Title of Invention

METHOD FOR THE HEMOCOMPATIBLE COATING OF BIOLOGICAL AND/OR ARTIFICIAL SURFACES OF MEDICAL DEVICE AND MEDICAL DEVICE OBTAINED THEREOF

Abstract 1. Method for the hemocompatible coating of biological and/or artificial surfaces of medical devices comprising the following steps: a) providing a surface of a medical device and b) deposition of at least one oligosaccharide and/or polysaccharide compounds of the general formulas la and lb Formula la Formula la Formula lb Formula tb n wherein n is an integer between 4 and 1050, Y and Z, independently of each other, represent the groups -CHO, -COC113, -COC2I If,, -COC3H7, -CCC4H9, -COC5H11, -COCH (CH3)2, -COCH2CH(CH3)2, -COCH(CH3)C2 l15, -COC(CH3)3, -CH2COO-, -C2H4COO-, -C3H6COO, -C4H8COO, and salts of said compounds as hemocompatible layer on this surface and/or b') deposition of a biostable layer on the surface of the medical device or the hemocompatible layer.
Full Text FORM 2
THE PATENTS ACT, 1970 (39 of 1970)
COMPLETE SPECIFICATION (See Section 10, rule 13)
METHOD FOR THE HEMOCOMPATIBLE COANING OF BIOLOGICAL AND/OR
ARTIFICIAL SURFACES OF MEDICAL DEVICE AND MEDICAL DEVICE AND
MEDICAL DEVICE OBTAIND THEROF.

HEMOTEQ GMBH of ADENAUERSTRASSE 15, 52146 WURSELEN, GERMANY, GERMAN Company
The following specification particularly describes the nature of the invention and the manner in which it is to be performed : -
GRANTED

30-12-2005



606/MUMNP/2004
------------------------------------------------------
28/10/2004

Compounds and method for coating surfaces in a hemocompatible manner
DESCRIPTION
The invention relates to the use of oligo- and/or polysaccharides containing the sugar building block N-acylglucosamine and/or N-acylga.lactosamine for the preparation of hemocompatible surfaces, methods for the hemocompatible coating of surfaces with said oligo- and/or polysaccharides as well as the use of
the hemocompatibly coated surfaces. ' ,
]
In the human body the blood gets ,in contact with surfaces other than the internal face of natural blood vessels only in case of an injury. Consequently the blood coagulation system is always activated to reduce the bleeding and to prevent a life-threatening loss of blood if blood gets in contact with foreign surfaces. Due to the fact theft an implant also represents a foreign surface all patients receiving an implant which is permanently in contact with blood are treated for the duration of the blood contact with drugs, with so called anticoagulants which suppress the blood coagulation. This is also true for patients applicated an extracorporeal circulation such as hemodialysis patients. However this coagulation suppressive medication is in some extent afflicted with considerable side effects which range from loss of hair nausea and vomitus beyond thrombocytopenia, hemorrhagic skin necroses and increased hemorrhagic diathesis up to side effects with a fatal outcome such as cerebral hemorrhages.
Thus there is a demand for non-thrombogenic, hemocompatible materials such as protheses, organ spareparts, membranes, cannulae, tubes, blood containers, stents etc. which do not activate the coagulation systmen in case of blood contanct and do not cause coagulation of the blood.
EP-B-0 333 730 describes a method for preparation of hemocompatible substrates by incorporation, adhesion and/or modification and attachment of non-thrombogenic endothelial cell surface polysaccharide (HS-I). The immobilization of this specific endothelial cell surface proteoheparan sulphate HS I on biological or artificial surfaces causes that suchlike coated surfaces become blood compatible and suitable for the permanent blood contact. However, it is disadvantageous that

10
15
20

said process, for the generation of HS I requires the cultivation of endothelial cells, so that the economical usability of said process is very limited because the cultivation of endothelial cells is time consuming, and relatively large amounts of cultivated endothelial cells are only available at a considerably high cost,
It is the object of the present invention to provide substances for the h'emocompatible coating of surfaces as well as methods for hemopompatible coating of surfaces; and their use on surfaces for the prevention or reduction of undesired reactions.
i Particularly it is the object of the present invention to provide medical products,
which allow a continuous controlled ingrowth of the medical product - on the one
i hand by suppression of the cellular reactions during the first days and weeks after
the implantation by means of the chosen active agents and active agent
combinations and on the other hand by providing an atrombogeneous^fesp?ipert
.ocompatible surface, which guarantees, that with decreasing of the active
agent influence no reactions on the present [alien]surface occur anymore, which
also can lead to complications on the long-term.
This object is solved by the technical teaching of the independent claims of the present invention. Further advantageous embodiments of the invention are evident from the dependent claims, the description, the figures and the examples.

The present invention discloses polysaccharides of the general formula la
25
Formula la


30

35 as well as structurally very similar polysaccharides of the general formula lb

Formula lb




10
15

The polysaccharides according to formula la have molecular weights from 2kD to
400kD, preferably from 5kD to 150kD, more preferably from 10kD to 100kD, and
particularly preferably from 30kD to 80kD. The polysaccharides according to
formula lb have molecular weights frdm 2kD to 1,5kD, preferably from 4kD to
13kD, more preferably from 6kD to 12kD, and particularly preferably from 8kD to
11 kD. The variable n is an integer ranging from 4 to 1050. Preferably, n is an
i integer from 9 to 400, more preferably from 14 to 260, and particularly preferably
an integer between 19 and 210. J



20
25

The general formulas la and lb represent a disaccharide, which is to be seen as a basic unit of, the polysaccharide ' according to invention and forms the polysaccharide by' stringing together said basic unit n times. Said basic unit comprising two sugar molecules does not intend to suggest that the general formulas la and lb only relate to polysaccharides having an even number of sugar molecules. Of course, the general formula la and the formula^ lb also comprise polysaccharides having an odd number of sugar units. Hydroxy groups are present as terminal groups of the oligosaccharides and polysaccharides, respectively.


30

35

Preferred are the acyl groups ~COCH3, -COC2H5, -COC3H7 and the carboxyalkyl groups -CH2COO", -C2H4COO", -C3H6COO More preferred are the acetyl and propanoyl groups and the carboxymethyl and carboxyethyl groups. Particularly preferred are the acetyl group and the carboxymethyl group.


In addition, it is preferred that the group Y represents an acyl group, and the group Z represents a carboxyalkyl group. It is more preferred if Y is a group -COCH3, -COC2H5 or -COC3H7 and in particular -COCH3. Moreover, it is further 5 preferred if Z is a carboxyethyl or carboxymethyl group, the carboxymethyl group being particularly preferred.
I The disaccharicle basic unit shown by formula la comprises each a substituent Y
and a further group Z. This is to make clear that the polysaccharide! of the
10 invention comprises two different groups, namely Y and Z. It is important to point
out here that the general formula la should not only comprise pplysacchartfes
containing the groups Y and Z in a strictly alternating sequence, which would
result from string ng together the disaccharide basic units, but also
polysaccharides carrying the groups Y and Z in a completely random sequence at
15 the amino groups. Further, the general formula la should also comprise
polysaccharides containing the groups Y and Z in different numbers. The ratios of
the number of Y| groups to the number of X groups can be between 70% : 30%,
preferably between 60% : 40%, and particularly preferably between 45% : 55%.
Especially preferred are polysaccharides of the general formula la carrying on
20 substantially half of the amino groups the Y residue and on the other half of the
amino groups the Z residue in a merely random distribution. The term
"substantially half" means exactly 50% in the most suitable case but should also
comprise the range from 45% to 55% and especially from 48% to 52% as well.
25 Preferred are the compounds of the general formula la, wherein the groups Y and Z have the following meanings:

30


Y = -CHO and Z = -C2H4COO
Y = -CHO and Z = -CH2COO"
Y = -COCH3 and Z = -C2H4COO
Y = -COCH3 and Z = -CH2COO"
Y - -COC2H5 and Z = -C2H4COO
Y = -COC2H5 and Z = -CH2COO"

35 Especially preferred are the compounds of the general formula la, wherein the groups Y and Z have the following meanings:

Y = '-CHO and Z = -C2H4COO
Y = -COCH3 and Z = -CH2COO~
i
i
Especially preferred are the compounds of the general formula lb, wherein Y is 5 one of the following groups: -CHO, -COCH3, .-COC2H5 or !-COC3H7. Further preferred are the groups -CHO, -COCH3, -COC2H5 and especially preferred is the group -COCH3.
1 The compounds of the general formula lb contain only a minor amount of,free
10 amino groups. As with the ninhydrine test free amino groups could not be detected
i *
anymore, it can be concluded due to the sensitivity of this test, that less than 2%,
preferred less than 1% and especially preferred less than 0.5% of all of the
-NH-Y groups are present as free amino groups, i.e. at this low percentage of the
groups -NH-Y that Y represents hydrogen.
15
As the polysaccharides of the general formula la and lb contain carboxylate groups and amino groups, the general formulas la and lb also comprise alkali and alkaline' earth metal salts of the respeptive polysaccharides. Thus, alkali metal salts such as the sodium salt, potassium salt, lithium salt or alkaline earth metal
20 salts such as the magnesium salt or calcium salt can be mentioned. Further, with ammonia, primary, secondary, tertiary and quaternary amines, pyridine and pyridine derivatives, ammonium salts, preferably alkyl ammonium salts and pyridinium salts, can be formed. The bases forming salts with the polysaccharides include inorganic and organic bases such as NaOH, KOH, LiOH, CaCO3, Fe(OH)3,
25 NH4OH, tetraalkyl ammonium hydroxides and similar compounds.
Heparan sulphates are ubiquitous on cell surfaces of mammals.-Depending on the cell type, they are very different with respect to molecular weight, degree of acetylation and degree of sulfation. Liver heparan sulphate, for example, has a
30 degree of acetylation of approximately 50%, whereas the heparan sulphate from the glycocalyx of endothelial cells can show a degree of acetylation of up to 90% and more. Heparin only shows a very small degree of acetylation of up to 5%. The degree of sulfation of liver heparan sulphate and heparin is ~ 2 per disaccharide unit, of endothelial cell heparan sulphate nearly 0, and of heparan sulphates from
35 other cell types between 0 and 2 per, disaccharide unit.


The following illustration shows a tetrasaccharide unit of a heparin or heparan sulphate with a random distribution of the sulphate groups and a degree of sulfation of 2 per disaccharide unit as typical for heparin:

oso,
All heparan sulphates have the process of biosynthesis in common with heparin. In this case, first, the core protein with the xylose-containing bond region is built up. It consists of the xylose and two galactose residues connected therewith. To the last one of the two galactose residues, glucuronic acid and galactosamine are
10 then alternately bonded to each other until the respective chain'length is achieved. Finally, \a multistage enzymatic modification lof the common precursor polysaccharide of all heparan sulphates and the heparin by sulfotransferases and epimerases is effected, which, by means of their reactions of varying completeness generate the broad spectrum of various heparan sulphates up to
15 heparin.


20
25

Heparin is built up alternately from D-gluqosamine and D-glucuronic acid respi L-
iduronic acid,[wherein D-glucosamine and D-glucuronic acid are linked in a (β-1,4-
glycosidic manner [reps]L-iduronic acid 'in an α-1,4-glycosidic manner) to the
disaccharide, which forms the heparin subunits. These subunits, in turn, are linked
to each other in a β-1,4-glycosidic manner and lead to the heparin. The position of
the sulfonyl groups can change. A tetrasaccharide unit contains an average'of 4 to
5 sulfuric acid groups. Heparan sulphate, also referred to as heparitin sulphate,
contains, with the exception of liver heparan sulphate, less N- and Q-bonded
sulfonyl groups than heparin, but more N-acetyl groups. '



30

As evident from fig. '3, the compounds of the general formula la (see fig. 3c as
example) and the compounds of the general formula lb (see fig. 3b as' example)
are structurally very similar to the natural heparan sulphate of endothelial cells, but
prevent the initially described disadvantages in using endothelial cell heparan
sulphates.



For the antithrombotic activity a special'pentasaccharide unit is made responsible
which can be found in commercial heparin preparatives in about every 3rd
molecule. Heparin preparations of different antithrombotic activity can be
5 produced by special separation techniques. In highly active, for example by
antithrombin-lll-affinitychromatography obtained preparations („High-affinity"-
heparin) this active sequence is found in every heparin molecule, while in „No-
affinity"-preparations no characteristical pentasaccharide sequences and thus no
active inhibition of coagulation can be detected. Via interaction with this I 10 pentasaccharide the activity of antithrombin III, an inhibitor of the coagulation key
factor thrombin, is essentially exponentiated (bonding affinity increase! up to the
factor 2x103) [Stiekema J.C.J.; Clin Nephrology 26, Suppl. No. 1 S3-S8| (1986)].
The amino groups of the heparin are mostly N-sulphated or N-acetylated. The
15 most important Q-sulphation positions are the C2 in the iduronic ac'id as well as
the C6 and the C 3 in the glucosamine. For the activity of the pentasaccharide onto
the plasmatic coagulation basically the sulphate group on C6 is made responsible,
in smaller proportion also the other functional groups.


20 Surfaces of medicinal implants coated with heparin or heparansulphates are and remain only conditionally hemocompatible by the coating. The heparin or heparansulphate which is added onto the artificial surface loses partially in a drastic measure its antithrombotic activity which is related to a restricted interaction due to steric hindrence of the mentioned pentasaccharide units with
25 antithrombin III.
Because of the immobilisation of these polyanionic substances a strong adsorption of plasma protein on the heparinated surface is observed in all cases what eliminates on the one hand the coagulation suppressing effect of heparin 30 [resp] of heparansulphates and initialises on the other hand specific coagulation processes by adherent and hereby tertiary structure changing plasma proteins (e.g. albumin, fibrinogen, thrombin) and thereon adherent platelets.

Thus a correlation exists on the one hand between the limited interaction of the 35 pentasaccharide units with antithrombin III by immobilisation on the other hand depositions of plasma proteins on the heparin-[resp] heparansulphate layer on the medicinal implant take place, which leads to me losses of the antithrombotic properties of the coating and which can even turn into the opposite, because the

'plasma protein adsorption that occurs during a couple of seconds leads to the loss
of the anticoagulting surface and the adherent plasma proteins change their
tertiary structure, whereby a thrombonegeous surface arises. Surprisingly it could
be detected that the compounds of the general formulas la and lb, despite of the
5 structural differences to the heparin [resp] heparansulphate, still show the
hemocompatible properties of heparin andadditionally during the immobilisation
of the compounds of the general formullas la and lb no noteworthy depositions of
plasma proteins which represent an initial step in the activation of the coagulation
cascade could be observed. The hemocopatible properties of the compounds
10 according to invention still remain also after their immobilisation on artificial
surfaces.
Further on it is supposed that the sulphate groups of the heparin [fesp] the heparansulphates are necessary for the interaction with antithrombin III and impart

15 thereby the heparin [reps]. the heparansulphate the anticoagulatory effect. The inventive compounds according to formula lb as well as the compounds according to formula la are not actively coagulation suppressive, i.e. anticoagulative, due to an almost complete desulphation the sulphate groups of the compounds of the general formulas lb are removed up to a low amount of below 0.2 sulphate groups
20 per disaccharide unit.
The compounds of the invention according to the general formula lb can be made from heparin or heparan sulphates by first substantially entirely desulfating and then substantially entirely N-acylating the polysaccharide. The term "substantially
25 entirely desulphated" refers to a degree of desulfation of more than 90%, preferred more than 95%, and,particularly preferred more than 98%. The degree of desulfation can be determined according the,so-called n'inhydrine test, which detects free amino groups. Desulfation is effected to such an extent that a color reaction is no longer obtained with DMMB (dimethy|methylene blue). This color
30 test is suitable ifor detecting sulphated polysaccharides; however, the detection limit thereof is jnot known in the literature of the art. The desulfation can, for example, be carried out by heating the pyridinium salt in a solvent mixture. In particular, a mixture of DMSO, 1,4-dioxane and methanol proved to be suitable.
35 Heparansulphates as well as heparin were desulphated via total hydrolysis and subsequently reacylated. Thereafter ' the number of sulphate groups per disaccharide unit (SD) was determined by 13C-NMR. The following table 1 shows


these results on the example of heparin and desulphated, reacetylated heparin (Ac-heparin).
Tab. 1: Distribution of functional groups per disaccharide unit on the example of
5 heparin and Ac-heparin as determined by 13C-NMR-measurements.

2-S 6-S 3-S NS N-Ac. NH2 S/D
Heparin 0.63 0.88 0.05 0.90 0.08 0.02 2.47
Ac-heparin 0.03 0 0 0 1.00 - 0.03

10


NS: N-Ac: NH2: S/D:
2-S, 3-S, 6-S: sulphate groups in position 2, 3, 6 respectively
sulphate groups on the amino groups ' acetyl groups on the aminq groups free amino groups i sulphate groups per disaccharide unit

A sulphate content of about 0.03 sulphate groups / disaccharide unit (S/D) in case 15 of Ac-heparin in comparison with about 2.5 sulphate groups / disaccharide unit in case of heparin was reproducibly obtained.

20

As described above the difference in 'the sulphate contents of heparin resp.
heparansulphates and the compounds of the general formulas has a considerable
influence on the activity adverse to antithrombin III and the coagulatory effects of
these compounds. i

The compounds of the general formulas la and lb have a content of sulphate groups per disaccharide unit of less than 0.2, preferred less, than (J.07, more
25 preferred less than per disaccharide unit
0.05 and especially preferred less than 0.03 sulphate groups

30
35

By the removal of the sulphate groups of heparin, to which the active coagulation suppressive working mechanism is accredited to, one receives for a surface refinement suitable hemocompatible, coagulation inert oligo-[resp]polysaccharide which on the one hand has no active role in the coagulation process and which on the other hand is not detected by the coagulation system as foreign surface. This coating imitates successfully the nature given highest standard of hemocompatibility and passivity against the coagulation active components of the blood.





The examples 5 and 6 clarify, that surfaces, which are coated with the compounds
according to invention according to the general formulas la and/or lb, especially
which are coated covalently,' result in a passivative, ^thrombogeneous,
5 hemocompatible, antiproliferative and/or antiinflammatory coating. This is clearly
proven by the example of the Ac-heparin.
The term "substantially entirely N-acylated" refers to an N-acylating degree of more than 94%, preferably more than 97%, and particularly preferably more than
10 98%. The acylation is effected in such a complete manner that the ninhydrine detection of free amino groups does rlo longer show any color reaction. As acylation agents, carboxylic acid chlorides, bromides or anhydrides are used preferably. Atetic acid anhydride, propionic acid anhydride, butyric acid anhydride, acetic acid chloride, propionic acid chloride or butyric acid chloride, for example,
15 are suitable fori preparing the compounds according to the invention. Carboxylic
acid anhydrides are particularly suitable as acylation agents. i
!
i
As the solvent, in particular for the carboxylic acid anhydrides, deibnized water is used, preferably together with a cosolvent, which is added in an amount of 10 to 20 30 volume percent. As cosolvents, methanol, ethanol, DMSO, DMF, acetone, dioxane, THF, acetc acid ethyl ester and other polar solvents are suitable. If carboxylic acid halides are used, polar water-free solvents such as DMSO or DMF are preferably used.'
25 As the solvent deionized water is used, preferably together with a cosolvent, which is added in an amount of 10 to 30 volume percent. As cosolvents, methanol, ethanol, DMSO, DMF, acetone, dioxane, THF, acetic acid ethyl ester and other polar solvents are suitable.
30 The compounds of the invention according to the general formula la have a carboxylate group on half of the sugar molecules, and a N-acyl group on the other half.
Such compounds can also be made from the polysaccharides hyaluronic acid,
35 dermatan sulphate, chondroitin sulphate. Differencies to heparin and
heparansulphate result from the connection of the monosaccharides, which are here not present in a 1,4-glycosidic but 1,3-glycosidic connection. The disaccharides are again connected to each other 1,4-glycosidically. In the case of


1 the also in the bloodcoagulation antithrombotically active dermatan sulphates
[Biochem. J 289, 313-330 (1993)] and the chrondoitin sulphates N-
acetylglucos'amine, is substituted by N-acetylgalactosamine, which differ in the
steric position of the hydroxyl group at the C-atom 4.
Due to their related structure the polysaccharides are assigned according to the
present differencies as follows: '
Type 1) Uronic acid - galactosamine type (HexA-GalN)n:
10 Hereto accounted aire chondroitin sulphate and dermatan sulphate. Typical for this group ist the (l-1,$-glycosidic bonding of the uronic acid to the galactosamine. Galactosamine is bound on its part β-1,4-glycosidically to the next uronic acid. Dermatan sulphate differs from chondroitin sulphate by a high amount of another also in heparin and heparan sulphate occuring uronic acid, the L-iduronic acid. 15 The sulphation degree of chondroitin sjulphate is at 0.1 to 1.3 sulphate groups per disaccharide. Dermatan sulphate has with 1.0 to 3.0 sulphate groups per disaccharide an averagely higher sulphation degree as chondroitin sulphate and thereby reaches heparin like values. The amino groups are N-acetylated.
20 The desulphation and N-reacetylation leads here as in the case of heparin and heparan sulphate to compounds, which are also suitable for the use as athrombogeneous coating.
Type 2) Uronic acid - glucosamine type (HexA-GlcN)n:
25 Hereto accounted are heparin, heparan sulphate and hyaluronan. Heparin and heparan sulphate are solely β-1,4-bound, whilst in hyaluronan, which is also accounted to this type, the monosaccharids D-glucuronic acid and D-glucosamine are fi-1,3-bound monosaccharids. This polysaccharide has as only polysaccharide no sulphate groups and is N-acetylated. The molecular weight reaches in
30 comparison to heparin and heparan sulphate maximum values up to 8000 kD. The reduction of the chain length and the maintaining of the acetyl groups resp. the N-reacetylation leads to a structure, which is distinguishable from the formula lb only by the β-1,3-glycosidic connection of the monosaccharids.
t
35 Further compounds can be prepared also from chitin or chitosan.
Chitin is a nitrogen-containing polysaccharide, the'monomer units of which consist of N-acetyl-D-glucosamine, which are linked in a β-1,4-glycosidic manner. This results in linear'polymers consisting of about 2,000 sugar units and having a

molecular weight of about 400,000 g/mol. Chitin shows a very poor solubility and
is almost insoluble in water, organic solvents and dilute acids or dilute bases.
Mixing with strong 'acids leads to hydrolysis, where D-glucosamine and acetic acid
are produced The treatment with strong bases, however, leads to chitosan and
5 acetate.
Chitosan can easily be produced by the saponification of chitin. Chitosan consists of β-1,4-glycosidically linked glucosamine (2-amino-2-deoxy-D-glucose). Chitosan is known for its film forming properties, and is further used as a basic 10 material for ion exchangers and as an agent for reducing the cholesterol level in the blood serum and for weight reduction.
The substances according to the invention of the general formula la can be made from chitin by partially deacetylating chitin by means of strong bases and then
15 monocarboxyalkylating the free amino groups (see fig. 1). The deacetylation degree, i.e. the amount of demasked primary amino groups, can be determined volumetrically. The quantitative detection of the free amino groups is effected by means of the ninhydrine reaction. Depending on the way the experiment is carried out, deacetylation degrees of 20 to 80% can be obtained. Deacetylation degrees
20 of 40 to 60% are preferred, 45 to 55% are particularly preferred.
By this way of synthesis, polysaccharides can be obtained the sugar units of which contain either an N-acetyl group or an N-carboxyalkyl group in a merely random distribution.
25
Chitosan, which is easily accessible by the basic |hydrolysis of the N-acetyl groups of the chitin (see fig. 1), equally serves as a starting material for the synthesis of the polysaccharides according to formula la.
30 Chitosan only has very few N-acetyl groups. Thus, the compounds according to the invention can, on the one hand, be obtained by carboxyalkyating substantially the half of the free lamino groups in a first step, and then acylating the remaining free amino groups, or by first carrying out the acylation and then reacting the remaining free arnino groups with a suitable carboxyalkylation agent. It is preferred
35 if substantially the half of the amino groups is acylated and the remaining half is
carboxyalkylated.


"Partially N-acylated chitosan" refers to an N-acylation degree of 30 - 70%, preferably of 40 - •60%, and particularly preferably of 45 - 55%. Particularly preferred are chitosan derivates carrying the Y residue on substantially the half of the amino groups, and on the other half of the amino groups the Z residue in a merely random distribution. The term "substantially the half" means exactly 50% in the most suitable case, but should also include the range of 45% to 55%. The carboxyalkylation and acylation degrees can be determined by means of 13C-NMR, for example (deviation tolerance ±3%).

10
15

Due to the fact that in a first reaction step a certain number of the free amino groups are acylated or carboxyalkylated, this inevitably results in a completely random distribution of the acyl groups [reps] carboxyalkyl groups in the polysaccharide of the general formula la. The formula la thus is, only intended to show a disaccharitle unit of the polysaccharides according to the invention, but not determine an alternating sequence of,the acyl groups and carboxyalkyl groups.



20

The following illustration shows a typical tetrasaccharide unit of an N-carboxymethylated, N-acetylated chitosan:




25

The present invention describes the use of the compounds of the general formulas la andi/or lb as well as salts of said compounds for the coating,' in particular a hemocompatible coatingi of natural and/or artificial surfaces. "Hemocompatible" refers to the property of the compounds according to the invention, which means not to interact with the substances of the blood coagulation system or the blood platelets and thus not to trigger the blood coagulation cascade.



30

In addition, the invention discloses oligosaccharides and/or polysaccharides for the hemocompatible coating of surfaces. Preferred are polysaccharides within the

10

molecular weight linhits mentioned above. One of the remarkable features of the oligosaccharides and/or polysaccharides used is, that they contain large, amounts of the sugar unit N-acylglucosamine or N-acylgalactosamine. This means that 40 - 60%, preferred 45 - 55% and especially preferred 48 - 52% of the sugar units are N-acylglucosamine or N-acylgalactosamine, and substantially the remaining sugar units each have a carboxyl group. Thus, usually more than 95%, preferably more than 98%, of the oligosaccharides and/or polysaccharides consist of only two sugar units, one sugar unit carrying a carboxyl group and the other one an N-acyl group.
One sugar (unit of the oligosaccharides and/or polysaccharides is N-acylglucosamine resp. N-acylgalactpsamine, preferably N-acetylglucosamine resp. N-acetylgalactosamine, and the other one is uronic acid, preferably glucuronic acid and iduronic acid.

15
Preferred are oligosaccharides and/or polysaccharides substantially consisting of the sugar glucosamine [reps] galactosamine, substantially the half of the sugar units carrying an N-acyl group preferably an N-acetyl group, and the other half of the glucosamine units carrying a carbpxyl group directly bonded via the amino
20 group or bonded via one or more methylenyl groups. These .carboxylic acid groups bonded to the amino group are preferably carboxymethyl or carboxyethyl groups. Further are preferred oligosaccharides and/or polysaccharides, wherein substantially the half, i.e. 48 - 52%, preferred 49 - 51% and especially preferred 49.5 - 50.5%, consists of N-acyl glucosamine /resp) N-acyl galactosamine,
25 preferably of N-acetyl glucosamine or N-acetyl galactosamine, and substantially the other half thereof consists of an uronic acid, preferably glucuronic acid and iduronic acid. Particularly preferred are oligosaccharides and/or polysaccharides showing a substantially alternating sequence (i.e. despite of the statistic deviation ratio in the case of the alternating connection) of the two sugar units. The ratio of
30 the deviated connections should be under 1%, preferred under 0.1 %.
Surprisingly, it has been shown that, for the uses according to the invention, in particular substantially desulphated and substantially N-acylated heparin as well as partially N-carboxyalkylated and N-acylated chitosan as well as desulphated 35 ,and substantially N-acylated dermatan sulphate, chondroitin sulphate and also chain length reduced hyaluronic acid are especially suitable. In particular, N-acetylated heparin as well as partially, N-carboxymethylated and N-acetylated chitosan are suitable for the hemocompatible coating.

The desulphation and acylation degrees defined by "substantially" were already defined more above. The term "substantially" is intended to make clear, that statistic deviations have to be taken into consideration. A substantially alternating
5 sequence of the sugar units means, that as a rule two equal sugar units are not bonded to each other, but does not completely exclude such an erroneous linkage. Correspondingly, "substantially the half means nearly 50%, but permits slight variations, because especially with biosynthetically produced macromolecules, the most suitable case is never achieved, and certain deviations
10 have always to be taken into consideration as enzymes do not work perfectly and catalysis usually involves a certain rate of errors. In the case of natural heparin, however, there is a strictly alternating sequence of N-acetyl glucosamine and uronic acid units (instead of glucuronic).
15 Furthermore, a process for the hemocompatible coating of surfaces is disclosed, which are intended for direct blood contact. In said process, a natural and/or artificial surface is provided, and the oligosaccharides and/or polysaccharides described above are immobilized on said surface. 20 The immobilisation of the oligosaccharides and/or polysaccharides on these
surfaces can be achieved via hydrophobic interactions, van der Waals forces,
electrostatic interactions, hydrogen bonds, ionic interactions, cross-linking of the
oligosaccharides and/or polysaccharides and/or by covalent bonding onto the
surface. Preferred is the covalent) linkage of the oligosaccharides and/or
25 polysaccharides (side-on bonding), more preferred the covalent single-point
linkage (side-on bonding) arid especially preferred the covalent end-point linkage
(end-on b'onding). Any natural'and/or artificial surfaces of medical products can be used here such
30 as surfaces of prostheses, organs, vessels, aortas, cardiac valves, tujbes, organ
replacement parts, implants, fibers, hollow fibers, stents, hypodermic needles,
syringes, membranes, conserves, blood containers, titer plates, ,pacemakers,
adsorber media, chromatography media, chromatography columns, dialyzers,
connection parts sensors, ventiles, centrifuge chambers, heat exchangers,
35 endoscopes, filters, pump chambers as well as other surfaces, which should have hemocompatible properties. The term "medical products" is to be understood widely and refers especially to the surfaces of such products, which come into
contact with jblood shortly (e.g. endoscopes) or permanently (e.g. stents).



In the following the coating methods according to invention are described. Biological and/or artificial surfaces of medical devices can be provided with a hemocompatible coating by means of the following method:

a) providing a surface of a medical device and
b) deposition of at least one oligosaccharide and/or polysaccharide according ' to formula |a or lb,
and/or
10 at least one oligosaccharide gnd/or polysaccharide, which contains
i between 40% and 60% the sugar unit N-acyl glucosamine or N-acyl
galactosamine and the remaining sugar units substantially contain one
carboxyl group per sugar unit.

15 'Deposition" snail refer to at least partial coating of a surface w(ith the
corresponding compounds, wherein the compounds are deposited i and/or
introduced and/or immobilized or anyhow anchored on and/or in the 'subjacent
surface.' ,
t
20 Under "substantially] the remaining sugar building units" is to be understood, that
93% of the remaining sugar building units, preferred 96% and especially preferred
98% of the remaining 60% - 40% of the sugar building units bear a carboxyl
group.
25 An uncoated and/or non hemocompatible surface is preferably provided, "non-hemocompatible" surfaces shall refer to such surfaces that can activate the blood coagulatory system, thus are more or less thrombogeneous.
An alternative embodiment comprises the steps:
30
a) providing surface of a medical device and
b') deposition of a biostable layer onto(the surface of the medical device
or a) providing surface of a medical device and 35 b) deposition of at least one oligosaccharide and/or polysaccharide according
to formula la or lb,
and/or


at least' one oligosaccharide and/or polysaccharide, which contains
betwden 40% and 60% the sugar unit N-acyl glucosamine or N-acyl
galactosamine and the remaining sugar units substantially contain one
carboxyl group per sugar unit.
5 b') deposition of a biostable layer onto the surface of the medical device and
f r
i
d') deposition of a further hemocompatible layer of at least one inventive
oligosaccharide and/or polysaccharide according to formula la or lb,
and/or
10 at least bne oligosaccharide and/or polysaccharide, which contains
betwefen 40% and 60% the sugar unit N-acyl glucosamine or N-acyl galactosamine and the remaining sugar units substantially contain one carboxyl group per sugar unit.
15 The last-mentioned embodiment makes sure, even in the case of mechanical
damage of the polymeric layer and therewith also of the exterior hemocompatible
layer, e.g. due to inappropriate transport or complicated conditions during the
implantation, that the surface coating does not lose its characteristic of being
blood compatible. 20
Under "biological and artificial" surface is the combination' of an artificial medical
device with an artificial part to be understood, e.g. a pork heart with an artificial
heart valve.
25 The single layers are deposited preferably by dipping or spraying methods, whereas one can deposit at the same time with the deposition of one layer also another or more active agents onto the medical device surface, which is then implemented in the respective layer covalently and/or adhesively bound. In this way one or more active agents can be deposited at the same time with the
30 deposition of a hemocompatible layer onto the medical device.
The active agents as well as the substances, which can be used for a biostable or
i biodegradable layer, are itemized more below,

35 Onto this first biostable or hemocompatible layer it is then possible in an additional
i non compulsoiry step c) to deposit an active agent layer of one or more active
agents. In a 'preferred embodiment the active agent or agents are bound
covalently on the subjacent layer. Also the active agent is preferably deposited by
dipping or spraying methods.

After the step b) or the step c) an additional step d) can follow, which comprises the deposition of at least one biodegradable layer and/or at least one biostable layer onto the hemocompatible layer resp. the active agent layer.
5 According to the alternative embodiment after step b') or step c) a step d') can follow, which comprises the deposition or immobilisation of at least one oligosaccharide and/or polysaccharide according to invention according to formula la or lb and/or at least one oligosaccharide and/or polysaccharide, which contains between 40% and 60% the sugar unit N-acyl glucosamine or N-acyl 10 galactosamine and the remaining sugar units substantially contain one carboxyl group per sugar unit, as hemocompatible layer. Preferably after step b') the step d') follows.
After step d) resp. d') the deposition of another active agent layer of one or more 15 active agents can take place into or onto the subjacent biodegradable and/or biostable layer or the hemocompatible layer.
Additionally to the deposited active agent layers the biostable, biodegradable
and/or hemocompatible layers can contain further active agents, which were
20 deposited together with the biostable and/or biddegradable substances or the
hemocompatible oligosaccharides and/or 'polysaccharides on the medical device
and are contained in the respective layers.

According to a preferred embodiment (the biostable layer is covalently and/or 25 adhesively bound on the surface of 'the medical device and completely or
incompletely covered with a hemocompatible layer, which (preferably covalently)
is bound to the biostable layer.
Preferably the, hemocompatible layer comprises heparin of native origin of 30 regioselectively synthesized derivatives of different sulphation coefficients
(sulphation degrees) and acylation coefficients (acylation degrees) in the
molecular weight range of the pentasaccharide which is responsible for the
antithrombotic activity, up to the standard molecular weight of the purchasable
heparin of 13 kD, heparansulphate and its derivatives, oligo- and polysaccharides 35 of the erythrocytic glycocalix, desulphated and N-reacetylated heparin, N-
carboxymethylated' and/or partially N-acetylated chitosan as well as mixtures of
these substances. ,

Subject of the invention are also medical devices, which are hemocompatibly coated according to one of the herein mentioned methods.
Furthermore subject of the invention are medical devices, whereas the surface of 5 the medical devices is covered directly or via at least one interjacent biostable and/or biodegradable layer and/or active agent layer with a hemocompatible layer, which consists of at least one oligosaccharide and/or polysaccharide, which contains between 40% and 60% the sugar unit N-acyl glucosamine or N-acyl galactosamine and the remaining sugar units substantially contain one carboxyl 10 group per sugar unit.
According to a preferred embodiment under the hemocompatible layer of the afore-mentioned oligosaccharides and/or polysaccharides is at least one biostable layer present, which is additionally preferred covalently bound to the surface of the
15 medical device.
It is further preferred, if on the hemocompatible layer at least one biostable and/or at least one biodegradable layer is present, which covers the hemocompatible layer completely on incompletely. Especially preferred is a biodegradable layer,
20 which covers the hemocompatible layer.
!
A further preferred embodiment contains between the biostable lower layer and the subjacent i hemocompatible layer an active agent layer of at least one antiproliferative, antiinflammatory and/or antithrombotic active agent, which is 25 bound covalently and/or! adhesively to the hemocompatible layer. Alternatively to the active agent layer or additionally to the active agent layer the lower biostable
and/or upper hemocompatible layer can contain further active agents, which are
i
deposited preferably together with the deposition of the respective layer.

30 Basically every layer hemocompatible layer
i.e. a biostable layer, a biodegradable layer' and a can contain one or more antiproliferative, antiinflammatory and/or antithrombotic active agents and moreover between the afore-mentioned layers active agent layers of one or more active agents can be present. Preferred are coating systems of two layers, a biostable and a hemocompatible layer, 35 whereas the hempcompatible layer is the external layer and both layers can contain one or more active agents. Further it is preferred if on or under the hemocompatible layer an active agent layer of one or more active agents is present. Also preferred are three-layer systems, which consist of a biostable,

biodegradable and hemocompatible layer. Thereby preferably the lowest layer is a
biostable layer. Additionally one or two active agent layers are possible. It is also
possible to deposit two active agent layers directly above each other. In a further
preferred embodiment at least one active agent is bound covalently on or in a
5 layer.
! I
!
Preferably used in the methods of coatjing and on the medical devices as active agents are tacrolimus, pimecrolimus, PI88, thymosin α-1, PETN (pentaerythritol tetranitrate), baccatin and its derivatives, docetaxel, colchicin, paclitaxel and its
10 derivatives,trapidil, a- and β-estradiol, dermicidin, tialin (2-methylthiazolidine-2,4-dicarboxylic acid), tialin-sodium (sodium salt of tialin), simvastatine, macrocyclic suboxide (MQS) and its derivatives, sirolimus, tyrphostines, D24851, colchicin, fumaric acid and fumaric acid esters, activated protein C (aPC), interle!ucine-1fi inhibitors, and melanocyte-stimulating hormone (a-MSH) as wefl as mixtures of
15 these active agents. |
The natural and/or artificial surfaces of the medical devices, which are coated
according to the Herein described methods with a hemocompatible layer of the
inventive oligosaccharide and/or polysaccharide resp. the oligosaccharides and/or
20 polysaccharides which contain between 40% and 60% the sugar unit N-acyl
glucosamine or N-acyl galactosamine and the remaining sugar units substantially
contain one carboxyl group per sugar unit, are especially suitable as implants and
organ replacement parts, respectively; which are in direct contact with the blood
circuit and the blood. The medical devices coated according to invention are
25 especially suitable, but not only, for the direct and permanent blood contact, but
show surprisingly also the characteristic to reduce or even to prevent the adhesion
of proteins onto suchlike coated surfaces.
The adhesion of plasma proteins on foreign surfaces which come in contact with 30 blood is an essential and initial step1 for the further events concerning the recognition and the implementing action of the blood system.
This is for example important in the in vitro diagnostics from body fluids. Thus the deposition of the inventive coating prevents or at least reduces for example the 35 unspecific adhesion of proteins on micro-titer plates or other support mediums which are used for diagnostic detection methods, that disturb the generally sensitive test reactions and can lead to a falsification of the analysis result.

By use of the coating according to invention on adsorpticjn media or chrpmatography media the unspecific adhesion of proteins is also prevented or reduced, whereby better separations can be achieved and products of greater
purity can be generated.
i
Especially stents are coated according to the inventive methods. The implantation of stents using balloon dilatation of occluded vessels increasingly established in the last years. Although stents decrease the risk of a renewed vessel occlusion they are until now not capable of preventing such restenoses completely.
10
An exact conceptual description of restenosis cannot be found in the technical literature. The most commonly used morphologic definition of the restenosis is the one which defines the restenosis after a successful PTA (percutaneous transluminal angioplasty) as a reduction of the vessel diameter to less than 50 % 15 of the normal one. This is an empirically defined value of which the hemodynamic relevance and its relation to clinical pathology lacks of a massive scientific basis. In practical experience the clinical aggravation of a patient is.often viewed as a sign for a restenosis of the formerly treated vessel segment.
20 There are three different reasons for the restenosis caused by the stent:
a.) During the first period after the implantation the stent surface is in direct contact with the blood and an acute thrombosis can occur which again occludes the vessel due to the now present foreign surface, b.) The implantation of the stent generates vessel injuries, which induce
25 inflammation reactions, which play an important role for the recovery
process during the first seven days. The herein concurrent processes are among others connected with the release of growth factors, which initiate an increased proliferation of, the smooth muscle cells which rapidly leads to a renewed occlusion of the vessel, because of.uncontrolleti growth.
30 c.) After a couple of weeks the stent starts to groW into the tissue of the blood vessel. This means that the stent is surrounded totally by smooth muscle cells and has no contact to the blood. This cicatrization can be too
i
distinctive (neointima hyperplasia) and may lead to not only a coverage of
the stent surface but to the occlusiont of the total interior space of the stent.
35
It was tried vainly to sojlve the problem of restenosis by the coating of the stents
with heparin (J. Whorle et al., European 'Heart Journal 2001, 22, 1808-1816).
Heparin addre'sses as anti coagulant on'ly the first mentioned cause and is
moreover able to unfold its total effect only in solution. This first problem is

meanwhile almost totally avoidable medicamentously by application of anti¬coagulants. The second and third problem is intended now to be solved by inhibiting the growth of the srriooth muscle cells locally on the stent. This is carried out by e.g. radioactive stents or stents which contain pharmaceutically active 5 agents.
US-A-5 891 108 discloses for example a hollow moulded stent, which can contain pharmaceutical active agents in its interior, that can be released throughout a various number of oullets in the stem.where as EP-A-1 127 582 describs a stem
10 that shows ditches of 0.1 - 1 fnm depth and 7-15 mm length on its surface which are. suitable for the implementation of an active agent. These active agent reservoirs release similarly to the outlets in the hollow stent the contained pharmaceutically active agent in a punctually high concentration and over a relatively long period of time'which however leads to the,fact that the smooth
15 muscle cells are not anymore or only very delayed capable of enclosing the stent.
As a consequence the stent is much longer exposed to the blood, what leads
again to increased vessel occlusions by thromboses'(Liistro F., Colombo A., Late
acute, thrombosis after Paclitaxel eluting stent implantation. Heart 2001, 86, 262-
264). ' '
20
One approach to this problem is represented by the phosphorylcholine coating of biocompatibles (WO 0101957), as here phosphorylcholine, a component of the erythrocyte cell membrane, shall create a non thrombogeneous surface as a component of 'the coated non biodegradable polymer layer on the stent. 25 Dependent q>f its molecular weight, thereby the active agent is absorbed by the polymer containing phosphorylcholine layer or adsorbed on the surface. [
!
The stents according to invention are coated with a hemocompatible layer and feature one or more additional layers which at least comprise an antiproliferative 30 and/or antiinflammatory and if needed an antithrombotic active agent.'
The hemocompatible coating of a stent provides the required blood compatibility and the active agent (or active agent combination) which is distributed homogeneously over the total surface of the stent provides that the covering,of the 35 stent surface! with cells especially smooth muscle and endothelial cells takes place in a controlled way. Thus no rapid'population and overgrowth with cells takes place on the stent surface which could lead to a restenosis whereas the covering of the stent surface with cells is also not completely prevented by a high medicament concentration which involves the risk of thrombosis.

Thus the incorporation of active agents guarantees that the active agent or the
active agent combination which is bound covalently and/or adhesively to the
subjacent layer ^nd/or implemented covalently and/or adhesively into the layer is
released continuously and in small doses so that the population of the stent
surface by cells is not inhibited however an overgrowth is prevented. This
combination of both effects awards the ability to the inventive stent to grow rapidly
into the vessel wall | and reduces both the risk of restenosis and the risk of
thrombosis. The release of one or more active agents spans over a period from 1
to 12 months, preferably 1 to 3 months after implantation.
10

Antiproliferative substances, antiphlogistic as well as antithrombotic compounds
are used as active agents. Preferably cytostatics, macrolide antibiotics and/or
statins are used as antiproliferative active agents. Applyable antiproliferative active
agents are sirolimus (rapamycin), everolimus, pimecrolimus, somatostatin,
15 tacrolimus, roxithromycin, dunaimycin, ascomycin, bafilomycin, erythromycin,
midecamycin, joslamycin, concanamycin, clarithromycin, troleandomycin,
folimycin, cerivasiatin, simvastatin, lovastatin, fluvastatin, rosuvastatin,
atorvastatin, , pravastatin, pravastatin, vinblastine, vincristine, ■ vindesine,
i
vinorelbine, etoposide, teniposide, nimustine, carmustine, lomustjne,
20 cyclophosphamide, 4-hydroxycyclophosphamide, estramustine, melphalan, betulinic acid, camptothecin, lapachql, 0-lapachone, podophyllotoxin, betulin, trofosfamide, podophyllic acid 2-ethylhydrazide, ifosfamide, chlorambucil, bendamustine, dacarbazine, busulfan, procarbazine, treosulfan, temozolomide, melanocyte-stimulating hormon (a-MSH), thiotepa, daunorubicin, doxorubicin,
25 aclarubicin, epirubicin, mitoxantrone, idarubicin, bleomycin, mitomycin, dactinomycin, methotrexate, fludarabine, fludarabine-5'-dihydrogenphosphate, mofebutazone, acemetacin, diclofenac, lonazolac, . dapsone, o-carbamoylphenoxyacetic acid, lidocaine,, ketoprofen, mefenamic acid, piroxicam, meloxicam, chloroquine phosphate, penicillamine, hydroxychloroquine, auranofin,
30 sodium aurothiomalate, oxaceprol, celecoxib, (3-sitosterin, ademetionine, myrtecaine, polidocanol, nonivamide, levomenthol, benzocaine, aescin, cladribine, mercaptopurine, thioguanine, cytarabine, fluorouracil, gemcitabine, capecitabine, docetaxel, carboplatin, cisplatin, oxaliplatin, amsacrine, irinotecan, topotecan, hydroxycarbamide, miltefosine, pentostatin, aldesleukin, tretinoin, asparaginase,
35 trastuzumab, exemestane, letrozole, goserelin, chephalomannin, pegaspargase, anastrozole, exemestane, letrozole, formestane, aminoglutethimide, adriamycin, azithromycin, spiramycin, cepharantin, smc proliferation inhibitor-2w, epothilone A and B, mitoxantrone, azathioprine, mycophenolatmofetil, c-myc-antisense, b-myc-

antisense, selectin (cytokine antagonist), CETP inhibitor, cadherines, cytokinin inhibitors, COX-2 inhibitor, NFkB, angiopeptin, ciprofloxacin, camptothecin, fluroblastin,, monoclonal antibodies, which inhibit the muscle cell proliferation, bFGF antagonists, probucol, prostaglandins, folic acid and derivatives, vitamines 5 of the B-series, vitamine D-derivatives such as calcipotriol and tacalcitol, D24851, fumaric acid and its derivatives siich as dimethylfumarate, IL-1β. inhibitor, colchicine, NO donors such as pentaerythritol tetranitrate and syndnoeimines, S-nitrosoderivatives, tamoxifen, staurosporin, p-estradiol, α-estradiol, estrone, estriol, ethinylestradiol, fosfestrol, medroxyprogesterone, estradiol cypionates,
10 estradiol benzoates, tranilast, kamebakaurin and other terpenoids, which are applied in the therapy of cancer, verapamil, tyrosine kinase inhibitors (tyrphostines), cyclosporine A, paclitaxel and derivatives thereof (6-a-hydroxy-paclitaxel, baccatin, and others), synthetically produced as well as from native sources obtained macrocyclic oligomers of carbon suboxide (MCS) and
15 derivatives thereof, molgramostim (rhuGM-CSF), peginterferon a-2b, lenograstim (r-HuG-CSF), filgrastim, macrogol, dacarbazine, letrozol, goserelin, chephalomannin, trastuzumab, exemestan, basiliximab, daclizumab, ellipticine, D-24851 (Calbiochem), colcemid, cytochalasin A-E, indanocine, nocodazole, S 100 protein, Pl-88, melanocyte stimulating hormon (a-MSH),bacitracin, vitronectin
20 receptor antagonists, azelastine, guanidyl cyclase stimulator tissue inhibitor of metal proteinase-1 and -2, free nucleic acids, nucleic acids incorporated into virus transmitters, DNA and RNA fragments, plasminogen activator inhibitor-1, plasminogen activator inhibitor-2, interleucine-1β inhibitors, antisense oligonucleotides, VEGF inhibitors, called IGF-1.
25
From the group of antibiotics furthermore cefadrdxil, cefazolin, cefaclor, cefotixin,
tobramycin, gentamycin are used. Positive influence on the postoperative phase
have also the penicillins such as dicloxacillin', oxacillin, sulfonamides,
metronidazol, antithrombotics such as argatroban, aspirin, abciximab, synthetic i 30 antithrombin, biValirudin, Coumadin, dermicidin, enoxaparin, hemoparin, tissue
plasminogen activator, Gpllb/llla platelet membrane receptor, factor Xa inhibitor,
activated protein C, dermicidin, antibodies, heparin, hirudin, r-hirudin, PPACK,
protamin, prourokinase, streptokinase, warfarin, urokinase, vasodilators such as
dipyramidole, trapidil, nitroprussides, PDGF antagonists such as triazolopyrimidine
35 and seramin, ACE .inhibitors such as captopril, cilazapril, lisinopril, enalapril,
losartan, thidl protease inhibitors, caspase inhibitors, apoptosis inhibitors,
apoptosis regulators such as p65 NF-kB and Bcl-xL antisense oligonucleotides
and prostacyclin, vapiprost, a, (3 and y interferon, histamine antagonists, serotonin

blockers, halofuginone, nifedipine, tocopherol,' tranirast, molsidomine, tea polyphenols, epicatechin gallate, epigallocatechin gallate, Boswellic acids and derivatives thereof, leflunomide, anakinra, etanercept, sulfasalazine, etoposide, dicloxacillin, tetracycline, triamcinolone, mutamycin, procainamid, retinoic acid, 5 quinidine, disopyramide, flecainide, propafenone, sotalol, amidorone. Further active agents are steroids (hydrocortisone, betamethasone, dexamethasone), non-steroidal substances (NSAIDS) such as fenoprofen, ibuprofen, indomethacin, naproxen, phenylbutazone and others. Antiviral agents such as acyclovir, ganciclovir and zidovudine are also applyable. Different antimycotics are used in
10 this area. Examples are clotrimazole, flucytosine, griseofulvin, ketoconazole, miconazole, nystatin, terbinafipe. Antiprozoal agents such as chloroquine, mefloquine, quinine are effective active agents, in equal measure, moreover natural terpenoids such as hippocaesculin, barringtogenol-C21-ange!ate) 14-dehydroagrostistachin, agroskerin, agrostistachin, , 17-hydroxyagrostistachin,
15 ovatodiolids, 4,7-oxycycloanisomelic acid, baccharinoids B1, B2, B3, tubeimoside, bruceanol A, B, C, bruceantinoside C, yadanziosides N and P, isodeoxyelephantopin, tomenphantopin A and B, coronarin A, B, C and D, ursolic acid, hyptatic acid A, zeorin, iso-iridogermanal, maytenfoliol, effusantin A, excisanin A and B, Idngikaurin B, sculponeatin C, kamebaunin, leukamenin A and
20 B, 13,18-dehydro-6-a-senecioyloxychaparhn, 1,11-dimethoxycanthin-6-one, 1-hydroxy-11-methoxycanthin-6-one, scop'oletin, taxamairin A and B, regenilol, triptolide, moreover' cymarin, apocymarin, aristolochic acid, anopterin, hydroxyanopterin, anemonin, protoanemonin, berberine, cheliburin chloride, cictoxin, sinococuline, bombrestatin A and B, cudraisoflavone, A, curcumin,
25 dihydronitidine, nitidine chloride, 12-β-hydroxypregnadien-3,20-jdione, bilobol, ginkgol, ginkgolic acid, helenalin, indicine, indicine-N-oxide, lasiocarpine', inotodiol, glycoside 1a, podophyllotoxin, justicidin A and B, larreatin, malloterin, mallotochromanol, isobutyrylmallotochromanol, maquiroside A, marchantin A, maytansine, lycoridicin, margetine, pancratistatin, liriodenine, oxoushinsunine,
30 aristolactam-AII, bisparthenolidine, periplocoside A, ghalakinoside, ursolic acid, deoxypsorospermin, psychorubin, ricin A, sanguinarine, manwu wheat acid, methylsorbifolin( sphatheliachromen, stizophyllin, mansonine, strebloside, akagerine, dihydrousambarensine, hydroxyusambarine, strychnopentamine, strychnophylline, usambarine, usambarensine, berberine, liriodenine,
35 oxoushinsunine, daphnoretin, lariciresinol, methoxylariciresinol, syringaresinol, umbelliferon, afromoson, acetylvismione B, desacetylvismione A, vismione A and B, further natural terpenoids such as hippocaesculin, 14-dehydroagrostistachin, agroskerin, agrostistachin, 17-hydroxyagrostistachin, ovatodiolids, 4,7-

oxycycloanisomolic acid, yadanziosides N and P, isodeoxyelephantopin,
tomenphantopin iA and B, coronarin A, B, C and D, ursolic acid, hyptatic acid A,
zeorjn, iso-iridogermanal, maytenfolioli effusantin A, excisanin A and B,
longikaurin B, sculponeatin.
5
The active agents are used separately or combined in the same or a different
concentration. Especially preferred are active agents which feature also
immunosuppressive properties besides their antiproliferative effect. Suchlike
active agents are erythromycin, midecamycin, tacrolimus, sirolimus, paclitaxel and
i 10 josamycin. Furthermore preferred is a combination of several antiproliferatively
acting substances or of antiproliferative active agents with immunosuppressive
active agents.
Preferred for the present invention are tacrolimus, pimecrolimus, PI88, thymosin
15 α-1, PETN (pentaerythritol tetranitrate), baccatin and its derivatives, docetaxel, colchicin, paditaxel and its derivatives, trapidil, a- and β-estradiol, 'dermicidin simvastatine, macrocyclic suboxide (MCS) and its derivatives, sirolimus, tyrphostines, D224851, colchicin, fumaric acid and fumaric acid esters, activated protein C (aPC), interleucine-1β inhibitors and melanocyte-stimulating hormone
20 (a-MSH) and tialin (2-methylthiazolidine-2,4-dicarboxylic acid) as well as tialin-Na (sodium salt of tialin).
The active agent is preferably contained in a pharmaceutical active concentration from 0.001-10 mg per cm2 stent surface and per active agent layer or active agent 25 containing layer. Additional active agents can be contained in a similar concentration in the same or in other layers.
The medical devices coated according to invention, especially the stents coated according to invention, can release the active agent or the active agents 30 continuously and controlled and are suitable for the prevention or reduction of restenosis (see fig. 6).
The hemocompatible layer which covers directly the stent preferably comprises
heparin of native origin as well as synthetically obtained derivatives with different
35 sulphation coefficients (sulphation degrees) and acylation coefficients (acylation
degrees) in the molecular weight range of the pentasaccharide which is
responsible for the antithrombotic activity up to the standard molecular weight of
the purchasable heparin, as well as heparan sulphates and derivatives thereof,


I I
oligo- and polysaccharides of the erythrocyte glycocalix, which imitate in a perfect way the athrombogeneous surface of the erythrocytes, since contrary to phosphorylcholine, here the actual contact between blood and erythrocyte surface takes place, completely desulphated and N-reacetylated heparin, desulphated and 5 N-reacetylated | heparin, N-carboxymethylated and/or partially N-acetylated chitosan, chitosan and/or mixtures of!these substances. These stents with a hemocompatible coating are prepared by providing conventional normally non coated stents and by preferably covalent deposition of a hemocompatible layer which permanently masks the surface of the implant after the release of the active 10 agent and thus, after the decay of the active agent's influence and the degradation of the matrix.
The conventional stents which can be coated according to the inventive methods, consist of stainless steel, nitinol or other metals and alloys or of synthetic 15 polymers.
Another preferred embodiment of the stents according to invention shows a coating which consists of at least two layers. Multiple layer systems are used as well. In such multiple layer systems the layer which is directly deposited on the 20 stent is labelled first layer. Labelled second layer is that layer which is deposited on the first layer, etc.
According to the two layer design the first layer consists of a hemocompatible
layer which is substantially covered completely by a biodegradable layer which
25 comprises at least an antiproliferative, antiphlogistic and/or antithrombotic active
agent bound covalently and/or adhesively. Alsb applied are active agent
combinations which mutually facilitate and replenish,'themselves. .
i
i
As, biodegradable substances for the external layer can be used: 30 polyvalerolactones, poly-E>decalactones, polylactonic acid, polyglycolic acid, polylactides, polyglycolides, copolymers |of the polylactides and polyglycolides, poly- -caprolactone, polyhydroxybutanoic acid, polyhydroxybutyrates, polyhydroxyvalerates, polyhydroxybutyrate-co-valerates, poly(1,4-dioxane-2,3-diones), polyi(1,3-dioxane-2-ones), poly-p-dioxanones, polyanhydrides such as 35 polymaleic anhydrides, polyhydroxymethacrylates, fibrin, polycyanoacrylates, polycaprolactonedimethylacrylat.es, poly-b-maleic acid, polycaprolactonebutyl-acrylates, multiblock polymers such as from oligocaprolactonediolels and oligodioxanonedioles, polyether ester multiblock polymers such'as pEG and

polybutyleneterephtalate polypivotolactones polyglycolic acid trimethyl-
carbonates, polycaprolactone-glycolides, poly-g-ethylglutamate, poly(DTH-
iminocarbonate), poly(DTE-co-DT-carbonate), poly(bisphenol-A-iminocarbonate),
polyorthoesters, polyglycolic acid trimethyl-carbonates, polytrimethylcarbonates,
5 polyiminocarbonates, poly(N-vinyl)-pyrrolidone, polyvinylalcoholes,
polyesteramides, glycolated polyesters, polyphosphoesters, polyphosphazenes, poly[p-carboxyphenoxy)propane], polyhydroxypentanoic acid, polyanhydrides, polyethyleneoxide-propyleneoxide, soft polyurethanes, polyurethanes with amino acid residues in the backbone, polyether esters such as polyethyleneoxide
10 polyalkeneoxalates, polyorthoesters as well as copolymers thereof, lipids, carrageenanes, fibrinogen, starch, collagen, protein based polymers, polyamino acids, synthetic polyamino acids, zein, modified zein, polyhydroxyalkanoates, pectic acid, actinic acid, modified and nor] modified fibrin and casein, carboxymethylsulphate, albumin, moreo'ver hyaluronic acid, heparan sulphate,
15 heparin, chondroitinesulphate, dextran, b-cyclodextrines, copolymers with PEG and polypropyleneglycol, gummi arabicum, guar, gelatine, collagen, collagen-N-hydroxysuccinimide, lipids, phospholipids, modifications and copolymers and/or
mixtures of the afore mentioned substances.
I
20 The layer | and layers respectively which contain the active agent is slowly degradated by components of the blood such that the active agent is released of the external layer according to the degradation velocity or resolves itself from the matrix according to its elution behavior. The first hemocompatible layer guarantees the required blood compatibility of the stent once the biodegradable
25 layer is degradated. This biological degradation of the external layer and the .corresponding release of the active agent reduces strongly an ongrowth of cells only for a certain| period of time and an aimed controlled adhesion' is enabled where the external layer has been already widely degradated. The biological degradation of the external layer spans advantageously from 1 to, 36 months,
30 preferably from 1 to 6 months, especially preferred from 1 to 2 months. It was shown that suchlike stents prevent or at least very strongly reduce restenosis. In this period of time the important healing processes take place. Finally the hemocompatible layer remains as athrombogeneous surface and masks the foreign surface in such a way that no life-threatening reaction can occur anymore.
35
The amounts of polymer deposited on the surfaces of the medical devices, preferably stents, are between 0.01 mg to 3 mg / layer, preferred between 0.20 mg to 1 mg / layer and especially preferred between 0.2 mg to 0.5 mg / layer.

Suchlike stents are preparable via a method for the hemocompatible coating of s'tents the basis of which is formed by the following principle:
a) providing a non coated stent,
b) deposition of a preferred covalently bound hemocompatible layer, 5 c) diffusion of active agent into the hemocompatible layer, or
c') substantially complete coating of the hemocompatible layer via dipping or
spraying method with at least one active agent, or c") substantially bomplete coating and/or incomplete coating of the
hemocompatible layer via dipping or spraying method with at least one
10 biodegradable and/or biostable layer which comprises at least one active
agent and/or represents the active agent itself.
The principle of coating offers a big range of variation concerning the contrived requirements for thje active agent and is separable into different coating types, 15 which can be combined also among themselves.

Coating principle I:
a) providing! a non coated stent,
b) deposition of a hemocompatible layer,
20 c) deposition of an active agent or an active agent combination on the
hemocompatible layer without a matrix,
d) deposition of an active agent or an active agent combination on the
hemocompatible layer without a matrix and substantially complete and/or
incomplete coating of the layers with a biodegradable and/or biostable
25 material for diffusion control.
t
Coating principle II:
a) providing a non coated stent,
b) deposition of a hemocompatible layer,
30 c) substantially complete coating and/or incomplete coating of the
hemocompatible layer with at least one biodegradable and/or biostable
layer which comprises at least one active agent bound covalently and/or
adhesively to the hemocompatible layer,
d) substantially complete coating of the hemocompatible layer with at least
35 one biodegradable and/or biostable layer which comprises at least one
active agent bound covalently and/or adhesively to the matrix and another biodegradable and/or biostable layer without an active agent as diffusion barrier which covers the subjacent layer completely and/or partially.

Coating principle III:
a) providing a nor) coated stent,
b) deposition of a hemocompatible layer, ,
c) substantially complete coating of the hemocompatible layer with at least 5 one biodegradable and/or biostable layer which comprises at 'least one
active agent bound covalently and/or adhesively, ,
d) deposition of an active agent or an active agent combinatibn bound
covalently and/or adhesively to the subjacent layer,
e) substantially complete coating of the hemocompatible layer with at least
10 one bipdegradable and/or biostable layer which comprises at' least one
active agent bound covalently and/or adhesively, deposition of an active
agent or an active agent combination and another biodegradable and/or biostable layer without an active agent as diffusion barrier which covers the subjacent layer completely and/or partially.
15
Coating principle IV:
a) providing a non coated stent,
b) deposition of a hemocompatible layer,
c) substantially complete and/or incomplete coating of the hemocompatible 20 layer with at least two biodegradable and/or biostable layers which
comprise covalently and/or adhesively at least one active agent in a different concentration per layer,
d) substantially complete and/or incomplete coating of the hemocompatible
layer with at least two biodegradable and/or biostable layers which
25 comprise at least one active agent bound covalently and/or adhesively in a
different concentration per layer and at least another biodegradable and/or biostable layer without an active agent as diffusion barrier which covers the subjacent layer completely and/or partially,
e) substantially complete and/or incomplete coating of the hemocompatible
30 layer with at least one biodegradable and/or biostable layer which
comprises at least one active agent and/or at least another active agent of the same group or from another group of complementary properties in the same or different concentrations in a covalen|t and/or ad hesive form,
f) substantially complete and/or incomplete c6ating of the hemocompatible
35 layer with at least two biodegradable and/or biostable layers which
comprise at least one active agent and/or at least another active agent of the same group or from another group of complementary properties in the same or different concentrations amd at least another biodegradable and/or


biostable layer without an active agent as diffusion barrier which covers the
subjacent layer completely and/or partially,
g) substantial y complete coating of the hemocompatible layer with at least
two biodegradable and/or biostable layers which comprise covalently and/or
5 adhesively at least one active agent in the same and/or different
concentrations and another biodegradable and/or biostable layer without an
active J agent as diffusion barrier which covers the subjacent layer
completely or also just partially and whereas that layer is covered by an
active agent layer which consists of at least one active agent bound
10 covalently to the subjacent matrix and/or adhesively without a support
material.
Another advantageous embodiment is represented by a stent with an at least three layered coating, whereas the first layer covers the surface of the stent with
15 the hemocompatible layer, the second layer contains the active agent and is not biodegradable and is covered by a third hemocompatible layer. The external layer provides the stent herein the necessary blood compatibility and the. second layer serves as an active agent reservoir. The active agent which is if needed covalently bound to the matrix via a hydrolysis-weak bonding and/or added in a solvent
20 dissolved matrix which is required for the coating method, is thus released from the second layer continuously and in small concentrations and diffuses uninhibited through the external hemocompatible layer. This layer assembly also yields the result that the population of the stent surface with cells is not prevented but is reduced to an ideal degree. The first layer offers a risk minimization for eventually
25 occurring damages of the coated stent surface during the implantation e.g. by abrasions through the present plaque or during the prearrangement e.g. during the crimping. A second security guarantee results from the fact that even a bio¬stable polymer is degradated in the body over a more or less long period of time which at least partially uncovers the stent surfac|e. Combinations especially with
30 biodegradable material as described in the coating principles are possible, too.
i 'Suchlike stents( can be prepared by providing a conventional stent, depositing a
hemocompatible first layer on its surface, depositing a non biodegradable layer
which at least comprises one active agent as well as combinations with other
35 active agents from,other groups bound covalently and/or adhesively and coating
of this layer substantially completely with another hemocompatible layer.

Substances whith come into question for the biostable layer are all of the consistent materials used in medical science. Thereto are accounted: polyacrylic

acid and polyacrylates such as polymethylmethacrylate, polybutyl methacrylate,
polyacrylamide, polyacrylonitriles, polyamides, polyetheramides,
polyethylenamine, polyimides, •' polycarbonates, polycarbourethanes,
polyvinylketones, polyvinylhalogenides, polyvinylidenhalogenides, polyvinyl ethers,
5 polyvinylaromates, polyvinyl esters, polyvinylpyrrolidones, polyoxymethylenes,
polyethylene, polypropylene, polytetrafluoroethylene, polyurethanes, polyolefin
elastomers, polyisobutylenes, EPDM gums, fluorosilicones, carboxymethyl
chitosan, polyethylenterephthalate, polyvalerates, carboxymethylcellulose,
cellulose, rayon, rayon triacetates, cellulose nitrates, cellulose acetates,
10 hydroxyethylcellulose, cellulosebutyrates, celluloseacetatebutyrates,
ethylvinylacetate copolymers, polysulphones, epoxy resins, ABS resins, EPDM
gums, silicones such as polysiloxanes, polyvinylhalogenes and copolymers,
cellulose ethers, cellulose triacetates, chitosan and copolymers and/or mixtures of
these afore-mentioned substances. 15
In case of multi layer systems the newly deposited layer covers the subjacent
layer substantially completely. The term "substantially" means in this context,
that at least the stent surface, which comes into contact with the vessel wall, is
covered completely resp. at least 90%, preferred 95% and especially preferred at
20 least 98% of the stent surface are covered.
The stents according to invention solve both the problem of acute thrombosis and the problem of neointima hyperplasia after a stent implantation. In addition the stents according to invention are well suitable due to their coating whether as 25 single layer or as multi layer system especially for the continuous release of one or more antiproliferative and/or immunosuppressive active agents. Due to this 'feature of aimed continuous active agent release in a required amount the coated stents according to invention prevent almost completely the danger of restenosis.
30 In addition, according, to the described process, any plastic surfaces can be coated with a hemocompatible layer of the oligosaccharides and/or polysaccharides. As plastics, synthetic polymers as well as biopolymers are suitable, comprlsing, for example, the monomers ethene, vinyl acetate, methacrylic acid, vinylcarbazole, trifluoroethylene, propene, butene,
35 methylpentene, isobutene, styrene, chlorostyrene, aminostyrene, acrylonitrile, butadiene, acrylic ester divinylbenzene, isoprene, vinyl chloride, vinyl alcohol, vinylpyridine, vinylpyrrolidone, tetrafluoroethylene, trifluorochloroethene, vinyl fluoride, hexafluoroisobutene, acrylic acid, acrolein, acrylamide, methacrylamide, maleic acid, hydroxymethyl methacrylic acid, methyl methacrylic acid, maleic acid


anhydride, methacrylic acid anhydride, methacrVlonitrile, fluorstyrene, fluoranilide, 3,4-isothiocyanatostyrene, allyl alcohol sulfonic acid, methallylsulfonic acid, diallyl phthalic acidi cyanoacrylic acid, dimethylaminoethylmethacrylic acid, lauryl methacrylic sjcid, acetaminophenylethoxymethacrylic acid, glycol dimethacrylic 5 acid, 2-hydroxyethyl methacrylic acid, formaldehyde, fluoral, chloral, ethylene oxide, tetrahydrofuran, propylene oxide, allyl glycidyl ether, epichlorohydrin, glycerin, trimethylpropane, pentaerythrite, sorbite, phthalic acid, succinic acid, fumaric ajcid, adipinic acid, thiophene, ethyleneimine, hexamethylene adipamide, hexamethylene, sebacamide, hexamethylene dodecane diamide,
10 aminobenzamide,' phenylene diamine, amide hydrazides, dimethyl piperazine, benzimidazole, tetraaminobenzene, pyrones, E-caprolactam, isophthalic acid, glutaminic acid, leucine, phenyl alanine, valine, lysine, urea, diisiocyanate, thiourea and others or mixtures of the above mentioned monomers. Furthermore, the following polymers can be considered: silicones, cellulose and cellulose
15 derivatives, oils polycarbonates, polyurethane, agarose, polysaccharides,
dextranes, starc chitin, glycosamino glycans, gelatin, collagen - XII and other
proteins. '

20
DESCRIPTION OF THE FIGURES
Fig. 1 shows a disaccharide structure fragment of chitin which can be transformed into chitosan by basic hydrolysis, or into the compounds of the general formula la . by partial deacetylation and subsequent N-carboxyalkylation.
25 Fig. 2 shows a disaccharide structure fragment of chitosan, which can be transformed into the compounds of the general formula la by partial N-acylation and subsequent N-carboxyalkylation or by partial N-carboxyalkylation and subsequent N-acylation.
30 Fig. 3 shows a tetrasaccharide unit of a heparin or heparan sulphate with a random distribution of the sulphate groups and a degree of sulfation of 2 per disaccharide unit as typical for heparin (fig. 3a). For comparison of the structural similarities fig. 3b shows an example of a compound according to the general formula lb and fig. 3c shows a section with a typical structure for a N-
35 carboxymethyJated, partially N-acetyJated chitosan.
Fig. 4 shows the influence of an into a PVC-tube expanded, surface modified stainless steel coronary stent on the platelet loss (PLT-loss). An uncoated stainless steel coronary stent was measured (uncoated) as reference. As zero


I f
I
value the level of the platelet loss in case of the PVC-tube without stainless steel coronary stent was set.
Thereby SH1 is a with heparin covalently coated stent, SH2 is a with chondroitinsulphate'coated stent; SH3 is a stent coated with polysaccharides 5 gained from the erythrocytic glycocalix and SH4 is a with Ac-heparin covalently coated stainless steel coronary stent, i
Fig. 5 shows a schematic presentation of the restenosis rate of with completely desulphated and N-reacetylated heparin (Ac-heparin) covalently coated stents and 10 with oligo- and polysaccharides of the erythrocytic glycocalix coated stents in comparison to the uncoated stent and with polyacrylic acid (PAS) coated stents after 4 weeks of implantation time in pork.
Fig. 6: Quantitative coronary angiography: 15 Images of the cross sections through the stent containing vessel-segment of one with Ac-heparin coated stent (a.) and as comparison of one uncoated (unco.) stent (b.). After four weeks in the animal experiment (pork) a clear difference in the thicknesses of the formed neointimas can be observed.
20 Fig. 7: Elution plot of paclitaxel from the stent (without support medium).
Fig. 8: Elution diagram of paclitaxel embedded into PLGA-matrix.
Fig. 9: Elution diagram of paclitaxel embedded into PLGA-matrix and of a layer of 25 undiluted paclitaxel which covers the basis coating completely.
Fig. 10: Elution diagram of a hydrophilic active agent embedded into the matrix and of a suprajacent active agent free polymer (topcoat) which covers the basis
coating completely for diffusion control.
30 ,
i
Fig. 11: Elution diagram of colchicine from PLGA-matrix.
i Fig. 12: Elution diagram of simvastatin from PLGA-matrix.
35 Fig. 13: Elution diagram of a statin from the matrix with polystyrene which
completely covers the basis coating as diffusion controlling layer.
i
Fig. 14: Comparison of the thrombocyte 'number (platelet number) in the blood
after Chandler loop Between coated (coat.) and non coated (unco.) stent as
40 regards the empty tube (control), the platelet number of freshly extracted blood
(donor) and after the storage of 60 min in the syringe (syringe 60).



Fig. 15: Comparison of the platelet factor 4 concentration in the freshly extracted blood (donor), in the empty tube (control) after 60 minutes and non coated stents {unco.) with coated (coat.) stent.
5 Fig. 16: Comparing diagram to the activated complement factor C5a in the freshly extracted blood (donor), in the empty tube (control) after 60 minutes and non coated (unco.) stents with coated (coat.) stent.
Fig. 17: Schematic presentation of the %-diameter restenosis rate of with 10 completely desulphated and N-reacetylated heparin (Ac-heparin) covalently coated stents and with a 2nd layer of poly(D.L-lactide-co-glycolide) in comparison to the uncoated stent (after 12 Weeks of implantation time in the pork). The chronological progression of the stenosis formation'in the case of PLGA is shown, whereas "%-diameter restenosis rate" represents the diameter of the vessel 15 related percentually to the initial state directly after implantation of the stent (post). Fpr the experimehts six to nine month old domestic porks were used, the vessel diameter was measured before (pre),and after the implantation of the stent (Post) via intravascular ultrasound (IVUS). After one week (1WoFUP), one month (4WoFUP), six weeks (6W0FUP) and after three months (12WoFUP) the stented 20 areas were examined respectively via coronary angiography and with intravascular ultrasound (IVUS). The obtained data show an unexpected amazingly positive effect, which is due to the coating beyond doubt. Although the values of stenosis after three months hardly differ for the uncoated stent and for the coated stent, the
reaction of the vessel wall towards the PLGA-coated stent is substantially
i
25 smoother. After one week the stenosis value lies with 6% significantly below the value of the uncoated implants with 10.4%. The masking of the} metal surface results after four weeks even with 10% (an increase of 33%) in a.more than factor two lower stenosis rate than the uncoated stent, which reaches after this period of time its maximum value of 22.6% (an increase of 54%). The coated stent shows a
30 maximum after six weeks with only 12.33%. After 12 weeks the values of both systems equal each other with approx. 11%.
Fig. 18: Pictures of the quantitative coronary angiography of the animal experiments respectively to fig. 17 after'1 week, 4 weeks, 6 weeks and 3 months 35 of hemocompatibly supplied PLGA-coated stents in the pig.


EXAMPLES '
Example 1


5 Preparation of desulphated reacetylated (heparin:
100 ml of amberlite IR-122 cation exchange resin were filled into a column having
a diameter of 2 cm, transformed into the, H-form with 400 ml 3M HCI and washed
with distilled water until the eluate was free from chloride and pH neutral. 1 g of
sodium heparin was dissolved in 10 mi of water, put onto the cation-exchange
10 column and eluted with 400 ml of water. The eluate was allowed to drop into a
receiver with 0.7 g of pyridine and subsequently titrated with pyridine to pH 6 and
freeze-dried.
0.9 g of heparin pyridinium salt were added to 90 ml of a 6/3/1 ,mixture of
15 DMSO/1,4-dioxane/methanol (v/v/v) in a round bottomed flask with rdflux cooler
und heated to 90°d for 24 hours. Then, 823 mg of pyridinium chloride were added
and heating to 90°C was effected for further 70 hours. Subsequently, dilution was
carried out with 100 ml of water, and titration to pH 9 with dilute soda lye was
effected. The desulphated heparin was dialyzed against water and freeze-dried.
20 I
100 mg of the desulphated heparin were dissolved in 10 ml of water, cooled to
0°C and mixed with 1.5 ml of methanol under stirring. To the solution, 4 ml of
Dowex 1x4 anion-exchange resin in the OH~-form and subsequently 150 pi of
acetic acid anhydride were added and stirred for 2 hours at 4°C. After that, the
25 resin is filtrated, and the solution is dialyzed against water and freeze-dried.
Example 2
N-carboxymethylated, partially N-acetylated chitosan: 30 In 150 ml 0.1 N HCI, 2 g of chitosan were dissolved and boiled under nitrogen for 24 hours under reflux. After cooling to room temperature, the pH of the solution was adjusted to 5.8 with 2 N NaOH. The solution was dialyzed against demineralized water and freeze-dried.
35 1 g of the chitosan partially hydrolyzed this way was dissolved in 100 ml of a 1% acetic acid. After adding 100 ml of methanol, 605 pi of acetic acid anhydride dissolved in 30 ml of methanol were added and stirred for 40 minutes at room temperature. The product was precipitated by pouring into a mixture of 140 ml of methanol and 60 ml of a 25% NH3 solution. It was filtrated, washed with methanol
40 and diethyl ether and dried under vacuum over night.


1 g of the partially hydrolyzed and partially N-acetylated chitosan was suspended
in 50 ml of water. Alfter adding 0.57 g of glyoxylic acid monohydrate, the chitosan
derivative dissolved'within the next 45 minutes. The pH value of the solution was
adjusted to 12 with 2 N NaOH. A solution of 0.4 g of sodium cyanobor'on hydride
5 in as few water as possible was added and stirred for 45 minutes. The product
was precipitated in 400 ml of elhanol, filtrated, washed with elhanol and dried in
vacuum over night. !
Example 3
10
Synthesis of desulphated N-propionylated heparin:
100 ml amberlite IR-122 cation exchange resin were added into a column of 2 cm diameter, with 400 ml 3M HCI in the H+-form converted and rinsed with distilled water, until the eluate was free of chloride and pH neutral. 1 g sodium-heparin was
15 dissolved in 10 ml water, added onto the cation exchange column and eluted with 400 ml of water. The eluate was added dropvise into a receiver with 0.7 g pyridine and afterwards titrated with pyridine to pH 6 and freeze-dried.
0.9 g heparin-pyridinium-salt were added in a round flask with a reflux condenser 20 with 90 ml of a 6/3/1 mixture of DMSO/1,4-dioxan/methanol (v/v/v) and heated for 24 hours to 90°C. Then 823 mg pyridiniumchloride were added and heated additional 70 hours to 90°C. Afterwards it was diluted with 100 ml of water and titrated with dilute sodium hydroxide to pH 9. The desulphated heparin was dialyzed contra water and freeze-dried. 25
100 mg of the desulphated heparin were solved in 10 ml of water, cooled to 0°C and added with 1.5 ml methanol under stirring. To1 this solution were added 4 ml dowex 1x4 anion exchange resin in the OH"~foum and afterwards 192 ul of propionic anhydride and stirred for 2 hours at 4°C. Then'the resin was removed by
30 filtration and the solution was dialyzed contra water and freeze-dried.

Example 4


N-carboxymethylated, partially N-propionylated chitosan: 35 In 150 ml 0.1t N HCI, 2 g of chitosan were dissolved and boiled under nitrogen for 24 hours under reflux. After cooling to room temperature, the pH of the solution was adjusted to 5.8 with 2 N NaOH. The solution was dialyzed against demineralized water and freeze-dried.

1 g of the chitosan partially hydrolyzed this way was dissolved in 100 ml of a 1% acetic acid. After adding 100 ml of methanol, 772 pi of propionic acid anhydride dissolved in 30 ml of methanol were added and stirred for 40 minutes at room temperature. The product was precipitated by pouring into a mixture of 140 ml of 5 methanol and 60 ml of a 25% NH3 solution. It was filtrated, washed with methanol and diethyl ether and dried under vacuum over night.
1 g of the partially hydrolyzed and partially N-acetylated chitosan was suspended
in 50 ml of water. After adding 0.57 g of glyoxylic acid monohydrate, the chitosan
10 derivative dissolved within the next 45 minutes. The pH value of the solution was
adjusted to 12 with 2 N NaOH. A solution of 0.4 g of sodium cyanoboron hydride
in as few water as possible was added and stirred for 45 minutes. The product
was precipitated in 400 ml of ethanol, filtrated, washed with ethanol and dried in
vacuum over night.


Example 5

! t
Hemocompatibility measurements of, compounds according to the general formula
la and lb by ISO 10933-4 (in vitro measurements):
20 '
For the measurement of the hemocompatibility of the compounds according to formulas la and lb cellulose membranes, silicon tubes and stainless steel stents were covalently coated with a compound according to formula la and lb and tested contra heparin Ias well as contra the corresponding, in the single tests utilised
25 uncoated material surfaces.

5.1. Cellulose membranes (cuprophan) coated with desulphatefd, reacetylated
' heparin (Ac-heparin) ,
I
30 For the examination of the coagulatory physiologic interactions between citrated whole blood and the Ac-heparin- resp. heparin-coated cuprophan membranes the open perfusion system of the Sakariassen-modified Baumgartner-chamber is used [Sakariasfen K.S. et al.; J. Lab. Clin. Med. 102 : 522-535 (1983)]. the chamber is composed of four buildingi parts plus conical nipples and threaded
35 joints and is manufactured of polymethylmethacrylate and allows the parallel investigation of two modified membranes, so that in every run already a statistic coverage is included. The construction of this chamber permits quasi laminar perfusion conditions.


After 5 minutes of perfusion at 37°C the membranes are extracted and after fixation of the adherent platelets the platelet occupancy is measured. The respective results are set into relation to the highly thrombogeneous subendothelial matrix as negative standard with a 100% platelet occupancy. The 5 adhesion of the platelets takes place secondary before the formation of the plasma protein layer on the foreign material. The plasma protein fibrinogen acts as cofactor of the platelet aggregation. The such induced activation of the platelets results in the bonding of several .coagulation associated plasma proteins, such as vitronectin, fibronectin and von Willebrand-factor on the platelet surface.
10 By their influence finally the irreversible aggregation of the platelets occurs. The platelet occupapcy presents because of the described interactions an accepted quantum for the thrombogenity of surfaces in case of the foreign surface (contact of blood. From this fact the consequence arises: the lower the platelet qccupancy is on the perfunded surface the higher is the hemocompatibility oj the examined
15 surface to be judged.
The results of the examined heparin-coated and Ac-heparin-coated membranes
show clearly the improvement of the hemocompatibility of the foreign surface
through the c6ating with Ac-heparin. Heparin-coated membranes show a 45 - 65%
20 platelet occupanicy, whilst Ac-heparin-coated surfaces show values from 0 - 5%
(reference to subendothelial matrix with (100% platelet occupancy).
i
The adhesion of the platelets on the Ac-heparinated surface is extremely aggravated due to the absent, for the activation of platelets essential plasma
25 proteins. Unlike to this the heparin-coated surface with the immediately incipient plasma protein adsorption offers optimal preconditions for activation, deposition and aggregation of platelets, and ultimately the blood reacts with the corresponding defense mechanisms to the inserted foreign surface by activation of the coagulation cascade. Ac-heparin fulfills by far superior than heparin the
30 requirements to the hemocompatibility of the foreign surface.
The interaction of plasma protein adsorption and platelet occupancy as direct quantum for the thrombogenity of a surface, in dependence of the to the blood offered coating, is made clear especially well by this in-vitro test. Thus the 35 utilisation of covalently bound heparin as antithrombotic operant surface is only strongly limited or not possible at all. The interactions of immobilised heparin with blood revert themselves here into the undesired opposite - the heparin-coated surface gets thrombogeneous.


, Obviously the outstanding importance of heparin as an antithrombotic is not transferable to covalently immobilised heparin. In the systemic application in dissolved form it) can fully unfold its properties. But if heparin is not covalently immobilised, its antithrombotic properties, if at all, is only short-lived. Different is 5 the Ac-heparin („No-affinity"-heparin), that due to the desulphation and N-reacetylation jin fact totally loses the active antithrombotic properties of the'initial molecule, bul acquires in return distinctive athrombogeneous properties, that are demonstrably founded in the passivity versus antithrombin III and the missing affinity towards coagulation initiating processes and remain after covalent 10 bonding.
Thereby Ac-heparin and thus the compounds of the general formulas la and lb in total are optimally suitable for the camouflage of foreign surfaces in contact with the coagulation system. 15
5.2. Immobilisation on silicone
Through a 1 m long silicon tube with 3 mm inside diameter 100 ml of a mixture of ethanol/water 1/1 (v/v) was pumped in a circular motion for 30 minutes at 40°C. 20 Then 2 ml 3-(triethoxysilyl)-propylamine were added and pumped in a circular motion for additional 15 hours at 40°C. Afterwards it was rinsed in each case for 2 hours with 100 ml ethanol/water and 100 ml water.
3 mg of the deacetylated and reacetylated heparin (Ac-heparin) were dissolved at 25 4°C in 30 ml 0.1 M MES-buffer pH 4.75 and mixed with 30 mg CME-CDI (N-
cyclohexyl-N'-(2-morpholinoethyl)carbodiimidemethyl-p-toluenesulphonate). This
solution was pumped in a circular motion for 15 hours at 4°C through the tube.
Afterwards it was rinsed with water, 4 M NaCI so|ution and water in each case for
2 hours.
30
5.3 Determination of the platelet number (EN30993-4)

In a 1 m long silicone tube with 3 mm{ inside diameter two 2 cm long formfitting glass tubes were placed. Then the tube was closed with a shrinkable tubing to a 35 circle and fjlled under exclusion of air via syringes with a 0.154 M NaCI solution. In doing so one syringe was used to fill in the solution and the other syringe was used to remove the|air. The solution was exchanged under exclusion of air (bleb-free) with the two syringes against citrated whole blood of a healthy tes,t person.


Then the recess holes of the syringes were closed by pushing the glass tubes over them and the tube was clamp taut into a dialysis pump. The blood was pumped for 10 minutes with a flow rate of 150 ml/min. The platelet content of the blood was measured before and after the perfusion with a Coulter counter. For 5 uncoated silicone tubes the platelet loss was of 10%. In contrast to it the loss was in silicon tubes, which were coated according to example 5.2, in average at 0% (number of experiments'. n=3).
!
Also in this dynamic test system it is shown, thatlthe activation of platelets on an 10 Ac-heparin coated surface is reduced. Simultaneously, it can be recorded, that the immobilisation of heparin executes a negative effect on the hemocompatibility of the utilised surface. Against it Ac-heparin shows, in accordance to its passive nature, no effects in contact with the platelets.

t
15 5.4 Whole blood experiments on LVM stainless steel coronary stents
In line with'the biocompatibility experiments 31 mm long 316 LVM stainless steel
stents were covalentJy coated with Ac-heparin. In case of a total surface of 2 cm2
and a occupancy coefficient of about 20 pm/cm2 stent surface the charging of
20 such a stent is about 0.35 ug Ac-heparin. As comparison: in case of thrombosis
prophylaxis the usual daily application rate of heparin is in contrast 20-'30 mg and
thus would correspond to the at least 60.000 times the value.
i These experiments were carried out at the Intitute of Physiology at the RWTH
25 Aachen with the established hemodynamic Chandler loop-system [A. Henseler, B.
Oedekoven, C. Andersson, K. Mottaghy; KARDIOTECHNIK 3 (1999)]. Coated and
uncoated stents were expanded and tested in PVC tubes (medical grade PVC)
with 600 mm length and 4 mm inside diameter. The results of these experiments
confirm the according to the silicone tubes discussed experiments. The initially to
30 the stent attributed platelet loss in the perfusate of 50% is reduced by the
refinement of the stent surface with Ac-heparin by more than 80%.
The influence of in the tube expanded, surface modified coronary stents to the platelet loss is evaluated in further Chandler tests during a 45 minute whole blood 35 perfusion. For this primarily the stent-free PVC tube is analysed, the outcome of this is the zero value. The empty tube shows an average platelet loss of 27.4 % regarding to the donor blood at a standard aberration of solely 3.6 %. This base value underlied different surface modified stents are expanded in the PVC tubes and are analysed under analogous conditions on the by them caused platelet loss.


It occurs alsjo in this case, that the stent covered surface, which solely accounts
for about 0.84% of the total test surface, causes a significant and reproducable
effect on the platelet content. According to the empty tube (base value) the
analysis of the polished, chemically not surface coated stent yields an additional
5 average platelet loss of 22.7%. Therewith causes this compared to the PVC empty
tube less than 1% measurable foreign surface an approximately comparable
platelet loss. A direct result is that the medicinal stainless steel 316 LVM used as
stent material induces an about 100 times stronger plaelet damage compared to
a medical grade PVC surface, although this test surface only accounts for 0.84%
10 of the total surface.' ,
The analysed surface coatings on the stainless steel coronary stents show to be
able to reduce very clearly the enormous dimension of the stent induced platelet
damage (see fig. 4). As most effective proved with 81.5% the Ac-heparin (SH4). 15
If the effects of the Ac-heparin-coated stents on the platelet loss are considered,
then good congruent values result. The correlation of the platelet loss in the
perfusate resp. the adhesion of the platelets to the offered surfaces show the
reliability of the measurements.
20
5.4.1 Covalent hemocompatible coating of stents
Not expanded stents of medicinal stainless steel LVM 316 we're degreased in the ultrasonic bath for 15 minutes with acetone and ethanol and dried at 100°C in the 25 drying closet. Then they were dipped for 5 minutes into a 2% solution of 3-aminopropyltriethoxysilane in a mixture of ethanol/water (50/50 : (v/v)) and then dried for 5 minutes at 100°C. Afterwards the stents were washed with demineralised water over night.
30 3 mg desulphated and reacetylated heparin were dissolved at 4°C in 30 ml 0.1 M
MES-buffer (2-(N-morpholino)ethanesulphonic acid) pH 4.75 and mixed with 30
mg N-cyclohexyl-N'-(2-morpholinoethyl)carbodt'imide-methyl-p-toluenesulphonate.
In this solution 10 stents were stirred for 15 hours at 4°C. Then they were rinsed
with water, 4 M NaCI solution and water in each case for 2 hours.
35 .
5.4.2 Determination of the glucosamine content of the coated stents by HPLC

Hydrolysis: the coated stents are given in small hydrolysis 'tubes and are abandoned with 3 ml 3 M HCI for exactly one minute at room temperature. The

metal probes are removed and the tubes are incubated after sealing for 16 hours in the drying closet at 100 °C. Then they are allowed to cool down, evaporated three times until dryness and taken up in 1 ml degassed and filtered water and measured contra an also hydrolysated standard in the HPLC:

stent sample area desulphat. +
reacet. heparin
[g/samplo] area [cm2] desulphat. +
reacot. heparin
[g/cm2] desulphat. +
roacot. heparin
[pmol/cm2]
1 129.021 2.70647E-07 0.74 3.65739E-07 41.92
2 125.615 2.63502E-07 0.74 3.56084E-07 40.82
3 98.244 1.93072E-07 0.74 2.60908E-07 29.91
4 105.455 2.07243E-07 0.74 2.80058E-07 32.10
5 119.061 2.33982E-07 0.74 3.16192E-07 36.24
6 129.202 2.53911E-07 0.74 3.43124E-07 39.33
7 125.766 2.53957E-07 0.74 3.43185E-07 39.34

10
15
20
25

Example 6
i
In vivo examination of coated coronary stents (fig. 5)i
i
!
6.1. In vivo examinations of coronary stents coated with Ac-heparin
i Due to the data on hemocompatibility, which Ac-heparin yielded in the in-vitro
experiments, the suitability of the Ac-hepaijin surface as athrombogeneous coating
of metal stents was discussed in vivo (animal experiment). The target of the
experiments was primarily to evaluate the' influence of the Ac-heparin coating on
the stent indu'eed vessel reaction. Besides the registration of possible thrombotic
events the relevant parameters for restenotic processes like neointima area,
vessel lumen antl stenosis degree were recorded.
i i
The animal experiments were carried out at the Inselspital Bern (Switzerland) under the direction of Prof. Hess an accredited cardiologist. For the'examinations 6-^-9 month old domestic porks were used, one for the validation of stents for a long time established and approved animal model.
As expected in these experiments neither acute, subacute nor lale acute thrombotic events Were registered, what may be assessed as proof for the athrombogeneoiis properties of Ac-heparin.



After four weeks the animals were dispatched (euthanized), the stented coronary
artery segments extracted and histomorphometrically analysed. ]
Indications to a possible acute or subchronic toxicity, allergisation reactiins or ulterior irritations as consequence of the implantation of Ac-heparin coated stents 5 are not observed during the complete experimental phase, especially in the histologic examination. During the stent implantation as well as the follow-up coronary-angiographic data sets were ascertained, which permit an interpretation with regard to the vessel reaction to the stent implantation.
10 The difference between the uncoated control stent and the Ac-heparin coated stent is unambiguous. The generation of a distinct neointima layer is in case of the uncoated control stent very well observable. Already after four weeks the proliferation promotional effect of the uncoated stent surface on the surrounding tissue occurs in such a degree, that ultimately the danger of the vessel occlusion
15 in the stent area is given.
Contrary in case of the Ac-heparin coated stents a clearly thinner neointima layer is observed, which argues for a well modulated ingrowth of the stent under maintenance of a wide, free vessel lumen.
20 The detailed histomorphometric and coronary angiographic data substantiate this conclusion, as it can be observed congruently, that via the Ac-heparin coating (SH4) the neointima hyperplasia (.restenosis") was repressed by about 17-20% in comparison to the uncoated control stent. This result is unexpected and remarkably at the same time. Surely it is not demanded of an athrombogeneous
25 surface to have an influence also on processes that lead to a neointima hyperplasia, i.e. to prevent restenoses, in addition to the preposition of hemocompatible characteristics.
On the one hand with a dense, permanent occupancy of the stent surface with Ac-30 heparin a direct cell contact to the metal surface is prevented. As in technical literature the emission of certain metal ions into the implant close tissue is discussed as one probable reason of restenosis, an anti-restenoic potency could be founded by one of the coating caused prevention of a direct metal contact.
35 On the other hand such a positive side effect is plausible1, because on a passive, athrombogenenous' stent surface with the absence of a platelet aggregation also the proliferative effects of the thereby Released growth factors are to be missed. Thus an important, starting from the lurfien side, stimulus of the neointimal
proliferation is omitted.



5

Example 7
In vivo experiments of coronary stents eclated with covalently bound Ac-heparin an a second suprajacent layer of PLGA 50/50
7.1 Hemocompatibility of the used matrix in vitro

For evaluation of the hemocompatibility of PLGA 50/50 stainless steel stents were coated with the polymer and tested at the Intitute of Physiology of the RWTH
10 Aachen by means of in vitro whole blood tests. The used established and standardized Chandler loop system is a dynamic closed tube system, which operates without the use of a pump. Within the scope of the hemocompatibility experiments whole blood, platelet factor 4 (PF4) and complement factor 5a (C5a) were determined (see fig. 14-16). For reasons of comparison the uncoated stent
15 was included.
Carrying out of the experiment:
Donor blood is taken up into 1.5 U/ml of heparin. The stents are introduced into PVC tubes (I.D. 3.5 mm, L = 95 cm) and fixed via balloon catheter. The 4 tubes 20 (K3 - K6) and two empty tubes (L1, L2) are filled in each case with 7.5 ml isotonic sodium chloride solution and rotated for 15 minutes at 5 r/min at 37°C in the Chandler loop. The completely emptied tubes are filled carefully with heparinated donor blood (7.5 ml) and rotated for 60 min at 5 r/min. Accordingly to the anticoagulants samples are taken in monovettes and sample1 jars respectively
25 (PF4-CTAD, C5a-EDTA, BB-EDTA) and processed.
The determination of the platelet number shows no significant difference between the empty control tubes, the coated and non coated stents. The released PF4 is in case of the coated and non coated tubes at the same level. The determination of
30 the activated complement factor 5 (C5a) {shows in case of the coated stents a smaller activation as incase of the non coated stents.
t
7.2 Hemocompatibility of the used matrix in vivo
35 The aim of the experiments was primarily to evaluate the influence of the PLGA-coating towards the stent induced vessel reaction. For the experiments 28 'six to nine month old domestic porks were used. The stented areas were examined after one week (IWoFUP), one month (4WoFUP), six weeks (6W0FUP) ahd after three months (12WoFUP). The obtained data show an unexpected amazingly positive
40 effect, which is due to the the presence of PLGA 50/50 beyond doubt. Although

10

the values of stenosis after three months hardly differ for the uncoated stent and for the coated stent, the reaction of the vessel wall towards the PLGA-coated stent is substantially smoother. After one week the stenosis value lies with 6% significantly below the value of the uncoated implants with 10.4%. The masking of the metal surface results after four weeks even with 10% (an increase of 33%) in a more than factor two lower stenosis rate than the uncoated stent, which reaches after this period of time its maximum value of 22.6% (an increase of 54%). The coated stent shows a maximum after six weeks with only 12.33%. After 12 weeks the values of both systems equal each other withapprox. 11% (fig.16).
The data for the restenotic processes were determined via quantitative coronary angiography (QCA) and intravascular ultra sound examinations (IVUS).



15

Example 8

Experiments concerning the coating of surfaces with tacrolimus:

Pre-experiments with toluidine blue:
First pre-experiments are carried out with toluidine blue (Aldrich) since tacrolimus
20 can be detected chemically quite difficult.
2.5 cm in length, 2 mm in diameter , Fluka, Lot. 398555/123500, HNo. 0409 Aldrich, Lot. 19,816-1, HNo. 0430 14.24 g Na2HP04, 2.72 g NaH2P04\ 9 g NaCI
Chemicals:
, stainless steel tubes LVM 316 polylactide 25 toluidine blue
PBS-buffer pH 7.4
Realization: >
The stent is weighed out on the analytical balance and the weight is noted. In a
30 small hydrolysis tube 0.5 g polylactide1 are dissolved in 2 ml of CHCI3. Therefore, it is heated to 65 °C in the water bath. The solution is cooled down in the freezing compartment. Thereto are added 200 pg toluidine blue in 200 pi of CHCI3. The stent is dipped into this solution. After a couple of minutes the stent is taken out of the solution with tweezers and moved within the fume hood until the solvent
35 evaporates. Then the stent is dipped in for a second time. After air drying the stent is freeze dried for about 10 min. After the drying the stent is balanced again. The amount of the immobilized polylactide, with toluidine blue is measured from the weight difference (sample 1).

This experiment is repeated another time'with the same solution (sample 2).
For sample 3 the dipping solution (1.93 ml) which results from experirnent 1 (sample 1) and experiment 2 (sample 2) is mixed with 0.825 mg tpluidinei blue in 0.825 ml of CHCI3 and 250 mg polylactide. The polylactide is d ssolved during heating. Then a stent is dipped into it two times as described above. ,

10

Results:
The untreated stents had a weight of 176.0 mg and 180.9 mg. After dipping into the
polylactide solution the stents balanced 200.9 and 205.2 mg.

The dipping sqjlution contains 500 mg polylactide and 200 pg toluidine blue. The bound amount of toluidine blue can be [measured for the samples 1 and 2 from this ratio. In case of sample 3 2.755 ml solution contain 1 mg toluidine blue and 638.6 mg 15 polylactide (initial weight - consumption sample 1+2; approx. 50 mg). Here two stents are given into one preparation to obtain higher absorptions. As the dipping solution was very viscous which yielded a very thick coating it was diluted from 2.625 ml with chloroform to 4 ml.
20 Concentrations in the dipping solution:

sample volume (ml) c (polylactide mg/ml) c (toluidine blue pg/ml)
1 2.2 227.3 90.9
2 2.2 227.3 90.9
3 2.755 231.8 363.0
4 4.0 134.5 212.5
Weight of the tubes and the resultant measured coating:

sample net weight total weight PL & toluidine blue Toluidine blue
1 176.0 mg 200.9 mg 24.9 mg 9.96 pg
2 180.9 mg 205.2 mg 24.3 mg ' 9.72 pg
3 317.2 mg 410.8 mg 93.6 mg 135.73 ug
4 180.8 mg
194.8 mg 14.8 mg 23.38 pg
25
Example 9


Elution behavior of the coatings with different concentrations:
As pre-experiment a UV-Vis spectra of a toluidine blue solution in ethanol is taken (c = 0.1 mg/ml) and the absorption maximum is determined. The toluidine blue 5 concentration in the solution is measured at an absorption maximum of 627 nm. Thereto a calibration curve is generated.
A stent is hung into a beaker with 25 ml of physiological sodium chloride solution in a phosphate buffer pH 7.4 (14.24 g NaH2P04, 2.72 g K2HP04 and 9 g NaCI) 10 and stirred gently at room temperature. After 0.5, 1, 2, 3, 6, 24, 48 and 120 hours, each time a sample of 3 ml is taken, measured spectroscopically and given back into the preparation.

I
15 Absorption of the samples after different periods of time. For measuring of the
concentration the cuvette difference (abs. at T = 0) is subtracted from the
measured value.
After 12 and 13 days respectively the experiment was terminated. 0n all of the 20 stents after the expiration of the experiment a coating was still present. For determining the amounts of toluidine blue and polylactide respectively which were dissolved, the stents were rinsed with water and ethanol and then ,freeze dried during 1 h for balancing them afterwards.




10
15
20

In case of concentrations of 90 pg toluidine blue per ml dipping solution the
released amounts of toluidine blue are so low that the absorptions are at the
detection limit of the spectrometer. In case of a concentration of 200 pg/ml the
values are after ,a couple of hours in the measurable area. It is recommended for
the measurement to place two samples into a beaker (elution jar) to yield higher
absorptions. In case of the highest polylactide/toluidine blue concentration a
saturation effect seems to appear. While the elution ratio in case of the thinner
samples has an almost linear trajectory. On all of the stents the cjoating can still be
detected after several days.

After approx. 2 weeks the bound toluidine blue dissolved in average from about 1/4 -1/5. Hence it, results that the samples still would have eluted toluidine blue for approx. 8 to 10 weeks.
The dipping solution may not be too thick and should be cooled so that the chloroform cannot evaporate too fast during the extraction as else the thickness of the coating becomes too large and inhomogeneous. Here the polylactide concentration in sample 4 (134 mg/ml) seems to be sufficient, above all in case of higher concentrations the solution becomes extremely viscous and the polylactide is only very difficult to dissolve.

Example 10
25 Coating of the stents via the spraying rqethod:
The according to example 1 and example 2 pre-prepared not expanded stents are balanced and horizontally hung onto a thin metal bar (d = 0.2 mm) which is stuck on the rotation axis of the rotation and feed equipment and rotates with 28 r/min. The stents are fixed in such way, that the interior of the stents does not touch the
30 bar. At a feeding amplitude of 2.2 cm and a feeding velocity of 4 cm/s and a distance of 6 cm between stent and spray nozzle, the stent is sprayed with the respective spray solution. After the drying (about 15 minutes) at room temperature and proximately in the fume hood over night it is balanced again.


Example 11
' Coating of the stents with pure matrix:
I
5 Preparation of the spray solution:
176 mg polylactide is balanced and replenished with chloroform to 20 g.
i
The stents are sprayed in each case with 3 ml of the spraying solution, balanced before and after the spraying and the yielding layer thickness is determined by 10 measuring under the microscope 100-times magnified.

stent No. before coating after coating weight of coating layer thickness
1 0.0193 g 0.0205 g 1.2 mg 10.4 urn
2 0.0193 g 0.0205 g 1.2 mg 10.4 urn
3 0.0204 g 0.0216 g 1.2 mg 10.4 urn
4 0.0206 g 0.0217 g 1.1 mg 10.4 urn
Example 12
15 Coating of the stents with pure active agent:
Preparation of the spray solution: 44 mg taxol are dissolved in 6g chloroform.
The stents are balanced before and after the spraying. 20
stent No. before coating after coating weight of coating
1 0.0194, g 0.0197 g 0.30 mg

Example 13

, Determination of the elution behaviour in PBS-buffer:
i i
i
Each stent placed in a sufficiently small flask, 2 ml PBS-buffer is added, sealed with parafilm and incubated in the drying closet at 37 °C. After expiry of the chosen time intervals in each case the supernatant is depipetted and its UV absorption'at 306 nm is measured.

Example 14
Coating of the hemocompatibly equipped stents with an active agent loaded
matrix (fig. 7):
5 . .
Spray solution: Polylactide RG502/taxol - solution is replenished from 145.2 mg polylactide and 48.4 mg taxol to 22 g with chloroform.

stent spray solution weight before
(g) weight after (g) weight of coating weight of
active
agent active agent pg/mm2 layer
thicknes
s
1 0.8 ml 0.02180 0.02215 0.35 mg 146 pg 1.97 7.9 pm
2 0.8 ml 0.02105 0.02142 0.37 mg 154 pg 2.08 6.7 pm
3 0.8 ml 0.02247 0.02285 0.38 mg 158 pg 2.14 9.8 pm
4 0.8 ml 0.02395 0.02432 0.37 mg 154 pg 2.08 11.0 pm
5 0.8 ml 0.02247 0.02286 0.39 mg 163 pg ' 2.20 9.1 pm
6 0.8 ml 0.02442 0.02482 0.40 mg I 167 pg 2.26 12.2 pm
T


10 .Example 15


Coating of the stents with an active aijent loaded matrix and an active agent as
topcoat (fig. 8):

15 Basis coatf 19.8 mg polylactide and 6.6. mg taxol are replenished with chloroform
to 3 g.
Topcoat: 8.8 mg taxol are replenished with chloroform to 2 g.
, i
stent spray solution weight before (g) weight after (g) weight of coating weight of
active
agent active
i agent '
pg/mm2 layer thickness
1 0.85 ml 0.0235 0.0238 0.30 mg 131 pg 1.56' 9.7pm
2 0.85 ml 0.0260 0.0264 0.40 mg 175 pg 2.09 10.1 pm
I
20 Example 16
Coating of the stents with a polylactide which contains a hydrophilic active agent and with an active agent free matrix as topcoat (fig. 9):

Spray solutions:
Basis coating: 22 mg polylactide-and 22 mg hydrophilic active agent are balanced
and replenished with chloroform to 5 g. !
Topcoat: 22 mg polylactide and 22 mg polystyrene are balanced and replenished
5 with chloroform to 5 g. ,


1
spray solution before coating after coating i weight of coating weight of active agent
0.85 ml 0.0135 g i 0.0143 g 0.8 mg 200 pg

We Claim:
1. Method for the hemocompatible coating of biological and/or artificial surfaces of medical devices comprising the following steps:
a) providing a surface of a medical device and
b) deposition of at least one oligosaccharide and/or polysaccharide compounds of the general formulas la and lb
Formula la
Formula la

Formula lb



Formula tb

n

wherein
n is an integer between 4 and 1050,

Y and Z, independently of each other, represent the groups -CHO, -COC113, -COC2I If,, -COC3H7, -CCC4H9, -COC5H11, -COCH (CH3)2, -COCH2CH(CH3)2, -COCH(CH3)C2 l15, -COC(CH3)3, -CH2COO-, -C2H4COO-, -C3H6COO, -C4H8COO, and salts of said compounds as hemocompatible layer on this surface and/or
b') deposition of a biostable layer on the surface of the medical device or the hemocompatible layer.
2. Method as claimed in claim 1, wherein the hemocompatible layer or the biostabie layer is coated via dipping or spraying method with at least one biodegradable and/or biostabile layer which comprises an active agent covalently and/or adhesively bound.
3. Method as claimed in claim 1 optionally comprising the step c):
c. deposition of at least one active agent in and/or on the hemocompatible layer or the biostabie layer.
4. Method as claimed in claim 3, wherein the at least one active agent is implemented and/or deposited via dipping or spraying methods on and/or in the hemocompatible layer or the biostabte layer and/or the at least one active agent is bound via covalcnl and/or adhesive coupling to the hemocompatible layer or the biostabie layer.
5. Method as claimed in any one of the claims 1 to 4, optionally comprising the step d):
d) deposition of at least one biodegradable layer and/or at least one biostabie layer on
the hemocompatible layer or the active agent layer, respectively, or
d') deposition of at least one oligosaccharide and/or polysaccharide of formula la & lb as hemocompatible layer on the biostabie layer or the active agent layer, respectively.
6. Method as claimed in any one of the claims 1 to 5, optionally comprising the step e):
e) deposition of at least one active agent in and/or on the at least one biodegradable
and/or biostabie layer or the hemocompatible layer.

7. Method as claimed in any claim 6, wherein the at least one active agent is deposited and/or implemented via dipping or spraying methods on and/or in the at least one biodegradable and/or biostabie layer or the hemocompatible layer and/or the at least one active agent is bound via covalent and/or adhesive coupling to the at least one biodegradable and/or biostabie layer or the hemocompatible layer.
8. Method as claimed in any one of the claims 5 to 7, wherein the biostabie and/or biodegradable layer is covalently and/or adhesively bound on the surface of the medkai device and the hemocompatibie iayer is covaientiy bound to the biostabie iayer and covers it completely or incompletely.
9. Method as claimed in any one of the claims 1 to 8, wherein the hemocompatible layer comprises heparin of native origin of regioselectively synthesized derivatives of different sulphation coefficients and acylation coefficients in the molecular weight range of the pentasaccharide, which is responsible for the antithrombotic activity, up to the standard molecular weight of the purchasable heparin of 13 kD, of heparansulphate and its derivatives, oligo- and polysaccharides of the erythrocytic glycocalix, desulphated and N_reac(et)ytated heparin, N-carboxymethylated and/or partially N_ac(et)ylated chitosan as well as mixtures of these substances.
10. Method as claimed in any one of the claims 1 to 9, wherein as biodegradable
substances for the biodegradable layer polyvalerolactones, poly-e-decalactones,
polylactonic acid, polyglycoiic acid, polylactides, polyglycolides, copolymers of the
polylactides and polyglycolides, poly-e caprolactone, polyhydroxybutanoic acid,
polyhydroxybutyrates, poiyhydroxyvalerates, polyhydroxybutyrate-co-valerates,
poly(l,4-dioxane- 2,3-diones), poly(l,3-dioxane-2-one), poly-para-dioxanones,
polyanhydrides as polymaleic anhydrides, polyhydroxymethacrylates, fibrin,
polycyanoacrylates, polycaprolactonedimethylacrylates, poly-b-maleic acid,
polycaprolactonebutyl-acrylates, multiblock polymers such as from
oligocaprolactonedioles and oligodioxanonedioles, polyetherester multiblock polymers
56

such as PEG and poly(butyleneterephtalates), polypivotolactones, polyglycoiic acid
trimethyl-carbonates, polycaprolactone-glycolides, poly(g- ethylglutamate), poly(DTH-
iminocarbonate), poly(DTE-co-DT-carbonate), poly(bisphenol-A-iminocarbonate),
polyorthoesters, polyglycoiic acid trimethyl-carbonates, polytrimethylcarbonates,
polyiminocarbonates, poly(N- viny!)-pyrrolidone, polyvinylalcoholes, polyesteramides,
glycolated polyesters, polyphosphoesters, polyphosphazenes, poly[p-
carboxyphenoxy)propane], poiyhydroxypentane acid, poly anhydrides,
polyethyleneoxide-propyleneoxide, soft polyurethanes, polyurethanes with amino acid rests in the backbone, polyetheresters such as polyethyleneoxide, polyalkeneoxalates, polyorthoesters as well as their copolymers, lipids, carrageenanes, fibrinogen, starch, collagen, protein based polymers, polyamino acids, synthetic polyamino acids, zein, modified zein, polyhydroxyalkanoates, pectic acid, actinic acid, modified and non modified fibrin and casein, carboxymethyl sulphate, albumin, moreover hyaluronic acid, chitosane and its derivatives, heparansulphates and its derivatives, heparine, chondroitinesulphate, dextran, b-cyclodextrines, copolymers with PEG and polypropyleneglycol, gummi arabicum, guar, gelatine, collagen, collagen-N-Hydroxysuccinimide, lipids, phospholipids, modifications and copolymers and/ or mixtures of these substances are used.
11. Method as claimed in any one the claims 1 to 10, wherein as biostable substances for
the biostable layer polyacrylic acid and polyacrylates such as polymethylmethacrylate,
polybutylmethacrylate, polyacrylamide, polyacrylonitriles, polyamides,
polyetheramides, polyethylenamine, polyimides, polycarbonates,
polycarbourethanes, polyvinylketones, polyvinylhalogenides,
poiyvinylidenhalogenides, polyvinylethers, polyisobutylenes, polyvinylaromates,
polyvinylesters, polyvinylpyrollidones, polyoxymethylenes,
polytetramethyleneoxide, polyethylene, polypropylene, polytetrafluoroethylene,
polyurethanes, polyetherurethanes, silicone-polyetherurethanes, silicone-
polyurethanes, silicone-polycarbonate-urethanes, polyolefine elastomeres,
polyisobutylenes, EPDM gums, fluorosilicones, carboxymethylchitosanes,

polyaryletheretherketones, polyetheretherketones, polyethylenterephthalate,
polyvalerates, carboxymethylcellulose, cellulose, rayon, rayontriacetates,
ceiluiosenitrates, celluloseacetates, hydroxyethylcellulose, cellulosebutyrates,
celluloseacetatebutyrates, ethylvinylacetate copolymers, polysulphones, epoxy resins, ABS resins, EPDM gums, silicones such as polysiloxanes, polydimethylsiloxanes, polyvinylhalogenes and copolymers, celluloseethers, cellulosetriacetates, chitosanes and copolymers and/or mixtures of these substances are used.
12. Method as claimed in any one of the claims 1 to 11, wherein the active agents are chosen from the group which contains sirolimus (rapamycin), everolimus, pimecrolimus, somatostatin, tacrolimus, roxithromycin, dunaimycin, ascomycin, bafilomycin, erythromycin, midecamycin, josamycin, concanamycin, clarithromycin, troleandomydn, folimycin, cerivastatin, simvastatin, lovastatin, fluvastatin, rosuvastatin, atorvastatin, pravastatin, pitavastatin, vinblastine, vincristine, vindesine, vinorelbine, etoboside, teniposide, nimustine, carmustine, lomustine, cyclophosphamide, 4-hydroxyoxycyclophosphamide, estramustine, melphalan, ifosfamide, tropfosfamide, thymosin a-1, chlorambucil, bendamustine, dacarbazine, busulfan, procarbazine, treosulfan, tremozolomide, thiotepa, daunorubicin, doxorubicin, aclarubicin, epirubicin, mitoxantrone, idarubicin, bleomycin, mitomycin, dactinomycin, methotrexate, fludarabine, 2-methylthiazolidine-2,4-dicarboxy!ic acid, tialin-Na (sodium salt of tialin), fiudarabine-5'-dihydrogenphosphate, cladribine, mercaptopurine, thioguanine, cytarabine, fluorouracii, gemcitabine, capecitabine, docetaxel, carboplatin, cisplatin, oxaliplatin, amsacrine, irinotecan, topotecan, hydroxycarbamide, miltefosine, pentostatin, aldesleukin, tretinoin, asparaginase, pegasparase, anastrozole, exemestane, letrozole, formestane, aminoglutethemide, adriamydn, azithromycin, spiramycin, cepharantin, dermicidin, smc proliferation inhibitor-2w, epothilone A and B, mitoxantrone, azathioprine, mycophenolatmofetil, c-myc-antisense, b-myc- antisense, betulinic acid, camptothecin, PI-88 (sulphated oligosaccharide), melanocyte stimulating hormon (a-MSH), activated protein C, IL1-R, inhibitor, fumaric acid and its esters, calcipotriol, tacalcitol, lapachol, (3-lapachone,

podophyllotoxin, betuiin, podophyllic acid 2-ethylhydrazide, molgramostim (rhuGM-
CSF), peginterferon a-2b, lanograstim (r-HuG-CSF), filgrastim, macrogol, dacarbazine,
exemestan, letrozol, goserelin, chephalomannin, basiliximab, trastuzumab, daclizumab,
seiectin (cytokine antagonist), CETP inhibitor, cadherines, cytokinin inhibitors, COX-2
inhibitor, NFkB, angiopeptin, ciprofloxacin, camptothecin, fluroblastin, monoclonal
antibodies, which inhibit the muscle cell proliferation, bFGF antagonists, probucol,
prostaglandins, 1,1 l-dimethoxycanthin-6-one, 1-hydroxy-l l-methoxycanthin-6-one,
scopolectin, colchicine, NO donors such as pentaerythritol tetranitrate and
syndnoeimines, S-nitrosoderivatives, tamoxifen, staurosporine, p-estradiol, d-estradiol,
estriol, estrone, ethinylestradiol, fosfestrol, medroxyprogesterone, estradiol
cypionates, estradiol benzoates, tranilast, kamebakaurin and other terpenoids, which
are applied in the therapy of cancer, verapamil, tyrosine kinase inhibitors
(tyrphostines), cyclosporine A, paclitaxel and derivatives thereof such as 6-a-hydroxy-
paclitaxel, baccatin, taxotere and others, synthetically and from native sources obtained
macrocyclic oligomers of carbon suboxide (MCS) and derivatives thereof,
mofebutazone, acemetacin, dictofenac, lonazolac, dapsone, o-
carbamoylphenoxyacetic acid, lidocaine, ketoprofen, mefenamic acid, piroxicam, meloxicam, chloroquine phosphate, penicillamine, hydroxychloroquine, auranofin, sodium aurothiomalate, oxaceprol, celecoxib, p-sitosterin, ademetionine, myrtecaine, polidocanol, nonivamide, levomenthol, benzocaine, aescin, eliipticine, D-24851 (Calbiochem), colcemid, cytochalasin A-E, indanocine, nocadazole, S 100 protein, bacitradn, vitronectin receptor antagonists, azelastine, guanidyl cyclase stimulator tissue inhibitor of metal proteinase-1 and -2, free nucleic acids, nucleic acids incorporated into virus transmitters, DNA and RNA fragments, plaminogen activator inhibitor-1, plasminogen activator inhibitor-2, antisense oligonucleotides, VEGF inhibitors, IGF-1, active agents from the group of antibiotics such as cefadroxil, cefazolin, cefaclor, cefotixin, tobramycin, gentamycin, penicillins such as didoxacillin, oxacillin, sulfonamides, metronidazol, antithrombotics such as argatroban, aspirin, abciximab, synthetic antitnrombin, bivalirudin, Coumadin, enoxoparin, desulphated and N-reacetylated heparin, tissue plasminogen activator, Gpllb/llla platelet membrane
59

receptor, factor Xa inhibitor antibody, heparin, hirudin, r-hirudin, PPACK, protamin,
thialin-Na, prourokinase, streptokinase, warfarin, urokinase, vasodilators such as
dipyramidole, trapidil, nitroprussides, PDGF antagonists such as triazolopyrimidine
and seramin, ACE inhibitors such as captopril, cilazapril, lisinopril, enalapril, losartan,
thioprotease inhibitors, prostacyclin, vapiprost, interferon a, [3 and Y. histamine
antagonists, serotonin blockers, apoptosis inhibitors, apoptosis regulators such as p65,
NF-kB or Bcl-xL antisense oligonucleotides, halofuginone, nifedipine, tocopherol,
vitamin Bl, B2, B6 and B12, folic acid, tranirast, molsidomine, tea polyphenols,
epicatechin gallate, epigallocatechin gailate, Boswellic acids and derivatives thereof,
leflunomide, anakinra, etanercept, sulfasalazine, etoposide, didoxacillin, tetracycline,
triamcinolone, mutamycin, procainimid, retinoic acid, quinidine, disopyrimide,
flecainide, propafenone, sotolol, amidorone, natural and synthetically obtained steroids
such as bryophyllin A, inotodiol, maquiroside A, ghaiakinoside, mansonine,
strebloside, hydrocortisone, betamethasone, dexamethasone, non-steroidal substances
(NSAIDS) such as fenoporfen, ibuprofen, indomethacin, naproxen, phenylbutazone and
other antiviral agents such as acyclovir, ganciclovir and zidovudine, antimycotics such
as clotrimazole, flucytosine, griseofulvin, ketoconazole, miconazole, nystatin,
terbinafine, antiprozoal agents such as chloroquine, mefloquine, quinine, moreover
natural terpenoids such as hippocaesculin, bamngtogenol-C21-angelate, 14-
dehydroagrostistachin. agroskerin, agrostistachin, 17-hydroxyagrostistachin,
ovatodiotids, 4,7- oxycycloanisomelic acid, baccharinoids Bl, B2, B3 and B7,
tubeimoside, bruceanol A, B and C, bruceantinoside C, yadanziosides N and P,
isodeoxyelephantopin, tomenphantopin A and B, coronarin A, B, C and D, ursolic acid,
hyptatic acid A, zeorin, iso-iridogermanal, maytenfoliol, effusantin A, excisanin A and
B, longikaurin B, sculponeatin C, kamebaunin, leukamenin A and B, 13,18-dehydro-6-a-
senecioyloxychaparrin, taxamairin A and B, regenilol, triptotide, moreover cymarin,
apocymarin, aristolochic acid, anopterin, hydroxyanopterin, anemonin,
protoanemonin, berberine, cheliburin chloride, cictoxin, sinococuline, bombrestatin A and B, cudraisotiavone A, curcumin, dihydronitidine, nitidine chloride, 12-p~ hydroxypregnadien-3,20-dione, bilobol, ginkgol, ginkgotic acid, helenalin, indicine,

indicine-N-oxide, lasiocarpine, inotodiol, glycoside la, podophyllotoxin, justicidin A and B, larreatin, malloterin, mallotochromanol, isobutyrylmallotochromanol, maquiroside A, marchantin A, maytansine, lycoridicin, margetine, pancratistatin, liriodenine, bisparthenolidine, oxoushinsunine, aristolactam-AII, bisparthenolidine, periplocoside A, ghalakinoside, ursolic acid, deoxypsorospermin, psycorubin, ricin A, sanguinarine, manwu wheat acid, methylsorbifolin, melanocyte stimulating hormon (alpha-MSH), sphathetiachromen, stizophyllin, mansonine, strebloside, akagcrine, dihydrousambaraensine, hydroxyusambarine, strychnopentamine, strychnophylline, usambarine, usambarensine, berberine, liriodenine, oxoushinsunine, daphnoretin, lariciresinol, methoxylariciresinol, syringaresinot, umbeltiferon, afromoson, acetylvismione B, desacetylvismione A, vismione A and B.
13. Method as claimed in any one of the claims 1 to 12, wherein the deposition or the immobilisation of the oligosaccharides and/or polysaccharides of formulas la & lb, is achieved via hydrophobic interactions, van der Waals forces, electrostatic interactions, hydrogen bonds, ionic interactions, cross-linking and/or covalent bonding.
14. Medical device obtained by of method as claimed in claim 1 to 13 wherein the surface of the medical device is coated directly and/or via at least one interjacent biostable and/or biodegradable layer and/or active agent layer with a hemocompatible layer comprising at least one oligosaccharide and/or polysaccharide according to the claims 1 to 10.
15. Medical device as claimed in claim 14, wherein under the hemocompatible layer or between two hemocompatible layers at least one biostable and/or biodegradable layer is present.

16. Medical device as claimed in claims 14 or 15, wherein the hemocompatible layer is coated completely and/ or incompletely with at least another, suprajacent biostable and/or biodegradable layer.
17. Medical device as claimed in claims 15 or 16, wherein at least one active agent layer is present between the biostable and/or biodegradable layer and the hemocompatibie layer, which comprises at least one antiproliferative, antiinflammatory and/or antithrombotic active agent covalently and/or adhesively bound.
18. Medical device as claimed in any one of the claims 14 to 17, wherein at least one antiproliferative, antiinflammatory and/or antithrombotic active agent is bound covalently and/ or adhesively in and/ or on the hemocompatible layer and/or the biostable and/or biodegradable layer.
19. Medical device as claimed in any one of the claims 14 to 18, wherein the used active agents are chosen from the group, which contains sirolimus (rapamycin), everolimus, pimecrolimus, somatostatin, tacrolimus, roxithromycin, dunaimycin, ascomycin, bafilomycin, erythromycin, midecamycin, josamycin, concanamycin, clarithromycin, troleandomycin, folimycin, cerivastatin, simvastatin, lovastatin, fluvastatin, rosuvastatin, atorvastatin, pravastatin, pitavastatin, vinblastine, vincristine, vindesine, vinorelbine, etoboside, tenyposide, nimustine, carmustine, lomustine, cyclophosphamide, 4-hydroxyoxycyclophosphamide, estramustine, melphalan, ifosfamide, tropfosfamide, chlorambucil, bendamustine, dacarbazine, busulfan, procarbazine, treosulfan, thymosin a-1, tremozolomide, thiotepa, tialin (2-methylthiazolidine-2,4-dicarboxylic acid), tialin-Na (sodium salt of tialin), aunorubicin, doxorubicin, aclarubicin, epirubicin, mitoxantrone, idarubicin, bleomycin, mitomycin, dactinomycin, methotrexate, fludarabine, fludarabine-5'-dihydrogenphosphate, cladribine, mercaptopurine, thioguanine, cytarabine, fluorouracil, gemcitabine, capecitabine, docetaxel, carboplatin, cisplatin, oxaliplatin, amsacrine, irinotecan, topotecan, hydroxycarbamide, miltefosine, pentostatin, aldesleukin, tretinoin,

asparaginase, pegasparase, anastrozole, exemestane, tetrozole, formestane, aminoglutethemide, adriamydn, azithromycin, spiramycin, cepharantin, smc proliferation inhibitor-2w, epothilone A and B, mitoxantrone, azathioprine, mycophenolatmofetil, c-myc-antisense, b-myc-antisense, betulinic acid, camptothecin, PI-88 (sulphated oligosaccharide), melanocyte stimulating hormon (a-MSH), activated protein C, !L1-R> inhibitor, fumaric acid and its esters, dermicidin, calcipotriol, tacalcitol, lapachol, p-lapachone, podophyllotoxin, betulin, podophyllic acid 2-ethylhydrazide, molgramostim (rhuGM-CSF), peginterferon a-2b, lanograstim (r-HuG-CSF), filgrastim, macrogol, dacarbazine, letrozol, goserelin, chephalomannin, trastuzumab, exemestan, basiliximab, daclizumab, selectin (cytokine antagonist). CETP inhibitor, cadherines, cytokinin inhibitors, COX-2 inhibitor, |fe NFkB, angiopeptin, ciprofloxacin, camptothecin, fluroblastin, monoclonal antibodies, which inhibit the muscle cell proliferation, bFGF antagonists, probucol, prostaglandins. 1, 11-dimethoxycanthin-6-one, 1-hydroxy-H- methoxycanthin-6-one, scopolectin, colchicine, NO donors such as pentaerythritol tetranitrate and syndnoeimines, S-nitrosoderivatives, tamoxifen, staurosporine, p-estradiol, a-estradiol, estriol, estrone, ethinylestradiol, fosfestrol, medroxyprogesterone, estradiol cypionates, estradiol benzoates, tranilast, kamebakaurin and other terpenoids, which are applied in the therapy of cancer, verapamil, tyrosine kinase inhibitors (tyrphostines), cyclosporine A, paclitaxel and derivatives thereof such as 6-a- hydroxy-paclitaxel, baccatin, taxotere and others, synthetically and from native sources obtained macrocyclic oligomers of carbon suboxide (MCS) and derivatives thereof, mofebutazone, acemetacin, diclofenac, lonazolac, dapsone, o-carbamoylphenoxyacetic acid, lidocaine, ketoprofen, mefenamic acid, piroxicam, meloxicam, chloroquine phosphate, penicillamine, hydroxychloroquine, auranofin, sodium aurothiomalate, oxaceprol, celecoxib, (3-sitosterin, ademetionine, myrtecaine, polidocanol, nonivamide, levomenthol, benzocaine, aescin, ellipticine, D-24851 (Calbiochem), colcemid, cytochalasin A-E, indanocine, nocadazole, S 100 protein, bacitracin, vitronectin receptor antagonists, azelastine, guanidyl cyclase stimulator tissue inhibitor of metal proteinase-1 and -2 free nucleic acids, nucleic acids incorporated into virus transmitters, DNA and RNA

fragments, plaminogen activator inhibitor-1, plasminogen activator inhibitor-2, antisense oligonucleotides, VEGF inhibitors, IGF-1, active agents from the group of antibiotics such as cefadroxil, cefazolin, cefaclor, cefotixin, tobramycin, gentamycin, penicillins such as dicloxacillin, oxacillin, sulfonamides, metronidazol, antithrombotics such as argatroban, aspirin, abciximab, synthetic antithrombin, bivalirudin, Coumadin, enoxoparin, desulphated and N-reacetylated heparin, tissue plasminogen activator, Gpllb/tlla platelet membrane receptor, factor Xa inhibitor antibody, heparin, hirudin, r-hirudin, PPACK, protamin, prourokinase, streptokinase, warfarin, urokinase, vasodilators such as dipyramidole, trapidil, nitroprussides, PDGF antagonists such as triazolopyrimidine and seramin, ACE inhibitors such as captopril, cilazapril, lisinopril, enalapril, losartan, thioprotease inhibitors, prostacyclin, vapiprost, interferon a, p and Y> histamine antagonists, serotonin blockers, apoptosis inhibitors, apoptosis regulators such as p65, NF-kB or Bcl-Xl antisense oligonucleotides, haiofuginone, nifedipine, tocopherol, tranirast, molsidomine, tea polyphenols, epicatechin gallate, epigallocatechin gallate, Boswellic acids and derivatives thereof, leflunomide, anakinra, etanercept, sulfasalazine, etoposide, dicloxacillin, tetracycline, triamcinolone, mutamycin, procainimid, retinoic acid, quinidine, disopyrimide, flecainide. propafenone, sotolol, amidorone, natural and synthetically obtained steroids such as bryophyllin A, inotodiol, maquiroside A, ghalakinoside, mansonine, strebloside, hydrocortisone, betamethasone, dexamethasone, non-steroidal substances (NSAIDS) such as fenoporfen, ibuprofen, indomethacin, naproxen, phenylbutazone and other antiviral agents such as acyclovir, ganciclovir and zidovudine, antimycorics such as clotrimazole, flucytosine, griseofulvin, ketoconazole, miconazole, nystatin, terbinafine, antiprozoal agents such as chloroquine, mefloquine, quinine, moreover natural terpenoids such as hippocaescuiin, barringtogenol-C21-angelate, 14-dehydroagrostistachin, agroskerin, agrostistachin, 17-hydroxyagrostistachin, ovatodiolids, 4,7-oxycycloanisomelic acid, baccharinoids Bl, B2, B3 and B7, tubeimoside, bruceanol A, B and C, bruceantinoside C, yadanziosides N and P, isodeoxyelephantopin, tomenphantopin A and B, coronarin A, B, C and D, ursolic acid, hyptatic acid A, zeorin, iso-iridogermanal, maytenfoliol, effusantin A, excisanin A and

B, longikaurin B, sculponeatin C, kamebaunin, leukamenin A and B, 13,18-dehydro-6-a-
senecioyloxychaparrin, taxamairin A and B, regenilol, triptolide, moreover cymarin,
apocymarin, aristolochic acid, anopterin, hydroxyanopterin, anemonin,
protoanemonin, berberine, cheliburin chloride, cictoxin, sinococuline, bombrestatin A and B, cudraisoflavone A, curcumin, dihydronitidine, nitidine chloride, 12-P-hydroxypregnadien-3,20-dione, bilobol, ginkgol, ginkgolic acid, helenalin, indicine, indicine-N-oxide, lasiocarpine, inotodiol, glycoside la, podophyllotoxin, justicidin A and B, larreatin. malloterin, mallotochromanol, isobutyrylmallotochromanol, maquiroside A, marchantin A, maytansine, lycoridicin, margetine, pancratistatin, liriodenine, bisparthenolidine, oxoushinsunine, aristolactam-AII, bisparthenolidine, periplocoside A, ghalakinoside, ursolic acid, deoxypsorospermin, psycorubin, ricin A, sanguinarine, manwu wheat acid, methylsorbifolin, sphatheliachromen, stizophylin, mansonine, strebloside, akagerine, dihydrousambaraensine, hydroxyusambarine, strychnopentamine, strychnophylline, usambarine, usambarensine, berberine, liriodenine, oxoushinsunine, daphnoretin, Iariciresinol, methoxytariciresinol, syringaresinol, umbelliferon, afromoson, acetylvismione B, desacetylvismione A, vismione A and B.
20. Medical device as claimed in claim 19, wherein the active agents tacrolimus,
pimecrolimus, PI 88, thymosin a-1, PETN, baccatine and its derivatives, docetaxel,
colchicin, paclitaxel and its derivatives, trapidil, a- and R>-estradiol, dermicidin, tialin-
sodium, simvastatin, macrocyclic suboxide (MCS) and its derivatives, sirolimus,
tyrphostine, D24851, colchicin, fumaric acid and its esters, activated protein C (aPC),
interleukin 1R> inhibitors and melanocyte stimulating hormon (a-MSH) as well as
mixtures of these active agents are used.
21. Medical device according to one of the claims 14 to 20, wherein the medical device
comprises prostheses, organs, vessels, aortas, heart valves, tubes, organ spare parts,
implants, fibers, hollow fibers, stents, hollow needles, syringes, membranes, tinned
goods, blood containers, titrimetric plates, pacemakers, adsorbing media,

chromatography media, chromatography columns, dialyzers, connexion parts, sensors, valves, centrifugal chambers, recuperators, endoscopes, filters, pump chambers.
22. Medical device as claimed in claim 21, wherein the medical device is a stent.
23. Medical device as claimed in claim 22, wherein the stent is polymer deposited in amounts between 0-01 mg to 3 mg / layer, preferred between 0.20 mg to 1 mg and especially preferred between 0.2 mg to 0.5 mg / layer.
24. Medical device as claimed in claims 22 or 23, wherein the stent is the
antiproliferative, antiinflammatory and/or antithrombotic active agent comprising in a
pharmaceutically active concentration of 0.001 -10 mg per cm2 stent surface.
66
Dated this 27th day of October, 2004.


Documents:

606-mumnp-2004-cancelled pages(28-10-2004).pdf

606-mumnp-2004-claims(granted)-(30-12-2005).doc

606-mumnp-2004-claims(granted)-(30-12-2005).pdf

606-mumnp-2004-correspondence(27-06-2007).pdf

606-mumnp-2004-correspondence(ipo)-(13-04-2007).pdf

606-mumnp-2004-drawings(30-12-2005).pdf

606-mumnp-2004-form 13(27-06-2007).pdf

606-mumnp-2004-form 19(05-11-2004).pdf

606-mumnp-2004-form 1a(15-04-2005).pdf

606-mumnp-2004-form 2(granted)-(30-12-2005).doc

606-mumnp-2004-form 2(granted)-(30-12-2005).pdf

606-mumnp-2004-form 3(28-10-2004).pdf

606-mumnp-2004-form 5(28-10-2004).pdf

606-mumnp-2004-form pct-isa-210(28-10-2004).pdf

606-mumnp-2004-petition under rule 137(30-12-2005).pdf

606-mumnp-2004-power of attorney(15-04-2005).pdf

abstract1.jpg


Patent Number 205947
Indian Patent Application Number 606/MUMNP/2004
PG Journal Number 28/2007
Publication Date 13-Jul-2007
Grant Date 13-Apr-2007
Date of Filing 28-Oct-2004
Name of Patentee HEMOTEQ AG
Applicant Address ADENAUERSTRASSE 15, 52146 WURSELEN,
Inventors:
# Inventor's Name Inventor's Address
1 HORRES, ROLAND AM DORFWEIHER 1, 52223 STOLBERG,
2 LINSSEN, MARITA KATHARINA TURPINSTRASSE 121, 52066 AACHEN,
3 HOFFMANN MICHAEL BERGRATHERSTRASSE 13, 52249 ESCHWEILER,
4 HOFFMANN, ERIKA BERGRATHERSTRASSE 13, 52249 ESCHWEILER,
5 DI BIASE DONATO KALKBERGSTRASSE 162, 52080 AACHEN,
6 FAUST, VOLKER BRUCHSTRASSE 40, 52080 AACHEN,
PCT International Classification Number A61K 31/16
PCT International Application Number PCT/DE03/01253
PCT International Filing date 2003-04-15
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60 / 378,676 2002-05-09 U.S.A.
2 102 21 055.1 2002-05-10 U.S.A.