromatic and
wherein the polyurethane polyol has a molecular weight (Mn) less than about
3,000.

DETAILED DESCRIPTION OF THE INVENTION
The aromatic polyurethane polyol composition of the present invention can be synthesized using either aromatic or aliphatic diisocyanates. Examples of such diisocyanates include but are not limited to toluene dilsocyanate (TDI) available for example as MONDUR TD or MONDUR TDS from Bayer; 1.6-hexamethylenediisocyanate (Help), available for example, as DESIVIODUR H from Bayer; isophorone dilsocyanate (IPDI), available for example from Creanova; tetramethyi xylylene dilsocyanate (TMXDI), available for example from Cytec; 2,2,4-trlmethyl-1,6-hexamethylene dilsocyanate available from Creanova; diphenyl methane diisocyanate available for example as MONDUR M or MONDUR ML, from Bayer; methylene (bis 4-cyclohexyl isocyanate) available for example, as Desmodur W from Bain and the bursts and uretdiones of these diisocyanates.
The triisocyanates which may be used for the aromatic polyurethane polyol of the present invention include both aromatic and aliphatic triisocyanates. Examples of such triisocyanates include but are not limited to, the isocyanurate of TDI available for example as Desmodur IL from Bayer, the adduct of trimethylol propane (TMP) and TDI, available for example, as Desmodur CB-72 from Bayer; Isocyanurate of Hal, available for example as Desmodur N-3300 from Bayer, Isocyanurate of IPDI available for example as Desmodur Z4470S from Bayer.
Examples of a,p and/or a.Y diols which may be used in the aromatic polyurethane polyol of the present invention include but are not limited to 2-butyl-2-ethyH,3-propane diol (BEPD) available for example from NESTE Chemicals; 2-ethyl-1.3-hexane diol (EHDO) available for example from Dixie Chemicals; 1,2-propane diol available for example from Eastman Chemicals; 1.3-butanediol available for example from Aldrich; 2,2,4-trimethyl-1,3-pentanediol, available for example from Neste Corporation; 1,2-hexanedioi available for example from Aldrich; 1,2-octanediol available for example from Aldrich; 1,2-decanediol available for example from Aldrich; and 2,2-dimethyl 1,3-propanediol available as NPG from Eastman Chemicals.

Preened diols include those having from 2 to 18 carbon atoms and more preferably 2 to 10 carbon atoms.
Also, as demonstrated in the Examples below, the use of a,p diols and/or a,y diols provides lower viscosity at higher solid content than other diols such as 1,4-diol, 1,5-diol, or 1,6-dlol. They (a,p diols and/or a.y diols) have lower molecular weight values, especially with respect to Mw thus providing lower polydispersity values.
The more preferred aromatic polyurethane-polyols of the present invention have a number average molecular weight (Mn) ranging from about 800 to about 2,000, with the ratio of weight average molecular weight (Mw) to number average molecular weight (i.e. degree of dispersion) ranging from about 1.1 to about 2, and the OH values are from about 165 to about 240 mg KOH/g.
The components of the present invention may optionally be reacted In the presence of a polyurethane catalyst. Suitable polyurethane catalysts are conventional and may be utilized in conventional amounts. The particular catalyst choice will be determined based upon a number of factors such as the particular components used and the reaction conditions. These and other factors are well-known to those skilled in the art, who can make the proper choices accordingly. Some of the preferred catalysts include tin and tertiary amine containing compounds, such as organometallictin compounds and tertiary alkyiamines.
Various types of crosslinkers which can be used include but are not limited to isocyanates, blocked Isocyanates, and/or melamine and/or other cross linkers which are reactive toward the hydroxyl groups of polyuretiiane polyols.
The coating composition of the present invention may also include from about 1 to about 50 weight percent of a resin (binders) such as acrylics, polyesters, alkyds, phenolics, epoxies, polyethens, polyurethanes, and mixtures thereof. The coating compositions described herein can be used for primers, basecoats, topcoats, and clearcoats but are prefenred as primers.

Optionally pigments may be present in the coating composition of the present invention. Useful pigments are various types common to the art which include but are not limited to titanium dioxide, graphite, carbon black, zinc oxide, calcium sulphate, chromium oxide, zinc sulphide, zinc chromate, strontium chromate, barium chromate, lead chromate, lead cyanamide, lead silico chromate, yellow nickel titanium, yellow chromium titanium, red iron oxide, yellow iron oxide, black iron oxide, nuptial red and browns, anthraquinone, dioxins zinc violet, Isoindoline yellow, hayride yellow and oranges, ultramarine-blue, phthalocyanine complexes, amaranth, quinaoidones, halogenated thioindigo pigments, extender pigments such as magnesium silicate, aluminium silicate, calcium silicate, calcium carbonate, fumed silica, barium sulfate, and zinc phosphate.
The coating compositions of the present invention may also comprise additional components such as solvents, catalysts, stabilizers, fillers, rheology control agents, flow additives, leveling additives, dispersing agents and other components known to persons skilled in the art.
The present Invention also relates to a coating composition comprising the aromatic polyurethane poison of the present invention and a crosslinker.
The coating compositions of this aromatic polyurethane poison of the present invention may be applied to any number of well known substrates by any of a number of conventional application methods. One preferred substrate Is metals. The compositions are parficularly suitable in the refresh industry, in particular the body shop, to repair automobiles and transportation vehicles, and in finishing large transportation vehicles such as trains, trucks, buses and aero planes. Curing of the coatings may be conducted under a variety of conditions known to a person skilled in the art, although curing of the above-described two-component systems is preferably carried out under ambient temperature conditions, typically from ambient to about 60 .

The compositions are particularly suitable in the refinish industry, in particular the body shop, to repair automobiles and transportation vehicles, and in finishing large transportation vehicles such as trains, trucks, buses and aeroplanes. The preferred application of the present invention is as a car refinish primer. The foregoing general discussion of the present invention will be further illustrated by the following specific but nonlimiting examples,
METHODS
In the Examples set forth below, the Broolcfield viscosity was measured at 25° C, spindle#4, and 20 RPM. Film Formation was tested according to ASTM D 1640-95, Standard Test Methods for Drying, Curing, or Film Foliation of Organic Coatings at Room Temperature. Adhesion and Hardness were tested after Water Immersion for 24 h using ASTM D 870-92, Standard Test Methods for Testing of Water resistance of Coatings Using Water Immersion. Adhesion was tested according to ASTM D 3359-95, Standard Test Methods for Measuring Adhesion by Tape Test. Hardness was tested according to ASTM D 4366-95. Standard Test Methods for Hardness of Organic Coatings by Pendulum Damping Tests, test method B - Prestos Pendulum Hardness Test.
Examples Synthesis of Aromatic Polyurethane Polo
Example 1
In to a 5 liter. 3 round bottom flask equipped with a stinger, condenser, heating mantle, thermocouples with thermo watch, nitrogen and addition inlets were charged the following: 233.1 g of 2-heptanone. 1057.7 g 2-butyl-2-ethyl-1.3-propanediol, and
2.2 g of dibutyltin dolerite (10% solution in butyl acetate). The mixture was heated to 70° C, under a nitrogen blanket.
When the temperature reached and stabilized at 70° C, the following mixture was added super surface to the flask over 180 minutes; 600.0 g of 2-heptanone, 1082.4 g of Desmodur CB-72 [the tri-functional isocyanate adduct of toluene

diisocyanate (TDI) and trimethylolpropane (TMP) (equivalent weight at 72% NV = 328 grams/equivalent)], and 293.24 g of 2.4-toluene diisocyanate (equivalent weight at 96% NV = 90.71 grams/equivalent). During the addition of this mixture, the reaction temperature was kept around 70^ C. After completion of the addition, the reaction temperature was held at 70 C for two additional hours at which point, it was determine by Fourier Transform Infrared Spectroscopy-FTIR that no residual isocyanate remained.
The resulting solution of aromatic polyurethane polyol had a non-volatile content of 65.4%, Brookfield viscosity of 3,680 cps (25° C. spindle# 4, and 20 RPN ). and hydroxyl number of 174.0 (mg KOH/g).
The molecular weights of the polymer was measured using Waters' Associates gel permeation chromotography (GPC) and Phenomenal polystyrene standards. The polyurethane polyol had an Mn of 1.109, Mw of 1,594, and degree of dispersion, D of 1.43.
Example 2-9
Polyurethane polyols, examples 2-9 were produced in a similar manner to polyurethane polyol in example 1, from the components as set forth in Table 1.




The Properties of the resulting polyurethyane polyols of examples 2-9 are reported below in Table II. This table also compares the characterization results of aromatic polyurethane polyols prepared from a,3 diols or a,y diols versus other types of Diols.

PERFORMANCE EXAMPLES
The primer formulations examples described below were formulated according to the following weight percentage ratios: Aromatic polyurethane polyol 2.2%; polyester modified acrylic resin 20.5%; Dispersing agent 0.7%; antisettling agent 1.17o; Conventional solvents 15.5%; Calcium Carbonate 21%; Talc 8.5%; Zinc phosphate 10%; Ti02 20%; and thixotropic agent 0.5%.
Example 10
The original primer was based on a binder system composed of a 90/10 blend of a commercially available polyester modified acrylic (Setalux 2152 available from Kazoo Nobel Resins inc,)/polyester. This primer composition also contained two catalysts. (A 10% solution of tri-ethylene thiamine in isopropyl alcohol and 18% zirconium in mineral spirits At 0.9 and 0.3 weight percent, respectively). To evaluate the aromatic polyurethane polyol, the polyester in this blend was replaced with the aromatic polyurethane polyol of EXAMPLE 1, No additional catalysts were added to the system (dibutyltin dilaurate is a catalyst added with Hardener one). The fully formulated paint was activated, separately, with two different hardeners; Hardener one contained a hexamethylene diisocyanate (HDI) based polyisocyanate ( a blurt)

at 40 weight percent solids in butyl acetate with 0.005 weight percent of a 10% solution of dibutyltin dilaurate in an ester/aromatic solvent blend; and Hardener two containing a 60/40 blend of an HDI based/IPDI based polyisocyanate (isocyanurate) at 69 weight percent solids at a NCO:OH ratio of 1.05. Each sample was reduced with a ketone based solvent blend to achieve a ready to spray VOC of 479 lbs/gal (575 g/l).

Example 11
Aromatic polyurethane polyols EXAMPLE 2 (1.0 eq BEPD/0,25 eq Desmodur CB-72N/0.25 eq IPDI) and EXAMPLE 1 (1.0 eq BEPD/0.25 eq Desmodur CB-72N/0.25 eq TDI) were substituted in the original primer formula as a replacement for the polyester on a % solids basis (10% as above). Non-sanding primer applications were crosslinked at 105% using Hardener one and reduced to 4.65 lbs/gal (558g/l) VOC using a ketone solvent blend. Sanding primer applications were crosslinked at 105% using Hardener three, a blend of two solvent free aliphatic HDI based polyisocyanates reduced to 42% weight solids with a conventional solvent blend, and reduced to 4.2 lb/gal (504 g/l) VOC using ketone sovent based reducer. Panels were topcoated with basecoat/clear coat formulation then heat aged for 4 hours at 60
Each systems was evaluated for adhesion and hardness on cold rolled steel (CRS) that had been treated with proprietary commercially available washprimer (Washprimer EMCF from Adze Nobel Coatings Inc.) in a simple ambient temperature water immersion test.


Example 12
Two formulas, containing aromatic polyurethane polyols EXAMPLE 2 and EXAMPLE 1, were evaluated in the original primer formulation as a replacement to the polyester (10% as above). In addition, the first formula contained Wollastocoat 10ES and the second contained Wollastocoat 10AS. Non-sanding applications were activated 100 parts paint/50 parts Hardener 1 and 30 parts ketone solvent blend by volume. Sanding application were activated 3-part paing/1part hardener 3 + 10% ketone solvent blend by volume.
Cold rolled steel panels were treated with a commercially available washprimer (Washprimer EMCF from Adze Nobel Coatings Inc.), then topcoated with a basecoat/clear coat. Panels were heat aged 4 hours at BC

Wollastocoat ES: epoxy silane treated calcium metasilicate. ' ' '
Wollastocoat AS: amino silane treated calcium metasilicate.
CONCLUSION
Only a limited number of preteen-ed embodiments of the invention have been described above. However, one skilled In the art will recognize the numerous substitutions; modifications and alterations which can be made without departing from the spirit and scope of the invention as limited by the following claims.



WE CLAIM:
1. A polyurethane polyol comprising the reaction product of
(a) at least one diol component selected from the group consisting of a, p diols, a,Y diols and mixtures thereof,
(b) at least one triisocyanate, and
(c) at least one diisocyanate
wherein at least one of the isocyanates is aromatic and wherein the polyurethane polyol has a molecular weight Mn less than about 3,000.
2. The polyurethane polyol as claimed in claim 1 wherein the a, p and/or a,Y diols are selected from the group consisting of 2-butyl-2-ethy 1-1,3-propane diol,2-ethyl-l,3-hexane diol, 1,2-propane diol, 1,3-butanediol, 2,2,4-trimethyl-l,3-pentanediol, 1,2-hexanediol, 1,2-octanediol, 1,2-decanediol, and 2,2-dimethyl 1,3-propanediol.
3. The polyurethane polyol as claimed in claim 1 wherein the triisocyanate is selected from the group consisting of the isocyanurate of toluene diisocyanate, the adduct of trimethylol propane and toluene diisocyanate, the isocyanurate of hexamethylene diisocyanate, and the isocyanurate of isophorone diisocyanate.
4. The polyurethane polyol as claimed in claim 1 wherein the diisocyanate is selected from the group consisting of toluene diisocyariate, 1,6-hexamethylenediisocyanate, isophorone diisocyanate, tetramethylc xylylene diisocyanate, 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, diphenyl methane diisocyanate, methylene (bis 4-cyclohexyl isocyanates), and the berets and orations of these diisocyanates.
5. A coating composition comp the polyurethane polyol as claimed in claim 1 and a crosslinker.

6. The coating composition as claimed in claim 5 wherein the crosslinker is selected from the group consisting of isocyanates, blocked isocyanates and melamine’s.
7. The coating composition as claimed in claim 5 wherein the crosslinker is reactive toward the hydroxyl groups of the polyurethane polyol.
8. The coating composition as claimed in claim 5 wherein it comprises a resin.
9. The coating composition as claimed in claim 8 wherein the resin is selected from the group consisting of acrylics, polyesters, alkyds, phonemics, epoxies, polyesters, poll and mixtures thereof.
10. A method of coating a substrate comprising applying a coating composition as
claimed in claim 5 to a substrate.
11. The method of coating a substrate comprising applying a coating composition as claimed in claim 8 to a substrate.
12. The method of remising a car, the method comprising applying a coating composition as claimed in any one of claims 5 to 9.


Documents:

in-pct-2002-1880-che-abstract.pdf

in-pct-2002-1880-che-assignement.pdf

in-pct-2002-1880-che-claims filed.pdf

in-pct-2002-1880-che-claims grand.pdf

in-pct-2002-1880-che-correspondnece-others.pdf

in-pct-2002-1880-che-correspondnece-po.pdf

in-pct-2002-1880-che-description(complete) filed.pdf

in-pct-2002-1880-che-description(complete) grand.pdf

in-pct-2002-1880-che-form 1.pdf

in-pct-2002-1880-che-form 26.pdf

in-pct-2002-1880-che-form 3.pdf

in-pct-2002-1880-che-form 5.pdf

in-pct-2002-1880-che-other documents.pdf

in-pct-2002-1880-che-pct.pdf


Patent Number 208989
Indian Patent Application Number IN/PCT/2002/1880/CHE
PG Journal Number 38/2007
Publication Date 21-Sep-2007
Grant Date 16-Aug-2007
Date of Filing 18-Nov-2002
Name of Patentee AKZO NOBEL N.V
Applicant Address PVELPERWEG 76, 6824 BM ARNHEM
Inventors:
# Inventor's Name Inventor's Address
1 YAHKIND Alexander Leo 4078 Mazlwood Drive West Bloomfield, MI 48323
2 PRICE Latoska Nikita 28700 Bell Road Southfield, Michigan 48034
3 MOOS Jan Wilhelm Ernst 2967 Hidden Timber Court, Orion Township, Michigan 48359
4 ABU-SHANAB Omar Lutfi 2407 Old Salem Road Auburn Hills, Michigan 48326
5 ZNIDERSIC Kenneth Mark 613 Plainview Terrace Drive Louisville, Kentucky 40223
PCT International Classification Number C08G18/32
PCT International Application Number PCT/US01/15742
PCT International Filing date 2001-05-16
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/573,926 2000-05-18 U.S.A.