Title of Invention

A SELF-DRAINING CONTAINER, A METHOD AND AN APPARATUS FOR FORMING A ONE-PIECE SELF-DRAINING PLASTIC CONTAINER

Abstract A one-piece self-draining container (10) and method and apparatus for forming same. The container includes a body (11) and a finish wall (16) extending upwardly from a body opening (12). The finish wall surrounds a dispensing spout (18) which extends above the top of the wall. A frustoconical web (24, 24') joins the finish ..wall and the dispensing spout to form a drain apron gutter channel (28) having a relatively steeply inclined cone angle. A drain opening (30) is defined adjacent the channel for draining fluid from the channel (28) into the container body (11). A removable cap (40) has a depending skirt (44,48) with an external thread (49) which mates with an internal thread (32) on the container wall (16) to thereby threadably engage and close the container (10). The method is performed on the type of extrusion- injection blow molding machine as generally disclosed in U.S. Patent 2,804,654 as modified in accordance with the invention to form the web wall (24, 24') in situ with a frustoconical configuration of uniform cross sectional thickness.
Full Text

Field of the Invention
This invention relates to plastic containers and more particularly to a plastic container molded in one piece so as to include a drain back spout as molded.
Background of the Invention
In dispensing liquidfrom containers wherein only a portion of the contents of the container is used at any one time, as is the case with many products such as liquid detergents and bleaches, the consumer is concemed with the messiness which occurs from drops of the liquid contents draining down the neck and side of the container upon completion of the pouring. Thus, when a bottle having an upper neck is turned from its normal upright storage position to an inverted dispensing position and then back to its upright position, a few drops of such liquid will invariably drain down the outside of the neck of the container. A number of prior art container designs have disclosed various drain back spout (DBS) features for capturing such excess fluid and causing it to drain back into the container rather than drip down the neck and side.
Many of such DBS designs require a multiplicity of pieces which are assembled in a post molding operation, or require a re-shaping operation to re-position the spout. The self-draining containers of U.S. Patents 4,989,757 and 5,114,659 overcame such problems encountered with multiple part self-draining containers by providing a one-piece self-draining container and method and apparatus for making the same so that the container can be molded in a single machine while incorporating a drain

back spout feature as an integral part of the container, i.e., as part of the finish formed during the container molding operation. Thus, the only other element required for a complete package is a suitable removable closure for sealing the container. Such one-piece containers are much more economical to produce than a container requiring multiple pieces because the container is completed upon molding and hence post-molding operations are not required.
In the various embodiments of one-piece self-draining containers disclosed in the aforementioned 757 patent, the dispensing spout is equal to or greater in diameter than the neck of the container, regardless of which of the methods and type of machine is employed in making the same. One such 757 patent container is made by a type of blow molding characterized as injection-extrusion blow molding utilizing a blow molding machine of the type disclosed in U.S. Patent 2,804,654 (hereinafter "654 machine") which is in widespread use by the assignee of the present invention. When so utilizing the '654 machine to make the container of the 757 patent, the lower exterior surface of the web member extends radially outwardly from the neck of the narrow-shouldered container body and at right angles to the axis A of the neck, whereas the upper interior surface of the web is slightly inclined in order to promote some limited liquid drainage back to the lowermost portion of the gap in the spout when the container is retumed to its upright storage position.
The self-draining container of U.S. Patent 5,114,659 is likewise made by a method performed by the '654 machine in order to produce a one-piece self-draining container. However, the '659 patent container differs in configuration from that of the 757 patent in that the pour spout is smaller in diameter than the neck of the container and

hence is better adapted to the broad shoulder type container body shown in the '659 patent and hence is preferred for many applications.
In addition, the '659 patent discloses a method of molding which provides intemal threads with superior thread definition and lack of distortion by making the thread extend for at least two complete turns, i.e., 720°, so that at any axial section of the neck wall, there will always be at least two thread segments. This overcame the problem of thread distortion when stripping of containers having a thread with less than two full turns that previously resulted in producing containers which, although functionally usable, were less than commercially desirable. This improved stripping action, as will be seen from the '659 patent, was accompUshed with a container neck of smaller diameter than the integral portion of the upper shoulder area of the container body to which the neck is joined, and also, of course, with a pour spout having a smaller diameter than that of the container neck.
However, in the one-piece self-draining container of the '659 patent, like that of the container of FIG. 3 of the '757 patent, the bottom or interior surface of the apron web extended radially in a plane perpendicular to the axis of the neck, and hence the upper surface of the web could only be slightly inclined to thereby somewhat promote the aforementioned gravity drain back. The inclination of the web upper surface relative to the web lower, surface is limited as a practical matter because excessive plastic thickness in the web negatively affects the mold cycle time and hence production efficiency. Such asymmetric cross-sectional shape of the web wall also produces some production problems with respect to side loading of the tooling and tooling alignment.

Due to the foregoing limitations, the ledge formed by the web at the base of the pour spout is nearly flat. Hence with prior art DBS containers made in accordance with the '659 patent for broad shouldered containers the spillage residue from the product dispensed from the container tends to remain inside the finish area. This remaining residual drain back product can result in a messy package for the consimier when pouring or re-applying the closure. Accordingly, there has existed a need for many years for improving DBS configuration in such one-piece plastic containers to better promote gravity drain back into the container without sacrificing the advantages of the method, apparatus and improved thread definition of the '659 patent as practiced in '654 machines and as applied to a broad-shoulder container body.
Objects of the Invention
Accordingly, among the objects of the present invention are to provide a new and novel one-piece self-draining container which can be molded on a single machine, which requires no assembly operations, which has a steep inclination of the web drain wall that better promotes the product to drain away from the container finish back into the container, which enables the container drain web wall to be made of imiform plastic thickness and sufficiently thin so as not to negatively affect production cycle time.
Another object of the present invention is to provide an improved method and apparatus for making a container of the aforementioned character on a widely used '654 type machine that is economically retrofitted in accordance with the invention with a minimum of component changes and modifications, that retains the advantages of the method and container of the '659 patent, which eliminates the problems faced in the past

with side loading of the toohng and tooling alignment concems when fashioning the prior web of non-uniform thickness and non-parallel upper and lower surfaces, and that enables an improved container of the aforementioned character to be made in a rapid, reliable and economical manner with already available production equipment.
Summary of the Invention
In general, and by way of summary description and not by way of limitation, the present invention accomplishes the foregoing objects by providing an improved one-piece self-draining container and improved method and improved apparatus for forming the same. The container includes a body and a finish wall extending upwardly from a body opening. The fmish wall surrounds a dispensing spout which extends above the top of the wall, A drain back apron web joins the finish wall and the dispensing spout and has a generally frustoconical contour to form a drain apron gutter channel having a relatively steeply inclined cone angle. A drain opening is defmed adjacent the gutter channel, preferably in the form of a gap at the rear of the spout, for draining fluid from the channel into the container body. The apron web is preferably constructed and arranged to have generally parallel upper and lower wall surfaces sloping downwardly toward the spout in the container upright position.
The method of the invention for constructing the improved container is performed on a modified conventional '654 type extrusion/injection blow molding machine that is operated in the conventional manner in a normal cycle so that the container is manufactured by a process in which at least the neck, dispensing spout, annular finish wall, apron web, and the drain gap through which liquids flow are formed

m a first mold in one operation and the body is thereafter formed by blow molding, with no post-molding reconfiguring operations required for those portions formed in the first mold in order to provide the final as-molded container cnfiguration. The conventional '654 molding machine is modified by constructing and arranging the web forming portion of the injection mold cavity tooling to mold form a generally frustoconical upper surface on the web, and constructing and arranging the end surface of the extrusion die head that closes the injection mold cavity so as to mold form a generally frustoconical lower surface on the web. Preferably, this is accomplished by recessing the central surface on the mandrel end that mates with the lower end of the injection mold core pin so that these parts meet in a central abutment zone spaced below the annular extruder outlet formed between the upper end of the mandrel and the bushing that surrounds the mandrel in the extrusion tooling. A finstoconical surface is then formed on the mandrel end so as to encircle the recessed mandrel central surface and to taper upwardly and radially outwardly therefrom to intersect with the plane of the ann
ular extrusion die outlet. Likewise the lower end of the finish insert sleeve of the injection mold tooling is reconfigured complemental to the mandrel end frustoconical surface so that the mold cavity surfaces define therebetween a mold cavity adapted to form the apron web such that it has a generally frustoconical contour.

Accordingly the present invention provides a self-draining container molded in one piece having a body portion; an integrally formed neck defining a cylindrical opening having a predetermined diameter, said neck formed in situ with and extending upwardly from said body portion, a dispensing spout formed integral and in situ with and at least partially encircled by said neck, at least a portion of said dispensing spout being a section of cylinder having an external surface with a diameter less than said predetermined diameter, said dispensing spout having a circumferential extent of at least 180° but less than 360° and presenting opposing edges which define a gap at the lower end of said spout, and an integrally formed annular finish wall encircling said spout in spaced relation thereto; an apron web connecting said annular finish wall and said spout to said neck, said web being formed in situ with said annular wall and dispensing spout and cooperating therewith to define a channel for receiving liquids draining from said dispensing spout when the container is moved from an inverted dispensing position to an upright position; said gap providing an opening through which liquids may flow from said channel to said neck and body portion when the container is upright, said container being manufactured by a process in which at least the neck, dispensing spout, annular finish wall, web and said gap through which liquids flow are formed in a first mold in one operation and the body is thereafter formed by blow molding with no post-molding operations required for those portions formed in the first mold; characterized in that said apron web is constructed and arranged to have generally parallel upper and lower walls surfaces sloping downwardly toward said spout in the container upright position.
Accordingly the present invention also provides a method of forming a one-piece self-draining plastic container as claimed in any one of the preceding claim comprising the steps of: (a) providing a cavity in an injection mold defining (i) a spout forming portion, (ii) a cylindrical wall forming portion having an outer surface and an inner surface having a thread forming projection extending around the inner surface of said cylindrical wall forming portion for at least two complete turns, (iii) a web

forming portion interconnecting the spout forming portion and cylindrical wall forming portion each of said portions opening to the exterior of said mold; (b) imparting relative movement between an extrusion die head, operable for extruding heated and plasticized plastic material, and said injection mold to thereby engage said injection mold and said die head to close said cavity; (c) injecting plastic material from said die head into said cavity to fill said cavity to form a pouring spout, cylindrical wall and integral web interconnecting said spout and said cylindrical wall with a thread integral with and extending around on the inner surface of said cylindrical wall; (d) imparting relative movement between said die head and said injection mold while extruding plastic material in the form of tubing from said die head, said tubing having a diameter nearly equal to the diameter of said cylindrical wall; (e) closing mold halves about the extruded tubing; (f) expanding the tubing to form a self-draining plastic container having a closed bottom and said integral pouring spout, web and cylindrical wall; (g) opening said mold halves and moving said pouring spout, cylindrical wall and integral web axially relative to said spout forming portion and said cylindrical wall forming portion to strip said pouring spout, cylindrical wall and web from said cavity and said thread from said thread forming projection; the improvement in combination with the foregoing process comprising the further steps of: (h) constructing and arranging in step (a) the web forming portion of the injection mold cavity to mold form a generally frustoconical upper surface on the web, and (i) constructing and arranging in step (b) the end surface of said die head that closes said cavity so as to mold form a generally frustoconical lower surface on the web.
Accordingly the present invention also provides an apparatus for forming a one-piece self-draining plastic container as claimed in any one of claim 1 to 7 comprising; (a) mold tooling means for forming an injection cavity having: (i) a longitudinally extending spout cavity portion, (ii) a web cavity portion communicating with and extending radially outwardly from said spout cavity portion; and (iii) a wall

cavity portion encircling said spout cavity portion communicating with said web cavity portion; (b) extrusion die tooling means having a central mandrel terminating in an end and a bushing encircling said mandrel in spaced relationship to define an annular outlet, the end of said mandrel and the outlet of said bushing lying generally in the same plane; (c) said mold tooling means having a neck ring assembly having an interior core pin terminating in an end, a sleeve encircling said core pin and cooperating therewith to define said cavity conforming to the desired configuration of said spout, said sleeve having an end and a pair of partible neck ring halves movable between open and closed position and when closed, cooperating with said sleeve to define said cavity conforming to the desired configuration of said annular wall, the portion of said sleeve cooperating with said partible neck ring halves to form a cavity for said annular wall having a thread recess extending at least two full turns around said sleeve to form an intemal thread on said annular wall, said annular wall having a cross-sectional size and shape generally conforming to that of the annular outlet of said extrusions; said apparatus being operable such that said neck ring assembly is movable into engagement with said extrusion die such that the closed neck halves and contact the bushing, the end of the core pin contacts the end of said central mandrel and at least a portion of the sleeve end is spaced from the end of said central mandrel to thereby close the mold cavity for forcing heated and plasticized thermoplastic material through the annular outlet of said extrusion die and into the cavities defined by said neck ring assembly and into the space between the end of the sleeve and the end of said central mandrel; and such that said neck ring assembly is movable away from said extrusion die while continuing to force heated and plasticized thermoplastic material therethrough to form a tubular parison substantially the same size as and depending from said annular wall such that said tubular parison is expandable in a blow mold to form said body portion; and thereafter said apparatus is further operable such the neck ring halves are at least partially opened, the core pin is at least partially withdrawn from said spout and, thereafter, the annular wall having said intemal thread

is stripped from said sleeve: characterized in that a recessed central surface is disposed on said mandrel end and a core pin surface defining said end of said core pin adapted to abut upon mold closure in a central abutment zone spaced below said plane, and a generally frustoconical mold-cavity-defming surface on said mandrel end encircling said mandrel central surface and tapering upwardly and radially outwardly therefrom to an intersection with said plane at said annular extrusion die outlet, and in that said sleeve end is configured to provide a mold-cavity-defming surface generally complemental to said mandrel end frustoconical surface so that the web mold formed therebetween has a generally frustoconical contour.
Brief Description of the Drawings
The foregoing as well as other objects, features and advantages of the present invention will become apparent from the following detailed description of the best mode presently known to the inventor of making and using the invention, from the

appended claims and from the accompanying drawings wherein:
FIG. 1 is a perspective view showing a first embodiment of a container constructed according to the present invention, with a cap positioned above the container;
FIG. 2 is a fragmentary cross-sectional view taken along the line 2-2 in FIG. 1 showing the top portion of the container of FIG. 1 with the cap in place to thereby provide the first embodiment self-draining package;
FIG. 3 is a fragmentary view, partially in center axial cross section and partially in elevation, of a *654 type machine modified in accordance with the invention to produce the first embodiment container, and showing the finish portion of the container being extrusion injection molded in accordance with the method of the invention;
FIG. 4 is a fragmentary sectional view similar to that of FIG. 3 but with the extrusion tooling removed from the injection molding tooling and replaced by blow mold halves, FIG. 4 showing a portion of the closed blow-mold with the body portion of the container blown therein;
FIG. 5 is a fragmentary cross-sectional view of the fmish portion of a second embodiment of a one-piece self-draining container also constmcted in accordance with the invention; and
FIG. 6 is a fragmentary cross-sectional view similar to that of FIG. 3 and illustrating a further modification to the tooling of a '654 type machine in accordance with the invention to produce the second embodiment DBS container of FIG. 5.

Detailed Description of the Preferred Embodiments First Embodiment Container
Referring in more detail to the accompanying drawings, FIGS. 1 and 2 illustrate a fu'st embodiment of a self-draining container 10 constructed in accordance with the present invention. While the self-draining container 10 as depicted is a plastic bottle specifically designed for liquids, other self-draining containers which fall within the scope of the present invention may be constmcted of other materials and used to contain liquids, powders or granules.
The self-draining container 10 includes a body portion 11 of the "broad-shouldered" type which terminates in an opening 12 through which the contents of container 10 can be dispensed. An integrally formed (i.e., as used herein, the term "integral" means a one-piece construction as molded) dispensing portion 14, commonly termed a "fmish", extends from and communicates with body portion 11. Finish 14 includes a circular neck wall 16 which extends angularly around the body opening 12. A dispensing spout 18 is located within and is encircled by wall 16 and includes an upper end pouring lip 20 that extends above a top end edge 22 of wall 16.
In accordance with one of the principal features of the present invention, the outside diameter of spout 18 is smaller than the inside diameter of wall 16, and a steeply inclined drip collecting apron 24 in the form of a frustoconical web wall extends between wall 16 from an elevation below top edge 22 to the lower end edge 26 of spout 18 to thereby connect the spout to the container neck. In the embodiment of FIGS. 1 and 2, the cone angle of web 24 is approximately 30° and web 24 is circumferentially continuous through 360° and connects wall 16 to the lower circular edge 26 of spout 18.

Web 24 together with neck wall 16 and pour spout 18 define a drain gutter channel 28 into which fluid flowing back down about the exterior of spout 18 and the interior of closure 40 may drain under the influence of gravitational forces when container 10 is uprighted after it has been inverted for pouring. Liquid then flows from gutter 28 back into the container 10 by entering the axially extending spout rear gap that is defined between the pair of spaced apart rear edges 30 of spout 18 (only one edge 30 being shown in FIG. 2). Web 24 should extend at least half way around finish wall 16, and preferably all the way around as shown in FIG.2, to thereby prevent flow of liquid from the container interior into gutter channel 28 when the container 10 is partially inverted to a pouring position.
The inner surface of wall 16 has formed therein a thread 32 which, in accordance with the aforementioned '659 patent, extends at least two complete turns so that any section cut axially through such wall 16 will have two separate and distinct portions of the thread 32. As set forth in the '659 patent, forming a container having a spout 18 and an encircling wall 16 with an internal thread 32 of such length permits container 10 to be stripped from the injection mold without causing distortion to thread 32.
Referring to both FIGS. 1 and 2, a closure or cap 40 includes a top 42 and a depending sidewall 44. A sealing ring 46 extends radially outwardly from sidewall 44 and a cylindrical skirt 48 depends downwardly below ring 46. Extemal threads 49 are formed on an exterior surface of skirt 48 and cooperate with threads 32 of the container finish 14 for threadably engaging and removing cap 40 relative to container 10. It will be understood that in other embodiments of the invention, the finish threads 32 may be

provided on the exterior of wall 18 to mate with cap threads located on the interior of the cap skirt.
First Embodiment Blow Molding Method and Machine
Referring to FIGS. 3 and 4, the self-draining container 10 may be produced in one-piece within the normal cycle of a blow molding machine of a type known as the aforementioend '654 machine, as modified in accordance with the invention. This type of blow molding may be characterized as injection/extrusion blow molding and is used by the assignee of the present invention and others with a machine herein designated as the '654 machine. No post-molding container reconfiguring operations are needed to produce the self-draining finish configuration on this type of machine. An injection/extrusion tooling portion of a '654 machine is generally indicated by the reference numeral 50 in FIGS. 3 and 4. Details of a '654 machine, mode of operation, and method practiced thereby are disclosed in U.S. Patent 2,804,654, which is incorporated herein by reference. Further details of the stripping of the container from the injection mold without causing distortion of the threads 32 may be found in the aforementioned U.S. Patent 5,114,659, which is also incorporated herein by reference.
In the method utilized by the '654 machine, both existing and as modified in accordance with the invention disclosed herein, the upper neck or finish portion of the container is first injection molded in the injection mold tooling of the machine. Upon completion of the injection molding step, the injection mold tooling is raised away fi'om the orifice of the injection/extrusion die head tooling while a length of heated and plasticized tubing is extruded from the die head. The tubing is integrally connected to the

injection molded finish and is therefore drawn upwardly as the tubing is extruded. After the proper length of the tubing has been extruded, blow mold halves of the '654 machine close around the tubing and air is introduced through the injection mold tooling assembly to expand the tubing in the closed blow mold to form the remainder (i.e., body) of the container. These steps are shown and described in the aforementioned U.S. Patent 2,804,654.
The injection step is shown in FIG. 3 wherein the extrusion die head tooling is generally designated by the numeral 50 and includes a bushing 52 and a mandrel 54 which cooperate to define an annular extrusion orifice 56 through which the heated and plasticized material is expelled upwardly into the injection mold cavity defined by the finish and neck rink assembly injection mold tooling 58 juxtaposed to the extrusion die tooling 50. Tooling 58 includes a movable neck ring assembly 60 which is mounted (by means not shovm) for movement dovmwardly into engagement with the bushings 52 of the extrusion tooling 50 and in registry with the extrusion orifice 56 during the injection molding step, and for movement upwardly during the extrusion step to thereby draw the oncoming tubing upwardly away from the orifice 56 as it is extruded therefrom. The neck ring assembly 60 includes neck ring halves 62 and 64 which can open and close radially and which have interior wall portions 66 and 68, respectively, against which the exterior surface of the annular wall 16 of the container finish is molded. The neck ring assembly 60 also includes a core pin 70 having a blow passageway 72 extending axially therethrough through which pressurized air may be introduced into the extruded tubing via blow passageway 72 after such tubing is enclosed within the blow mold mating halves 74, 76 (FIG. 4) to thereby expand the tube in the blow mold and form the body 11 of

container 10.
Core pin 70 has an enlarged diameter head portion 80 at its lower end that is contoured on its exterior surface to provide the mold cavity surface for forming the interior surface of container spout 18. Core pin 70 has a reduced diameter shank portion 82 that extends from head 80 up to a radially protruding collar portion 84. A fmish insert sleeve subassembly 86, made up of a collar part 88 and a sleeve 90 removably fastened to the underside thereof by machine bolts 92, encircles shank 82 of core pin 70 and defmes a recessed area 92 extending from the upper edge 94 of core pin head 80 to the undersurface ledge 96 of collar 88 of the finish insert subassembly 86. Sleeve 90 has a mold-cavity-defining interior surface recess 100 of a configuration to cooperate with exterior surface configuration of core pin 80 to thereby mold form the upper end 20 and the outer surface of spout 18, The lower exterior portion of sleeve 90 mold forms the interior surface of wall 16 and has a thread recess 102 in which the thread 32 is molded. As in the '659 patent, the length of the thread recess 102 is such as to provide at least two complete turns (i.e., 720') so that in any axial section of the wall 16, there will always be at least two thread segments, regardless of where the axial section is taken throughout the entire 360° circumferential extent of wall 16. It will be seen that the upper end of the sleeve assembly 86 comprises the cap collar 88 that slidably encircles the core pin shank 82 and can move relative thereto between the end stops provided by shoulder ledges 94, 95 of the core pin subassembly.
In accordance with another principal feature of the method and apparatus of the present invention, the lower end surface 104 of sleeve 90 is modified so as to be configured frustoconically at a downwardly convergent cone angle to thereby define the

injection mold cavity surface for mold forming the frustoconical upper surface 106 of the apron web 24 (FIG. 2). In addition, the upper surface of the extrusion mandrel 54 is modified so as to be configured to form a central, circular, planar recessed surface 108 that abuts the mating flat circular lower end face 110 of core pin head 80, as shown in FIG. 3, when the extrusion/injection die head tooling 50 is operably engaged with the neck ring tooling 60 of injection tooling 58 to perform the injection molding operation. The mandrel recessed end surface 108 is surrounded by an annular frustoconical mandrel surface 112 that is configured to define the injection mold cavity surface that mold forms both the undersurface 114 of web 24 (FIG. 5) and the integral bottom edge 26 of spout 18. This occurs upon mold closure when extrusion die head 50 is oriented to complete the injection mold cavity in cooperation with sleeve 90 and the exterior mold cavity surface of core pin head 80, and with head 80 in abutment with its head face 110 seating tightly on mandrel surface 108.
Upon completion of the injection molding step of FIG. 3, the injection mold is raised from orifice 56 of extrusion/injection die head 50 while a length of heated and plasticized tubing is being extruded through the extrusion orifice 56. This tubing is integrally connected to the injection molded finish formed as shown in FIG. 3 and is therefore drawn upwardly as the tubing is extruded. After the proper length of tubing has been extruded, and referring to FIG. 4, the blow mold halves 74, 76 close around the tubing and then air is introduced through the injection mold assembly via passageway 72 to expand the tubing in the closed mold to form the remainder of the container, as set forth in more detail in the aforementioned U.S. Patent 2,804,654.

Following blowing of the body portion 11 of container 10, spout 18, apron web 24 and finish wall 16 may be removed from the neck ring assembly 60. This is normally done after the halves 74, 76 of the blow mold in which body portion 11 was molded have been opened. Such removal is accompUshed by the sequence ofthe steps described in conjunction with FIGS. 11 through 13 ofthe aforementioned '659 patent, which is incorporated herein by reference and not repeated. However, it is to be noted that the present invention, despite modifying the '654 machine mandrel and core pin tooling to form the frustoconical web wall 24, still retains the advantage of enabling stripping of the threads 32 of the finish with minimal distortion. This stripping process is believed to be also enhanced by retaining the broad shoulder configuration of container body 11 at its junction with the container finish in combination with the smaller diameter spout 18, as contrasted with the narrow neck bodies and larger diameter spouts of the aforementioned U.S. Pat. No. 4,989,757.
Second Embodiment One-Piece Self-Draining Container
FIG. 5 illustrates a second embodiment one-piece self-draining contamer 10' of the invention in which those elements identical to those of container 10 are given like reference numerals, and those elements alike in function are given like reference numerals raised by a prime suffix, and their description not repeated. As will be seen by comparing FIGS. 2 and 5, the second embodiment container 10' differs only with respect to the configuration of the apron web wall 24'. Web wall 24' is tapered downwardly at a slant so that its lowest region is centered on the spout opening at the gap edges 30' diametrically opposite the pouring lip 20 of spout 18'. In essence, the cone axis of wall 24' is filted non-parallel to the central longitudinal axis of body 11 or neck wall 16 by

about 10°, and hence the lower edge 26' of spout 18' is likewise inclined as shown in FIG. 5 to match this change in configuration of the apron web 24'. This reconfiguration of the embodiment of FIG. 5 further promotes gravity-induced drainage of product by making the area of apron 24' leading into the rear spout gap opening 30 the lowest region of the drain apron gutter when the spout is in its normal upright position.
Second Embodiment Method and Apparatus
FIG. 6 shows a second embodiment of 654 machine extmsion tooling and neck ring injection tooling as modified in accordance with the invention in order to produce the container 10* of FIG. 5. It will be seen that those elements identical to those previously described are given Uke reference numerals and their description not repeated, and those elements alike in function but modified are given like reference numerals raised by a prime suffix. It will be seen that the only changes needed to accomplish the revised embodiment of FIG. 5 is to modify the upper end face configuration of mandrel 54' and likewise the corresponding lower surface of finish insert sleeve 104 '. The lower end head 80' of mold core 70' will fit into a recess in the top surface of mandrel tip 54'. The lower finish insert sleeve surface 104' and the top mandrel tip surface 112' have mating slopes to maintain a substantially uniform gap to allow for a consistent material thickness on web 24'. The opposing faces 108, 110' of mandrel 54' and head 80' are horizontal rather than angulated, which eliminates any side loading problems that might otherwise occur in the tooling.
From the foregoing description and the drawing figures as referenced therein, it will be apparent to those skilled in the art that the improved one-piece self-

draining contamer of the invention, and the improved method and apparatus for making the same in accordance with the invention, amply fulfill the aforestated objects and provide many advantages over the prior art. The pour spout 18, 18' is integrally joined to the container, i.e., made in one piece with the container as molded, and is integrally joined to the surrounding container neck by a drip collecting apron web or ledge that is tapered or angulated downwardly at a steep angle throughout its circumference, thereby providing an improved drain gutter contour better promoting product drippage flow toward the reduced diameter pour spout to encourage gravity-induced flow of liquid back into the container. Yet the advantages of a molded-in spout are retained, as are the advantages of the improved thread definition of the aforementioned U.S. Patent 5,114,659. Thus, the problem in the 659 patent of the product remaining inside the finish area because the ledge formed at the base of the spout is nearly flat is overcome because of the improved ability of the product to drain back into the container due to the greatly increased slope angle of the frustoconical configuration of the ledge web 24 or 24' toward the spout and therearound to the gap opening 30 at the rear of the spout.
Moreover, this improved container drain gutter configuration is obtained by utilizing the already existing 654 type blow molding machines with only minor modifications thereto. As illustrated in FIGS. 3 and 6, only the upper face of mandrel 54 need be machined and ground to the recessed configuration of either FIG. 3 or FIG. 6. Likewise the head 80 or 80' of the core pin assembly 70 or 70' needs to be replaced with an axially elongated head, the finish insert sleeve 90 or 90' modified by extending the sleeve axially, and contouring the sleeve bottom surface 104 or 104' to correspond with the contour of mandrel tip surface 112 or 112'. All the remaining components of the

macmne remam unchanged, and the cycle ot operation ot the machine is not affected. Despite the improved configuration of the web wall 24 or 24', the cross sectional thickness of the web wall remains uniform and relatively thin so as to not affect machine cycle time.
Thus, as will be appreciated by those skilled in the art, many revisions and changes may be made to the various elements of the preferred embodiments of the self-draining container and its method and apparatus for manufacture described above, including numerous modifications in configuration and shape styles, without thereby departing from the principles of the invention and scope of the following claims.



WE CLAIM:
1. A self-draining container (10) molded in one piece having a body portion (11); an integrally formed neck (14) defining a cylindrical opening (12) having a predetermined diameter, said neck formed in situ with and extending upwardly from said body portion, a dispensing spout (18) formed integral and in situ with and at least partially encircled by said neck, at least a portion of said dispensing spout being a section of cylinder having an external surface with a diameter less than said predetermined diameter, said dispensing spout having a circumferential extent of at least 180° but less than 360° and presenting opposing edges(30) which define a gap at the lower end of said spout, and an integrally formed annuls finish wall (16) encircling said spout in spaced relation thereto; an apron web (24, 24*) connecting said annular finish wall (16) and said spout (18) to said neck, said web being formed in situ with said annular wall and dispensing spout and cooperating therewith to define a channel (28) for receiving liquids draining from said dispensing spout when the container is moved from an inverted dispensing position to an upright position; said gap providing an opening through which liquids may flow from said channel (28) to said neck and body portion (11) when the container is upright, said container being manufactured by a process in which at least the neck (14), dispensing spout (18), annular finish wall (16), web (24, 24') and said gap through which liquids flow are formed in a first mold (50, 58; FIG. 3 58, 50; FIG. 6) in one operation and the body (11) is thereafter formed by blow molding (74, 76; FIG. 4) with no post-molding operations required for those portions formed in the first mold; characterized in that said apron web (24, 24') is constructed and arranged to have generally parallel upper (106, 106') and lower (114, 114') walls surfaces sloping downwardly toward said spout (18) in the container upright position.

2. The self-draining container as claimed in claim 1 wherein those portions
formed in the first mold (58) are injection molded, a blowable parison is thereafter
integrally formed therewith by extruding a length of tubing (50, 50'; FIG. 3 or FIG. 6)
and the tubing is thereafter blown (74, 76; FIG. 4) to form the body portion (11).
3. The self-draining container as claimed in claim 1 or 2 wherein said web (24, 24') extends upwardly and outwardly from the lower end of said spout (18), said spout extending upwardly from said web along an axis parallel to the axis of said neck (14, 16).
4. The self-draining container as claimed in claim 3 wherein said web (24, 24') has a substantially uniform cross-sectional thickness throughout its radial and circumferential extent encircling said spout (18).
5. The self-draining container as claimed in claim 4 wherein said web (24) has a frustoconical configuration with a cone angle of about 30° (FIG. 2).
6. The self-draining container as claimed in claim 5 wherein the axis of said web (24) is oriented generally parallel to the axis of said spout (18).
7. The self-draining container as claimed in claim 5 wherein the axis of said web (24') is oriented to tilt away from the axis of said spout (18) in an upwardly divergent direction and inclined toward said spout gap (FIGS. 5 and 6).
8. A method of forming a one-piece self-draining plastic container (10) as claimed in any one of the preceding claim comprising the steps of (a) providing a cavity in an injection mold (58, 62,64,90,90') defining (i) a spout forming portion (100), (ii) a cylindrical wall forming portion having an outer surface (66, 68) and an inner surface (90) having a thread forming projection (102) extending around the inner

surface of said cylindrical wall forming portion for at least two complete turns, (iii) a web forming portion (104, 105) interconnecting the spout forming portion (70) and cylindrical wall forming portion (90, 62, 64), each of said portions opening to the exterior of said mold; (b) imparting relative movement between an extrusion die head (50, 50'), operable for extruding heated and plasticized plastic material, and said injection mold (58) to thereby engage said injection mold and said die head to close said cavity; (c) injecting (FIG. 3; FIG. 6) plastic material from said die head into said cavity to fill said cavity to form a pouring spout (18), cylindrical wall (16) and integral web (24) interconnecting said spout and said cylindrical wall with a thread (32) integral with and extending around on the inner surface of said cylindrical wall; (d) imparting relative movement between said die head and said injection mold while extruding plastic material in the form of tubing from said die head, said tubing having a diameter nearly equal to the diameter of said cylindrical wall; (e) closing mold halves (74, 76) about the extruded tubing; (f) expanding the tubing (FIG. 4) to form a self-draining plastic container (11) having a closed bottom and said integral pouring spout, web (24) and cylindrical wall (16); (g) opening said mold halves and moving said pouring spout, cylindrical wall and integral web axially relative to said spout forming portion and said cylindrical wall forming portion to strip said pouring spout, cylindrical wall and web from said cavity and said thread from said thread forming projection (FIG. 2; FIG. 5); the improvement in combination with the foregoing process comprising the further steps of: (h) constructing and arranging in step (a) the web forming portion of the injection mold cavity to mold form a generally frustoconical upper surface (106, 106') on the web, and (i) constructing and arranging in step (b) the end surface of said die head that closes said cavity so as to mold form a generally frustoconical lower surface (114, 114') on the web.
9. The method as claimed in claim 8 wherein said thread (32) extends at least two
turns around on the interior surface of said cylindrical wall, and wherein in step (g) said thread is stretched as it is stripped from said thread forming projection (102, 104) such that the final thread (32) is not distorted.

10. . The method as claimed in claim 9 wherein steps (h) and (i) are performed such
that the upper and lower web surfaces (106. 106' and 114, 113') are generally parallel
to one another so that said web has a generally uniform cross-sectional thickness (FIG.
2; FIG 5.
11. The method as claimed in claim 10 wherein said tubing (56. FIG. 3: FIG. 6) has a diameter substantially equal to the diameter of said cylindrical wall (16).
12. An apparatus for forming a one-piece self-draining plastic container as claimed in any one of claim I to 7 comprising: (a) mold tooling means (58) for forming an injection cavity having: (i) a longitudinally extending spout (18. 18') cavity portion (100). (ii) a web (24. 24') cavity portion (104. 108) communicating with and extending radially outwardly from said spout cavity portion; and (iii) a wall (16) cavity portion (66, 68, 90) encircling said spout cavity portion communicating with said web cavity portion: (b) extrusion die tooling means (50. 50') having a central mandrel (54, 54') terminating in an end and (108. 108', 112, 112') a bushing (52) encircling said mandrel in spaced relationship to define an annular outlet (56). the end of said mandrel and the outlet of said bushing lying generally in the same plane; (c) said mold tooling means (58) having a neck ring assembly (60) having an interior core pin (75, 70') terminating in an end (110. 110'), a sleeve (90, 90') encircling said core pin and cooperating therewith to define said cavity conforming to the desired configuration of said spout, said sleeve having an end (104, 104') and a pair of partible neck ring halves (62 and 64) movable between open and closed position and when closed, cooperating with said sleeve to define said cavity conforming to the desired configuration of said annular wall (16). the portion of said sleeve cooperating with said partible neck ring halves to form a cavity for said annular wall having a thread recess (102, 104) extending at least two full turns around said sleeve to form an internal thread (32) on said annular wall, (16) said annular wall having a cross-sectional size and shape generally conforming to that of the annular outlet (56) of said

extrusions; said apparatus being operable such that said neck ring assembly (60) is movable into engagement with said extrusion die (50, 50') such that the closed neck halves (62 and 64) contact the bushing (52), the end of the core pin (70, 70') contacts the end of said central mandrel (54, 54') and at least a portion of the sleeve end (110, 110') is spaced from the end (108, 108'; 112, 112') of said central mandrel to thereby close the mold cavity for forcing heated and plasticized thermoplastic material through the annular outlet (56) of said extrusion die and into the cavities defined by said neck ring assembly and into the space between the end of the sleeve and the end of said central mandrel; and such that said neck ring assembly (58) is movable away from said extrusion die (50, 50') while continuing to force heated and plasticized thermoplastic material therethrough to form a tubular parison substantially the same size as and depending from said annular wall such that said tubular parison is expandable in a blow mold (74 and 76) to form said body portion (11); and thereafter said apparatus is further operable such the neck ring halves (62 and 64) are at least partially opened, the core pin (70, 70') is at least partially withdrawn from said spout (18, 18') and, thereafter, the annular wall (16) having said internal thread (32) is stripped from said sleeve (90, 90'): characterized in that a recessed central surface (108, 108') is disposed on said mandrel end and a core pin surface (110, 110') defining said end of said core pin 44 adapted to abut upon mold closure in a central abutment zone spaced below said plane, and a generally frustoconical mold-cavity-defming surface (112, 112') on said mandrel end encircling said mandrel central surface and tapering upwardly and radially outwardly therefrom to an intersection with said plane at said annular extrusion die outlet, and in that said sleeve end is configured to provide a mold-cavity-defming surface (104, 104') generally complemental to said mandrel end frustoconical surface (112, 112') so that the web mold formed therebetween has a generally frustoconical contour.

13. The apparatus as claimed in claim 12 wherein said mold-cavity-defming surfaces (104, 104*, 112, 112') on said mandrel end and sleeve end are spaced generally uniformly apart throughout their extent in the closed condition of said tooling means (FIG. 3; FIG. 6) so that the web mold formed therebetween has a substantially uniform cross-sectional thickness throughout its radial and circumferential extent encircling said spout.
14. The apparatus as claimed in claim 13 wherein said mold-cavity-defining sloping surfaces (104 and 112) of said mandrel upper end and said sleeve end have a cone angle of about 30° (FIG. 3).
15. The apparatus as claimed in claim 12 wherein said mold-cavity-defining sloping surfaces (112 and 104) of said mandrel end and said sleeve end comprise surfaces of revolution having respective axes extending generally parallel to the direction of mold-opening and mold-closing travel of said extrusion and mold tooling means (50 and 58), and said mandrel end recessed central surface (108) and said core pin end mating surface (110) each being generally planar and extending generally perpendicular to said axes of said web forming sloping surfaces on said mandrel end and sleeve end.
16. The apparatus as claimed in claim 15 wherein said web mold forming sloping surfaces (112' and 104') of said mandrel end and sleeve end are constructed (FIGS. 5 and 6) such that their respective axes extend generally parallel to one another and are inclined relative to the direction of travel of said tooling means (58 and 50') at an acute angle and in a direction diametrically opposite from a pouring lip end termination (20) of said container spout (18').
17. A self-draining container substantially as herein described with reference to the accompanying drawings.

18. A method of forming a one-piece self-draining plastic container substantially as herein described with reference to the accompanying drawings.
19. An apparatus for forming a one-piece self-draining plastic container substantially as herein described with reference to the accompanying drawings.


Documents:

709-mas-1999-abstract.pdf

709-mas-1999-claims duplicate.pdf

709-mas-1999-claims original.pdf

709-mas-1999-correspondance others.pdf

709-mas-1999-correspondance po.pdf

709-mas-1999-description complete duplicate.pdf

709-mas-1999-description complete original.pdf

709-mas-1999-drawings.pdf

709-mas-1999-form 1.pdf

709-mas-1999-form 13.pdf

709-mas-1999-form 26.pdf

709-mas-1999-form 3.pdf

709-mas-1999-form 5.pdf


Patent Number 206797
Indian Patent Application Number 709/MAS/1999
PG Journal Number 26/2007
Publication Date 29-Jun-2007
Grant Date 11-May-2007
Date of Filing 06-Jul-1999
Name of Patentee GRAHAM PACKAGING PLASTIC PRODUCTS INC.
Applicant Address 2401 PLEASANT VALLEY ROAD, YORK, PENNSYLVANIA 17402
Inventors:
# Inventor's Name Inventor's Address
1 GREGORY A GEISINGER 2340 GRADWOHL ROAD TOLEDO OHIO 43617
PCT International Classification Number B65D001/16
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/114,481 1998-07-13 Russia