Title of Invention


Abstract This continuous galvanizing method and apparatus passes a linear element to be galvanized, e.g., wire, rod, or tube, through a surrounding, relatively short length of conduit which is attached as a cross-tee to the end of a delivery pipe rising from a centrifugal pump submerged in a vat of molten zinc, and continuously flooded with liquid zinc to coat the linear element. The zinc flowing from the open ends of the conduit, and falling as excess from the element being coated, drops back into the vat for recirculation. The vat is covered to provide a substantially closed operating space above the pool of molten zinc to enable the coating to take place in an inert atmosphere.
Full Text

This invention relates to a continuous process for galvanizing linear materials such as wire, rod, tube, or pipe, by immersing the axially moving linear element incrementally in molten zinc.
The galvanization of the exterior surface of pipe or conduit as jpart of the continuous manufacture thereof from an endless strip of sheet metal has been practiced commercially for a number of years. The process basically consists of roll-forming the metal strip into tubular form after drawing it from an endless supply, welding the seam, scarfing and dressing off the weld, and passing the continuously formed tube through a pickling bath and rinse* The tube is then passed through a preheating station and then through a bath of molten zinc, after which the excess zinc is removed, the tube cooled to handling temperature in a water bath, and the tube sheared into finite lengths.
Such an integrated continuous manufacturing process is disclosed, for example, in U.S. Patent 3,226,817, with particular emphasis on the galvanization step of the process in U.S. Patents 3,226,817, 3,259,148 and 3,877,975.
In the galvanizing stations of such prior integrated processes, the continuously-formed, rapidly moving tube, after appropriate preparation, was passed through an elongated trough positioned above a pool of molten zinc in a large vat, from which a stream of the liquid metal was pumped to maintain a substantial and overflowing body of molten zinc in the trough as well as to replace the zinc being carried away from the trough as a fluid coating on the tube.
The amount of zinc pumped from the vat to the upper trough was substantial, and as those skilled in

the art will appreciate, the formation of dross at the walls of the vat and the trough, and their consequent erosion due to the scouring action of the recirculating zinc, was likewise substantial. The accelerated erosion of the pump impeller and pump housing in this strenuous service required their replacement in days rather than weeks, but was regarded as a necessary maintenance burden to be tolerated as part of the continuous integrated manufacture of galvanized pipe and tube.
The present invention is based upon the discovery that effective galvanization does not require immersion of the traveling tube or pipe in the molten zinc for the length of time provided by the elongated upper trough of the prior art installations. Effective galvanization is accomplished by the method and apparatus of the invention by passing the tube or pipe through a flowing fountain of zinc confined by a T-section at the top of the delivery pipe of the pump. The traveling tube or pipe is thus surrounded by molten zinc drawn directly from the pool in the vat without transfer to a secondary pool in an immersion-trough positioned above the main pool in the vat. The reduction of the circulating amount of zinc permitted by this arrangement has greatly reduced the erosion of the pump parts and extended their useful life by an order of magnitude.
The invention is described in reference to the accompanying drawings, in which:
FIGURE 1 is a diagrammatic, sectioned elevational view of galvanizing station in accordance with the invention, as installed in an integrated line for the continuous manufacture of galvanized steel tube or pipe;

FIGURE 2 ;j.s a diagrammatic end view of the submersible pump and galvanizing apparatus, lifted from the surrounding walls of the zinc vat;
FIGURES 3 and 4 are enlarged end views of the T-head of the galvanizing apparatus, atop the riser pipe from the pump, showing the relationship of the flow-confining T-head to different diameters of tube or pipe passing through the T-head; and
FIGURE 5 is an enlarged end view of a T-head modified for tangential introduction of the stream of molten zinc;
FIGURE 6 is an obligue projection of the T-head of FIGURE 5, partly sectioned to expose the interior thereof and indicating diagrammatically the flow path of at least a portion of the molten zinc under operating conditions; and
FIGURE 7 is an elevational view of a further modification of the T-head of FIGURE 1 or FIGURE 6 with belled ends.
Referring to FIGURES 1 and 2 for a general description of the method and apparatus of the invention, FIGURE 1 shows galvanizing station 10 in an overall system for the continuous manufacture of galvanized pipe or conduit 12. While the method and apparatus illustrated were developed in the stated context, the invention is believed applicable to the continuous galvanization of other linear metal product such as wire or rod.
The conduit 12 passes through the galvanizing station from right to left as viewed in FIGURE 1, delivered in rapid axial motion from a roll-forming station where an endless band of metal is progressively rolled into tubular form with abutting edges which are closed by an electrically welded seam which is scarfed and dressed en route to the galvanizing station. In preparation for galvanizing, which is essentially total

immersion of the conduit 12 in molten zinc, the conduit is first cleaned by a pickling bath of acid, followed by a neutralizing rinse, after which the tube is preheated immediately before entry into the galvanizing station. Preheating is conveniently accomplished by passing the conduit axially through an induction heating coil. As these pregalvanizing steps are well understood in the art, they are not here shown, reference simply being made to the Krengel patent, No. 3,259,148, in which one such system is illustrated and described.
The galvanizing station 10 is essentially an elongated vat 14 of molten zinc constructed in generally rectangular form of welded steel plate and formed to provide a space 16 above the predetermined level of the pool 18 of liquid zinc therein, maintained in molten condition at about 850° F., i.e., about 100° F. above the melting point of zinc. The heating means, not shown, may be gas or oil burners directed against the bottom of the vat.
The space 16 above the pool of liquid zinc is closed by a series of covers 20, 22, and 24 having downwardly extending perimeter flanges 26 which are received in troughs 28 extending around the periphery of the vat and transversely of the vat, as well, to permit the use of multiple covers for convenient access to the interior of the vat for maintenance purposes. The troughs 28 in which the cover flanges are received are partially filled with a granular material, such as sand, which forms a barrier to the escape of the inert gas with which the space 16 above the molten zinc is filled and maintained slightly above atmospheric pressure to prevent, or at least limit, the entry of air into that space.
As earlier noted, the conduit 12 enters the galvanizing station from the right immediately from the preheater, the housing for which is normally abutted against the entering end of the galvanizing station with

an intervening packing of mineral wool or the like to limit the entrainment of ambient air into the galvanizing zone above the molten metal. The conduit enters the station 10 through a hole in the vat wall and thence through a larger tube 30 intended to bring the conduit into more intimate contact with the inert purging gas. The tube then passes through the galvanizing apparatus 32 of the invention and exits the galvanizing zone through an aligned hole 34 in the far wall 3 6 of the space.
It will be noted that the far wall 36 of the space is positioned above and extends downwardly into the pool 18 of molten zinc at some distance removed from the end wall 38 of the vat proper, providing a small area 40 of open access to the pool of zinc through which the inventory of molten zinc is maintained by the periodic addition of pigs of the metal. That open area also serves the further purpose of receiving the molten zinc trimmed from the outer surface of the conduit 12 by an air knife 42 which consists of a series of nozzles in an annular manifold directed to deliver a cutting stream of compressed air onto the surface of the conduit to trim the excess zinc therefrom, propelling the same in a flat trajectory onto the exposed area 40 of the pool of molten zinc.
In such a manufacturing line, the workpiece conduit 12 travels at a good rate of speed, not infrequently in excess of 600 feet per minute.
The galvanizing apparatus 32 per se is shown mounted on the central vat cover 22. It comprises essentially a submersible centrifugal pump 44 secured as by welding to the lower end of a thick-walled mounting pipe 46 welded to the underside of the vat cover. Supporting structure 48 mounted on the upper side of the cover 22 provides two bearings 50 for the vertical shaft 52 of the pump, which is driven at its upper end from a variable speed, vertical electric motor 54 by a V-belt

3* M> ♦3 H- O to CD rt rt a CO
Of *i 0 ft M» o a >i 3* O 13
3 ID o tj O »1 H» Q* CD M Of 3* 3 O iQ d CD a
CD Ml H CO 3 h 00 3* (D 3* Of
a o 13 H CD a rt N a
a tr p 1 CO ^ 3 ft p. (D
0 CD § 3* -* 3* 3 ■8
Mi rt 3 13 tr CD (D Of ft (D Of a a H- * tr ft ^ ft M» 1 c CD
CD Mi 31 rt 3* tr 3" Ml
^ H- 0 (D iQ CD M» rt
Of rt tr Ml 3* >i M Q. 0
ft tr CD tr Of CD ID • J (D o H* M CD Of 3 to 3 M
o o 3 X rt H- ^ rt H-
X 3 iQ a o H- N p. M» H- (D o* H- 3 ►1 CO ID 3 tr O »i
ID 3 0 CD CO M 03 p.
(D ft O > M a CD rt N Of 3* d
Of ^ Q. M p. (0 13 "* H 0
» CD 3 ft O O Of H- O 3
*i H- 3* H- M M 3 d CO
rt Of 3 w rt Of 3 rt
Of M rt rt •0 ■^ rt O a Of
rt 0 0 H- d O 3
iQ ft M H- CO 3 rt rt
rt (D 3* rt M • ft 3*
3* 3 ID 3* H- (0 3* M (D d
m 1 CD 3 • (D Of 13
Mi CO iQ ■» 1 CO O K
d H- d *0 3 M h O Mi O rt 3 M
O M Mi 0 ^ Mi O * a &
o m (D Mi 3- »i 3* rt M
^ CO 1 rt ID (D 0
CD *0 0 0 3f rt & K
a Of 0 Mi a CD O trID Of 0
M CD rt a 0) 3- 3' 3 m (D
Mift1 CO fl> ich OMi ling

a 0 o\ rt 0) rt ►3 •o ft CO
Of Mi to O c 3* 1 p. 3* 3*
H- »0 (D 3* *0 (D Of
3 (0 H* rt 'O (D (D Mi
rt Of 3 3* 0 ^ P fl> rt
Of 0 CD M Of a O^ (0
H- 3* Of ft •o O O CO
3 a H- o\ Of (D
tr 0) 0 rt a to * tJ Of
(t *i ♦a c 3* M tr CD H»
H 3' Of M 3 (D ^ 3* CD 0 H- rt 3 0 ^ 0
CD ?c ft p. •^ a 3* 3* Mi tr
H (D 1 3 1 O ft (D (D
Of cr M (D H- (D Of •d 3- C
1 ID Of O •a Of 3 *i c (D m
H- Of n o p. a vQ M» *l a (D
Of Qi (D *• •a o H* 13 iQ 3
tr (D Ml O 3 m Of
H- (D M- (D 0 •u y 3 (D • 3*
3 0 3 ON Qi O rt M (D
CO C M| M C Mi 3* p-
•o M ^ H- 0 ^ (D * (D Qi 3 M ^1 Of
a H- ►1 rt Of H p. CO Mi
3 rt Of 3* to O •s rt
13 0 rt (D t3 >d rt
d •3 (Q H- Of Of (D p. 3* Ul
a 0 fl> O tJ p. X 3 a (D to
13 CO rt 3 g h H-
H- 3* a 0f ft a a Of
** rt (D p. n3 O M C (D 0 3
** 0 >1 3 ^ Mi tr(D rt Of rt Qi
p. 3 tr K (D tr M (D 0
CO • * p. O Of 3* H C a CO o H- o (D H- ^d N fl>
^ o 3* ^ * ^ iQ aC H- ii
H- H o (D 3 (0 (t> ►1 M rt
rt ^ O ft ^ Of (t rt 3' •u c O O
rt 0 0 (D ^ iQ 3' »i rt O Of •0
Of •^ * • (!) »i H
*V 1 (D O Of p. (D
Of 3* M fl> (0 »- rtCO Of Qi a O

rt a »0 tr rt Of rt © o H a > (D
tr O M > (0 d Of (D a »i a 3 ft & rt
3 rt •0 H- O H- ft Of H- ^
H- rt m O H rt d M ^1 rt M rt Of
3 H- n H- iQ Of Of H- (D cn H-
(D 3 O rt •a rt 3* ^ M 3 1 3
H iQ Mi (0 tr iQ CO pj CD
rt H- (D C 0 H* H- 0 Cb
•0 Ct H- Qi 3* (D 3 Q iQ H- tr 3 N H- 3 rt 1 ID CD O
Of •0 CD N H- o rt Of Of CL H 3
CO (D it- H- 3 3* * * C
*0 s' 3 O Of (D CO •0 CD Of
p. •t^ c (D O rt H d 3
3 o\ § rt tr H- it- a a •0
♦0 CO rt O (D 3* 3 er tj ^ Of
rt o d O O CD p.
3* O Of •0 rt cn M rt p. rt •i
(D a 3 'O ft 3- 3* (D 3* a a 3*
•0 a O 3* rt) Of CD O 13 CD O
CO M *i (D Mi H- M (D H Mi
•0 CD rt rt d rt 3 tr rt M CD
Of rt 3* p. d *0 O (D M* cn
O CD (D 3 •0 t3 Ul ft ft 3 (D H- 13
H» iQ *0 CD to 3- rt »i cn CD
^ H O cn »-( ♦0 a p. -"■^ * CL
ON cn d rt H* 0) ft 3 3 CD 1
^ 3* 3 2 O a CO O •0 O O > »i ft (D >0 CO *a M rt (D CD
pi c 3 rt rt M CO *0 ft »i cn d
H- Qi iQ d h M H CD O tr O o
a CO *t 0) (D * Of a o 3 H-
H- ♦0 M »i p. rt O 3 rt H- rt (D M) rt 3 O iQ
Of 3* •0 tr O tr 3* 3* ^-^
rt (D (D (D »0 M 0 rt (D rt 13
H* rt (D Of <: mi d> 3 •0 4^ C 3 Qi p. (D 13 tr M
iQ d a • (D 3 CO (D 3" »0 O O CO (D
rt ^0 3 iQ • (D d M 3" 3- » 3" O a Of CO
(t) CO H rt H- M *0 tj ft K M»
3" tr 3* (0 > CD d tr tr rt Ul
3 Of (D fl> o Of a Of n (D C Mi *0 o h 13 3 0 3 Ul
(D rt d h (D Of ■« Qi d to Of
Qi ^0 O (0 3 iQ 3
M) XJ Mj M 0) p. (D
O O »i a tr Of Ul
H a Qi •
While the invention as specifically illustrated in FIGURES 1 and 2 employs to advantage the submersible centrifugal pump 44, the invention in its broader aspects is not dependent upon a specific form of pump. Other kinds of pumps, for example, non-contact electromagnetic pumps, may also be employed, although preferably with suitable provision for the variable delivery rate achieved by speed control of the mechanical pump illustrated.
In one apparatus of the illustrated kind, the cross-head of the T has an inside diameter of 2-7/8 inches, and has been used successfully in the illustrated setup to galvanize pipe up to 2.197 inches in outside diameter, i.e., nominal two-inch thin wall electrical conduit, and down to 0.706 inch O.D., i.e., nominal half-inch thin wall conduit for electrical wiring. As will be apparent from FIGURES 3 and 4, different sizes of tube, pipe, or conduit to be galvanized require the pumping of varying amounts of zinc to completely immerse the traveling workpiece on its passage through the T-head, a larger amount of zinc being required for smaller tube in a cross-head of given size, particularly as it is preferred to pump the zinc at a rate sufficient to flood the annular space between the traveling workpiece and the surrounding T-head for at least a portion of the length of the T-Head. The pumping requirements, however, are much reduced from those of the prior art galvanizing apparatus such as illustrated by Krengel Patent No. 3,259,148, because the pumping of zinc in quantity sufficient to maintain the molten metal in a separate sizable trough above the pool of zinc is not required by the illustrated apparatus, the pressure head to which the zinc must be pumped is reduced, and the galvanizing process may be carried on with less recirculation of the molten metal.
These differences result in very significant benefits.

First, a very noticeable reduction in the erosion of the pumps has been experienced. Whereas pump life had heretofore ranged from one to three days depending upon severity of service, the reduced pumping requirements of the present invention have increased pump life to in excess of thirty days, an order of magnitude improvement.
Secondly, elimination of the upper immersion trough, and the reduction of the recirculating currents in the molten metal at the lower pumping requirements of the apparatus of the invention, have resulted in a noticeable reduction of the formation of dross, and consequent longer life for the steel walls of the zinc vat. Moreover, while not yet realized in existing zinc vats, it is apparent that without the necessity for maintaining an elongated upper galvanizing trough separate from the main body of molten zinc in the vat, the vat itself can be downsized by approximately one-half, which will effect further economies of maintenance to the zinc vat and at the same time reduce the amount of energy required to maintain the constant inventory of molten zinc.
Lastly, the invention has made possible a significant reduction in the amount of scrap generated on start-up, with concomitant improvement in manufacturing safety, and reduced the time required to switch the line from galvanized to non-galvanized manufacture. As to scrap generation, each time the roll-stands of the roll-forming station are changed to set the line up to make a different size of pipe or conduit, adjustments at the roll-forming, and sometimes the welding, stations are usually required before an acceptable seam-closing weld is achieved. Only then is it safe to begin galvanizing, for to pass a zinc-filled, open-seam tube into the cooling bath at the temperature and heat energy levels involved is to invite explosion by flash-vaporizing the cooling water.

To avoid this danger, the line must be run until an acceptable seam is produced before galvanizing may proceed. In the upper trough and lower vat combination, a not insignificant further amount of time was required to bring the zinc in the upper trough up to the overflow level to produce acceptable product. This in turn resulted in the production of scrap even after an acceptably welded seam was produced.
In the apparatus of the invention, the short lift of the molten zinc from the pool 18 to the cross-head 62 at the top of the riser pipe 60 results in the almost instantaneoufe production of quality product with little or no scrap of galvanized conduit incident to start-up. The rapid emptying as well as refilling of the riser pipe 60 and cross-head 62, moreover, has reduced changeover of the line from galvanized to non-galvanized manufacture, and vice versa, to simply turning the pump motor off or on, and, either way, results in almost negligible scrap with substantially instantaneous changeover.
In the modified form of the galvanizing apparatus of this invention shown in FIGURE 5, the riser pipe 60' merges off center with the open-ended tubular cross-head of the T-head 62', so that the in-flowing stream of molten zinc enters the cross-head tangentially to wrap the through-passing conduit 12' with the tangentially flowing stream of zinc.
Given that the conduit 12' is itself passing axially through the cross-head 62• at speeds of up to 600 feet per minute, the adherence of the zinc to the rapidly moving workpiece applies a force to the molten zinc in the direction of the workpiece flow, from right to left in FIGURE 6, resulting in the helical wrap of workpiece by the flowing zinc. This flow pattern is, illustrated in oversimplified and diagrammatic form in FIGURE 6. Actually, because the tubular cross-head 62' is open at both ends without restriction, other than the

through-passing workpiece conduit 12' itself, there is some back flow of molten zinc to the entering end of the cross-head, from which the molten zinc falls to the surface of the pool in the vat.
The greater overflow of zinc occurs at the exiting end of the cross-head, and when that overflow is at its greatest, i.e., at the higher pumping rates employed for smaller size workpiece conduit, the overflow stream may project a substantial distance from the end of the cross-head, in the absence of provision for reducing the velocity of the overflowing zinc. Such provision can conveniently be made, as shown in FIGURE 7, by belling out the ends of the cross-head 62" to increase the cross-sectional area of the cross-head to reduce the velocity, and shorten the trajectory of the streams from the ends of the cross-head.
The features of the invention believed new and patentable are set forth in the accompanying claims.

We claim :
1. A method of galvanizing a 1inear element composed of a ferrous metal by means of a pump, said method comprising:
providing an upwardly open reservoir of molten sine;
maintaining an atmosphere of inert gas within an enclosed space above the surface of the molten zinc in said reservoir;
heating the 1inear element to be galvanized to a temperature at least as great as that of the molten zinc;
driving said heated linear element axially through an application zone located above said surface in said enclosed space;
pumping under pressure a stream of said molten zinc from said reservoir to a position at one side of said linear elemont arl j ru.;ent said appl ication zone 5 said stream having a del ivery rate determined at least in part by the speed of said pump;
projecting said stream under pressure from said pump from said position through said application zone around the entire circumference of said 1inear element in quantity exceeding that which will adhere to said linear element., said stream requiring no heating to remain molten from the time of departure from said reservoir to the time of return to said reservoir;
adjusting said del ivery rate of said stream projected underpressure from said pump through said application zone; and
allowing the excess and unadhered molten zinc to fall from said linear element on to the surface of the molten zinc in said

reservoirj, whereby said linear element is coated with zinc
without requiring heating of said stream in said inert atmosphere
and said excess and said unadhered molten zinc is returned to
said reservoir.
2* A method as claimed in claim 13 wherein the step of pumping
comprises the? step of surrounding said circumference for a
distance of 20 inches or less along said circumference.
3- A method as claimed in claim 29 wherein the step of moving
saidlinear element comprises the step of moving said linear
element at a rate of a least 600 feet per minute.
4. A method as claimed in claim 1, wherein the step of pumping
comprising the step of pumpng said stream through a horizontal
open-ended tube having ends of interior cross-sectional area at
least as great as any other interior cross-section of said tube
cund interior cross-sectional dimensions greater than the exterior
cross-sectional dimensions of said linear elements so as to
provide a clearance space between said 1inear element and the
interior walls of said tube.
5. A Method as claimed in claim 4? wherein said tube has a
length of 20 inches or less.
6. A method as claimed in claim 4, wherein the step of pumping
comprises the step of pumping said stream into an underside of
saaid open-ended tube.
7n A method as claimed in claim 4, wherein the flow rate of the sine pumped into said open-ended tube is adjustable to flooding

^requirements of linear elements of different cross-sectional
8n A method as claimed in claim 45 where said stream of molten sine is introduced into said open-ended tube transversely and e c c e 11 c r i. (::: ally therof.
9 „ A method as claimed in claim 8, wherein said open-ended tube
has a circular cross-section, a^nd wherein said stream of molten
zinc is i"! r uduceel into said tube tangential ly of the cross-
section of said tube to cause a helical flow pattern.
10 Apparatus for galvanising a linear element by the method as
c1aimed in Bny of the preceding claims, comprising:
means for heating a pool of molten zinc to a predetermined temperature 5
means for moving said linear element axially through an inert atmosphere located above said pool of molten sine;
means for pumping a stream of zinc through said inert atmosphere at a delivery rate sufficient to surround the periphery of said moving linear element with molten sine and returning the excess and unadhered stream of zinc to said pool j, said stream of zinc requiring no heating to remain molten from the time of departure from said pool to the time of return to said pool 5 and
means for adjusting the delivery rate of said stream, whereby dross in said stream is returned to said pool -11. Apparatus as claimed in claim 10, wherein said means for adjusting comprises means for varying the speed of said pump.

^12. Apparatus as claimed in claim 10, wherein said means for
* pumping comprises means for surrounding said periphery of said
linear element for a distance of 20 inches or less along said
13. Apparatusj, as claimed in claim 12, wherein said means for
moving said linear element at a rate of at least 600 feet per
14. Apparatus as claimed in claim 10, wherein said means for
pumping comprises a horizontal open-ended tube having ends of
interior cross-sectional area at least as great as any other
interior cross-section of said tube and interior cross-sectional
dimensions greater than the exterior cross-sectional dimensions
of said linear element so as to provide a clearance space between
said linear element and the interior wal Is of said tube.
15. Apparatus as claimed in claim 14, wherein the length of said
tube is 20 inches or less.
16. Apparatus, as claimed in claim 14, wherein said means for
pumping comprises means for pumping said stream into the
underside of said open-ended tube intermediate the ends of said
open-ended tube.
17. Apparatus, as claimed in claim 14, wherein the delivery rate
of the zinc pumped into said open-ended tube is adjustable to
flooding requirements of linear elements of different cross-
sectional size.
18. Apparatus, as claimed in claim 14, wherein said stream of
molten zinc is introduced into said open-ended tube transversely

and eccentrical ly thereof .
19. Apparatus, as claimed in claim 18P wherein said open-ended tube has a circular cross-section, and wherein said stream of molten zinc is introduced into said tube tangentially of the cross-sectional of said tube to cause a helical flow pattern.
20. A method of galvanising a linear element substantially as herein described with reference to the accompanying drawings.
21. Apparautus for galvanizing a 1inear element substantially as
herein described with reference to the accompanying drawings.



mas-1997-753-claims duplicate.pdf

mas-1997-753-claims original.pdf

mas-1997-753-correspondance others.pdf

mas-1997-753-correspondance po.pdf

mas-1997-753-description complete duplicate.pdf

mas-1997-753-description complete original.pdf


mas-1997-753-form 1.pdf

mas-1997-753-form 3.pdf

mas-1997-753-form 4.pdf

Patent Number 204508
Indian Patent Application Number 753/MAS/1997
PG Journal Number 26/2007
Publication Date 29-Jun-2007
Grant Date 22-Feb-2007
Date of Filing 09-Apr-1997
Applicant Address 16100 SOUTH LATHROP AVENUE, ILLINOIS 60426,U.S.A
# Inventor's Name Inventor's Address
PCT International Classification Number C25D3/22
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 717 1991-06-25 U.S.A.
2 892 1992-06-10 U.S.A.