Title of Invention

REMOVING A WASTE COMPONENT FROM A HYDROCARBON FLUID

Abstract The invention relates to a method of reducing an amount of a waste component present in a hydrocarbon fluid produced from an earth formation via a wellbore formed in the earth formation, the hydrocarbon fluid flowing in a stream of fluid through the wellbore. The method comprises a) inducing at least part of the amount of the waste component to move into a second fluid present in the stream of fluid as said stream flows through the wellbore; and b) separating the second fluid with said at least part of the amount of the waste component included therein, from the hydrocarbon fluid.
Full Text

REMOVING A WASTE COMPONENT FROM A -HYDRQCARBQ»-HJJ£D
The invention relates to a method of reducing an amount of a waste component present in a hydrocarbon fluid in a stream of fluid produced from an earth formation.
Many oil or gas wells produce, simultaneously with the desired hydrocarbon fluid, undesired waste components such as production water, H2S and CO2- In the case of production water, the ratio of produced water/hydrocarbon fluid of most wells increases during the lifetime of the well. This phenomenon is due to the fact that for most hydrocarbon reservoirs in the earth formation the oil layer is located on top of a layer of water of which the level increases as the reservoir is depleted due to continued oil production. The produced water is generally separated from the oil using suitable separating means, for example settling tanks.
Apart from the produced water waste components like H2S and CO2 are also produced in substantial amounts as these gases are dissolved in the produced oil and water. These components cause undesired environmental pollution if not adequately removed from the hydrocarbon fluid. It is therefore common technology to remove such waste components, for example using a regenerative treatment process. Such process requires a dedicated process plant downstream the wellbore at surface, which process plant is generally expensive and voluminous.
Another problem associated with the simultaneous production of corrosive waste components, such as H2S and CO2, is accelerated corrosion of the hydrocarbon fluid production conduits (e.g. production tubings in the wellbore).

It is an object of the invention to provide an improved method of reducing an amount of a waste component present in a hydrocarbon fluid in a stream of fluid produced from an earth formation, which method requires less dedicated process equipment and involves reduced corrosion of production conduits.
In accordance with the invention there is provided a method of reducing an amount of a waste component present in a hydrocarbon fluid produced from an earth formation via a wellbore formed in the earth formation, the hydrocarbon fluid flowing in a stream of fluid through the wellbore: the method comprising
a) inducing at least part of the amount of the waste component to move into a second fluid present in the stream of fluid as said stream flows through the wellbore; and
b) separating the second fluid with said at least part of the amount of the waste component included therein, from the hydrocarbon fluid.
By moving the waste component into the second fluid as the stream of fluid flows through the wellbore it is achieved that a dedicated process plant at surface for moving the waste component into the second fluid stream is obviated. Furthermore, the high temperature and pressure of the fluid stream in the wellbore is advantageous for the above indicated step a). For example, quantities of gaseous waste components such as H2S or CO2 have a relatively small volume under the high pressure conditions downhole, whereas such quantities would have a significantly larger volume at surface conditions necessitating correspondingly large surface processing equipment.
With the method of the invention it is further achieved that corrosive waste components like H2S or CO2 are substantially absent from the production conduits downstream the separating step so that these

conduits are not subjected to the corrosive action of the waste components.
To further reduce the amount of processing equipment at surface, it is preferred that the second fluid with said at least part of the amount of the waste component included therein is separated from the hydrocarbon fluid in the wellbore.
Preferably step a) comprises dissolving said at least part of the amount of the waste component in the second fluid, and step b) comprises separating the second fluid with the waste component dissolved therein, from the hydrocarbon fluid.
The method of the invention is particularly, but not exclusively, suitable for removing H2S and CO2 from hydrocarbon fluid such as oil, since most produced oils contain dissolved H2S and CO2 which should be prevented from being released to the atmosphere.
Suitably step a) comprises: i) selecting a substance which reacts with the waste component to form a reaction product which is soluble in the second fluid;
ii) inducing the selected substance to be present in said stream of fluid in the wellbore, whereby said substance reacts with the waste component and the reaction product substantially dissolves in the second fluid of the stream of fluid.
The method of the invention is most efficient if the selected substance is induced to be present in a lower part of the wellbore where the hydrocarbon fluid enters the wellbore. This can be achieved, for example, by inj ecting said substance into the stream of fluid in the wellbore via a conduit extending into the wellbore.
In an attractive embodiment, the second fluid is production water produced simultaneously with the hydrocarbon fluid from the earth formation via said wellbore. The amount of selected substance to be used

can be reduced by separating part of the production water from the stream of fluid prior to inducing the substance to be present in the stream of fluid, so that the reaction product substantially dissolves in the remaining part of the production water.
Suitably the second fluid with the included waste component is disposed by injecting it into the earth formation via said wellbore and/or via another wellbore. In this manner the waste components are returned to the earth formation from which they were produced, without causing any environmental pollution.
In case the waste components include H2S and CO2, it is preferred to apply 0H~ ions in the stream of fluid so that the reaction product includes at least one of the group of HS~, S2~, HCO3" and CO32" ions. The OH" ions can be formed by inj ecting a base into the stream of fluid, or alternatively by electrolysis of the second fluid, for example using a bipolar membrane.
The invention will be described in more detail in the following examples. Example 1
Hydrocarbon fluid in the form of oil and gas is produced from an earth formation via a wellbore. The stream of produced fluid flows to surface through a production tubing extending into the wellbore. Generally the stream of fluid includes a substantial amount of production water from the earth formation. Furthermore, waste components like H2S and/or CO2 are also present as these components are dissolved in both the oil phase and the water phase. In order to remove H2S and/or CO2 from the oil phase, a base in the form of NaOH is injected into the stream of fluid (e.g. by injecting it into the production tubing or into the annular space between the production tubing and the wellbore casing) so as to mix with the stream of oil and production water. The inj ected NaOH forms 0H~ ions

in the water phase which react with H2S and CO2 according to
H2S + OH" HS~ + OH" S2" + H20
overall:
H2S + 20H" « S2" + 2H20
C02 or H2C03 (C02 + H20) can react with a base according to
H2C03 + OH" HCO3" + H20 or C02 + OH" HC03"
HCO3" + OH" CO32" + H20 overall:
H2C03 + 20H" o CO32" + 2H20 or C02 + 20H" O C032~ 4- H20
wherein the ions HS~, S2~, HCO3" and C032" are dissolved in the water phase; only H2S and C02 can be dissolved in both the water- and the oil phase. Thus, by adding the base in the form of NaOH the concentration of the HS~, S2~, HCO3" and C032" ions in the water phase increases, leading to a decrease of H2S and C02 in the oil phase. This effectively implies a transfer of H2S and C02 from the oil phase to the water phase.
Optionally, before adding the base at least part of the production water is separated from the fluid stream, the advantage being that less amount of base is to be added in order to achieve the desired pH.
Conversely, when the concentration of H2S and C02 in the oil phase is relatively high, an extra injection water stream can be mixed with the total oil/water stream produced from the wellbore in order to create a larger water volume in which the H2S and C02 and the resulting ions are dissolved.

Subsequently the water phase in which the ions HS~, S^", HCC>3~ and CC^- are dissolved, is separated from the oil phase using one or more separators (for example cyclone separators) which can be positioned in the wellbore or at surface. The separated water with the dissolved ions is subsequently injected into the earth formation via an injection tubing extending in the wellbore. Alternatively the water with the dissolved ions can be injected into the earth formation via another wellbore. In case the above indicated ions have a tendency of scale precipitation in the injection tubing, a scale inhibitor or an acid can be added to the water stream in the inj ection tubing to prevent such scaling or to dissolve precipitated scale. Example 2
A stream of hydrocarbon fluid (oil/gas) containing H2S and CO2 is produced from an earth formation via a production tubing in a wellbore, the difference from example 1 being that there is no water simultaneously produced from the formation. In order to apply the method according to the invention, a second fluid in the form of water is inserted into the stream of fluid by injecting the second fluid through a suitable conduit into the stream of fluid via the wellbore. The amount of second fluid to be inj ected depends on the amounts of H2S and CO2 in the hydrocarbon fluid, but generally (in case of oil production) an amount as low as2-3wt%of the oil flow rate is sufficient.
The second fluid is injected so as to mix with the hydrocarbon fluid in the annular space between the production tubing and the wellbore casing, at the level of the producing zone. Prior to inj ecting the water into the hydrocarbon fluid stream, NaOH has been added to the water which furthermore has been made substantially free of scale-forming components like barium, strontium and calcium. NaOH forms 0H~ ions in

the water phase, which react with the H2S and CO2 present in the stream of fluid according to the reactions referred to in example 1. It is thereby achieved that effectively the H2S and CO2 are moved into the second fluid, i.e. into the water phase. The water with the dissolved HS~, S^~, HCO3" and CC^" ions is produced to surface where it is separated from the hydrocarbon fluid. Alternatively, the step of separating the water with the dissolved ions from the hydrocarbon fluid can be carried out in the wellbore. In the latter case, small sized cyclone separators fitting in the wellbore, can be applied.
The separated water with the dissolved ions can be injected into the earth formation via the same or another wellbore, or it can be treated so as to remove waste components therefrom. In the latter case, for example precipitate forming components which react with the dissolved ions (e.g. to form salts) can be added to the water. The precipitate is subsequently removed from the water.
The contact between water and the oil can be intensified for example by using a contactor, a pump for pumping the stream of oil and water, or a centrifuge.
It will be appreciated that in the above examples NaOH has been indicated as a suitable substance to be added to the fluid stream only by way of example, and that there are numerous other substances which are suitable for carrying out the method of the invention. Examples of such substances are Ca(0H)2#- Mg(0H)2, LiOH and KOH.
The amount of base to be used in applying the invention can be determined from stoichiometric conditions. For example, approximately 1.82 kg NaOH would be needed per kg CO2 to be removed, and

approximately 2.35 kg NaOH would be needed per kg H2S to be removed.
It will be appreciated that the method according to the invention can be applied both at onshore and offshore oil/gas production wells.
In an alternative embodiment of the method according to the invention, H2S can be removed from the hydrocarbon fluid by conversion into HS~ and/or S^"" using suitable bacteria which are supplied to the stream of fluid.
Furthermore, certain amines can be applied to bind or convert CO2 present in the hydrocarbon fluid.



1. A method of reducing an amount of a waste component present in a hydrocarbon fluid produced from an earth formation via a wellbore formed in the earth formation, the hydrocarbon fluid flowing in a stream of fluid through the wellbore: the method comprising
a) inducing at least part of the amount of the waste component to move into a second fluid present in the stream of fluid as said stream flows through the wellbore; and
b) separating the second fluid with said at least part of the amount of the waste component included therein, from the hydrocarbon fluid.
2 . The method of claim 1, wherein step a) comprises dissolving said at least part of the amount of the waste component in the second fluid, and wherein step b) comprises separating the second fluid with the waste component dissolved therein, from the hydrocarbon fluid.
3. The method of claim 2, wherein the waste component comprises at least one of H2S and CO2-
4. The method of claim 2 or 3, wherein step a) comprises:
i) selecting a substance which reacts with the waste component to form a reaction product which is soluble in the second fluid;
ii) inducing the selected substance to be present in said stream of fluid in the wellbore, whereby said substance reacts with the waste component and the reaction product substantially dissolves in the second fluid.
5. The method of claim 4 wherein step ii) comprises
inducing the substance to be present in a lower part of

the wellbore where the hydrocarbon fluid enters the wellbore.
6. The method of claim 4 or 5, wherein the waste component comprises at least one of H2S and CO2, and wherein said substance includes OH" ions, the reaction product including at least one of the group of HS", S2", HCO3- and CO32" ions.
7. The method of claim 6, wherein the OH" ions are formed by at least one of the steps of injecting a base into the stream of fluid, and electrolysis of the second fluid.
8. The method of claim 7, wherein said substance is inj ected into the stream of fluid in the wellbore via a conduit extending into the wellbore.
9. The method of any one of claims 1-8, wherein the second fluid is production water produced simultaneously with the hydrocarbon fluid from the earth formation via said wellbore.
10. The method of claim 9 when dependent on claim 4, wherein prior to inducing said substance to be present in the stream of fluid, part of the production water is separated from the stream of fluid, whereby said reaction product substantially dissolves in the remaining part of the production water.
11. The method of any one of claims 1-8, wherein the second fluid is inserted in the stream of fluid by injecting it into the stream of fluid via the wellbore.
12. The method of claim 11 when dependent on claim 4, wherein said substance is dissolved in the second fluid, the second fluid with the dissolved substance being injected into the stream of fluid.
13. The method of claim 11 or 12, wherein prior to inj ecting the second fluid into the stream of fluid, the second fluid is made substantially free of scale-forming components.

14. The m'ethod of any one of claims 1-13, further
comprising after step b), removing the waste component
from the second fluid. ;
15. The method of claim 14, wherein a selected compound is added to the second fluid which reacts with the waste component so as to form a precipitate which includes the waste component, whereafter the \ precipitate is removed from the second fluid.
16. The method of any one of claims 1-13, comprising the further step of disposing the second fluid with said waste component included therein by injecting it into the earth formation via at least one of/said wellbore and another wellbore formed in the earth formation.
17. The method of any one of claims 1-16, wherein the
step of separating the second fluid with said at least
part of the amount of the waste component included
therein, from the hydrocarbon fluid, is carried out in
the wellbore.
18. The method of any one of claim 1-17, wherein the
second fluid comprises water.
19. The method substantially as described hereinbefore
with reference to the example.


Documents:

541-mas-1998-abstract.pdf

541-mas-1998-claims duplicate.pdf

541-mas-1998-claims original.pdf

541-mas-1998-correspondence others.pdf

541-mas-1998-correspondence po.pdf

541-mas-1998-description complete duplicate.pdf

541-mas-1998-description complete original.pdf

541-mas-1998-form 1.pdf

541-mas-1998-form 26.pdf

541-mas-1998-form 3.pdf

541-mas-1998-form 4.pdf


Patent Number 208538
Indian Patent Application Number 541/MAS/1998
PG Journal Number 27/2007
Publication Date 06-Jul-2007
Grant Date 02-Aug-2007
Date of Filing 16-Mar-1998
Name of Patentee SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.
Applicant Address CAREL VAN BYLANDTLAAN 30, 2596 HR THE HAGUE
Inventors:
# Inventor's Name Inventor's Address
1 PHAIDON DASKOPOULOS BADHUISWEG 3, 1031 CM AMSTERDAM
2 ALEXANDER MICHIEL MOLLINGER VOLMERLAAN 8, 2288 GD RIJSWIJK
3 PAUL DIRK VOLMERLAAN 8, 2288 GD RIJSWIJK
4 SCHILTE, ROBERT GERARD SMEENK VOLMERLAAN 8, 2288 GD RIJSWIJK
5 PAULUS HENRICUS JOANNES VERBEEK VOLMERLAAN 8, 2288 GD RIJSWIJK
6 MARINUS HENDRICUS WILHELMUS VERBRUGGEN VOLMERLAAN 8, 2288 GD RIJSWIJK
PCT International Classification Number B01D53/48
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA