Title of Invention

VENTILATION DEVICE FOR VENTILATING RAIL TRACTION ELECTRIC MOTOR

Abstract Ventilation device for ventilating a rail traction electric motor (1) which includes a stator (8) and a rotor (5), said device comprising a centrifugal fan (24) which rotates coaxially with the rotor (5), is placed in an air inlet chamber (C) and delivers air towards the motor, and a partition (21) which separates said inlet chamber (C) from a confinement space (E) containing at least the rotor (5) and which has at least one communication opening (26), wherein an air stream (F1) is delivered by said fan into a feed nozzle (17) and is split into an inner stream (F2), directed through said at least one communication opening (26) and then into an interior of the confinement space (E), and an outer stream (F3) directed towards an exterior of the confinement space (E) so as to pass through ducts (31) for cooling the stator (8) of the motor, said partition (21) being arranged to separate an internal volume (V) of said nozzle (17) from said confinement space (E).
Full Text FORM 2
THE PATENTS ACT 1970
[39 OF 1970]
COMPLETE SPECIFICATION
[See Section 10;Rule 43]
"[VENTILATION DEVICE TRACTION ELECTRIC MOTOR for ventn lating
ALSTOM, a French company, of 25 avenue Kleber, 75116 Paris, France,
The following specification particularly describes the nature of the
invention and the manner in which it is to be performed:-

ORIGINAL
978/MUMNP/2000

GRANTED
30-11-2004


The invention relates to a ventilation device and to a rail traction electric motor equipped with such a device.
In the field of rail traction, an electric motor is generally incorporated at a bogey, under the body of a locomotive or a carriage. As an electric motor can consume a significant amount of electrical power, it needs to be cooled so as to dissipate some of this power and it is known practice to use the ambient atmosphere to do this. However, the surroundings of rail traction motors are generally polluted, on the one hand, because of rubbish which may lie on the track and, on the other hand, because of rain or mud resulting from unfavourable weather conditions. For the above reasons, it is known practice for an electric motor to be protected from its environment by placing filters or gratings over the
cooling air intake. It is also known practice for the motor cooling air to be drawn in through a length of trunking, from a region of lower pollution, such as an interior compartment of the train or a region near the roof of a locomotive. These measures introduce • significant pressure drops along the path along which the cooling air flows, and this reduces its effectiveness and may lead to soiling of the motor. Document (FR-A-2,64 5,817)discloses the ventilating of a rail traction motor using air delivered by a fan, some of this air being discharged by centrifuging into an opening facing which there is a separator element. The heaviest particles are removed under the effect of centrifugal forces and are therefore not sent towards the interior volume of the motor. However, the effectiveness
of the centrifuging depends essentially on the rotational
speed of the inlet fan, which speed is linked to the
running speed of the motor. This speed depends on the
conditions of use of the motor, it being possible for a
motor usually to run at a low speed, particularly in the

case of an urban rail vehicle of the tramway or trolley bus type. Furthermore, the air discharged through the peripheral opening plays no part in cooling and the acoustic emissions may be generated by the discharge of part of the air stream directly into the ambient atmosphere.
It is these drawbacks which the invention more
specifically sets out to overcome by proposing a
ventilation device in which all of the air delivered by a
fan is used to cool the motor while the risks of soiling
or pollution are minimized.
With this in mind, the invention relates to a device for ventilating a rail traction electric motor, comprising a centrifugal fan capable of rotating in one or both directions,? placed in an air inlet chamber and delivering air towards the motor, characterized in that the air stream delivered by the fan is split into an inner stream, directed towards the interior of a
confinement space containing at least the rotor of the
motor, and an outer stream directed towards ducts for cooling the stator of the motor.
By virtue of the invention, the air stream delivered by the inlet fan is used to cool both the rotor and the stator of the motor, that proportion of the air
which is most likely to be contaminated with relatively
heavy particles being directed, under the effect of centrifugal force, outwards, that is to say towards the ducts for cooling the stator, while the less contaminated proportion, which constitutes the inner stream, can be
directed towards the interior of the confinement space without major risk of soiling the inside of the motor.
According to advantageous but not compulsory aspects of the invention, the device incorporates one or more of the following features:
The fan delivers into a feed nozzle for the said ducts, a partition which separates the internal volume of this nozzle from the confinement space being pierced with at least one communication opening allowing the said first stream to circulate. It is possible to provide

several openings for communication between the internal
volume of the nozzle and the space, these openings being
distributed roughly uniformly around a central axis of
the motor. It is also possible to envisage for this or
these openings to be formed radially on the inside the
path defined by the nozzle for the second stream. By virtue of this aspect of the invention, the first stream of cooling air directed towards the space is "tapped" off the stream directed towards the ducts for cooling the stator, this tapping taking place at an internal face of the nozzle where the most contaminated air, that is to say the air most heavily laden with relatively heavy particles, is furthest away.
- There is at least one outlet opening for the
first air stream to leave the space. This outlet opening
may be formed near the mouth of a duct for cooling the stator. In this case, a rib for separating the air streams leaving this opening and leaving this duct is advantageously provided.
- A second fan generates or assists a flow of air inside the confinement space, from the inner stream. This second fan increases the movements of the air in the confinement space and thus improves the effectiveness of the cooling of the elements contained in this space.
- The confinement space contains the rotor, an internal central part of the stator, at least one winding associated with this stator or with this motor, part of the central shaft of the motor and, possibly, a second fan. All of the a forementioned elements are thus cooled by the first air stream.
The invention also relates to a rail traction electric motor equipped with a ventilation device as defined hereinabove Such a motor operates very satisfactorily, including in a contaminated environment,
and its particularly effective cooling means that it may be envisaged for a high power motor according to the invention to be made relatively small in size.
The invention will be better understood and other advantages thereof will emerge more clearly in the light

of the description which will follow of two embodiments of a rail traction motor equipped with a ventilation device according to its principle, given merely by way of example and made with reference to the appended drawings, in which:
- Figure 1 is a longitudinal section through a rail
traction motor according to a first embodiment of the
invention, and
Figure 2 is a section similar to Figure 1 in the case of a rail traction motor according to a second
embodiment of the invention.
The motor 1 depicted in Figure 1 comprises a
central shaft 2 supported by bearings 3 and 4 and on
which a rotor 5 is mounted.
The longitudinal axis of the shaft 2, which is the
axis of rotation of the rotor 5, is denoted X-X'.
A stator 8, centred on the axis X-X', is arranged radially around the rotor 5 and equipped with a winding 9. ,The gap between the rotor 5 and the stator 8 is denoted e.
An end plate 11 supports the bearing 3 and is connected to a flange 12 which is an integral part of the stator 8.
Furthermore, the flange 12 is connected by screws
16 into a nozzle 17 which defines an inlet orifice 18 for
the air for cooling the motor 1 and supports the bearing 4.
The nozzle 17 comprises an outer casing part 20 and an inner casing part 21 defining between them an internal volume V of the nozzle 17, the opening 18 being formed in the part 20, while the bearing 4 is secured to the part 21. A grating 22 is provided in the opening 18 and makes it possible to hold back rubbish such as papers or leaves which may tend to enter the nozzle 17 through the orifice 18.
A fan 24, the radial blades of which are denoted 25, is mounted at one end 2a of the shaft 2, inside an air inlet chamber C formed in the nozzle 17 between the grating 22 and the internal part 21.


Given the shape and arrangement of the elements 11, 12 and 21, these form a confinement space E for the rotor 5, for part of the shaft 2, for an internal part 8a of the stator 8,. distant from the axis X-X' by a distance which is shorter than a radius R corresponding approximately to the maximum internal radius R21 of the part 21 and of the winding 9. The space E thus allows the elements 5, 8a and 9 to be protected from the ambient atmosphere and, in particular,fror dust.
According to the invention, the air stream F1 entering the nozzle 17 through the orifice 18 is delivered by the fan 24 both towards the interior of the space E and towards the stator 8, as depicted by the air streams F2 and F3 respectively.
The internal air stream F2 passes through the
openings 26 formed in the part 21 of the nozzle 17, these openings being distributed about the axis X-X'. The air stream F2 entering the space E is split into two air streams F4 and F5. The air stream F4 passes along ducts 27
provided in the rotor 5 parallel to the axis X-X' , and this allows the rotor 5 to be cooled effectively. The air stream F5 passes through the gap e between the rotor 5 and the stator 8 and licks the stator.
The circulation of air inside the space E is
assisted by a second fan 28 mounted on the shaft 2 inside the space E and the blades 29 of which create a movement which agitates the air from the openings 26 and towards several outlet orifices 30 formed in the flange 12. The arrows F6 and F7 have been used to depict the cooling air
stream in the downstream part and at the outlet from the space E, which stream is the result of the combining of the air streams F4 and F5.
The air stream F3 is, for its part, directed towards ducts 31 made in the stator 8 radially outside the part
8a. These ducts 21 may be uniformly distributed around the axis X-X' or localized in certain areas, particularly when the stator has a polygonal outline. For example, when the stator 8 has an octagonal outline whereas its central part is circular, the ducts 31 are formed in four

external regions of the cross section of the stator. The air stream F3 allows the stator 8 to be cooled and emerges at F8 through an outlet orifice 34 provided at the downstream end of each duct 31 in the flange 12, near the orifices 30.
There is a rib 33 near each orifice 32 to deflect the stream F8 and thus prevent the creation of a back pressure at the nearby orifice 30.
As the second air stream F3 follows a path, defined
by the nozzle 17 and the ducts 31, which is radially outside the path followed by the first stream F2, it is more heavily laden with impurities which are relatively heavy and are centrifuged by the fan 17, but this is not particularly troublesome because the ducts 31 are
separated from the internal volume of the motor defined by the space E and because their cross section is large enough to allow its flow. Furthermore, the ducts 31 are basically straight, which means that the stream F3 is not hampered in its flow and the impurities have little tendency towards becoming deposited in the ducts 31.
By contrast, the air stream F2 is relatively clean because the openings 26 are located radially on the inside of the region of radius R, that is to say inside the path of the second air stream. Furthermore, the
openings 26 are approximately perpendicular to the air
stream F3 in the relevant region of the nozzle 17, the stream F3 constituting the main flow stream, in such a way that the impurities prefer to follow the path of the stream F3.
Thus, the air circulating through the space E is relatively clean and does not risk soiling the rotating parts of the motor 1 or accumulating in the gap e or in the winding 9, even though the path of the air streams F4 to F6 through the space E is relatively tortuous.
In the second embodiment of the invention, depicted
in Figure 2, the elements which are similar to those of the first embodiment bear identical references. This embodiment differs from the previous one in that the outlet orifices 30 for the internal air stream are offset


angularly from the ducts 31. Thus, the outlet orifices 32 via which the external flow emerges, as depicted by the arrow FB, are arranged in such a way that the flows F7 and F8 do not interfere with each other. As depicted in Figure
2, an orifice 32 may be diametrically opposite an orifice 30.
Whatever the embodiment considered, the cooling obtained is of very good quality because all of the stream F1 is used to cool the motor 1. The diameter of the fan 1 can therefore be small compared with devices of the prior art, and this allows a corresponding reduction in the noise emitted by this fan.
Given the fact that impurities are centrifuged towards the outside of the space E, the grating 22 can
have a relatively large mesh size, which reduces the pressure drops incurred and it is not necessary to perform regular maintenance on a filtration element like those fitted to certain motors of the prior art.
The invention is applicable irrespective of the
precise type of motor 1, which may be a synchronous motor or an asynchronous motor, of the precise type of fan 24, which may be able to rotate in just one direction or in both directions about the axis X-X', of the type of motor frame which may, in particular, be made of a pack of
sheets which is force-fitted into a solid surround, possibly with external fins.
According to an alternative form of the invention, not depicted, the flange 12 may be made in several pieces, particularly so as to make it easier for the
stator 8 to be fitted.

We claim:
1. Ventilation device for ventilating a rail traction electric motor (1) which includes a stator (8) and a rotor (5), said device comprising a centrifugal fan (24) which rotates coaxially with the rotor (5), is placed in an air inlet chamber (C) and delivers air towards the motor, and a partition (21) which separates said inlet chamber (C) from a confinement space (E) containing at least the rotor (5) and which has at least one communication opening (26), wherein an air stream (F1) is delivered by said fan into a feed nozzle (17) and is split into an inner stream (F2), directed through said at least one communication opening (26) and then into an interior of the confinement space (E), and an outer stream (F3) directed towards an exterior of the confinement space (E) so as to pass through ducts (31) for cooling the stator (8) of the motor, said partition (21) being arranged to separate an internal volume (V) of said nozzle (17) from said confinement space (E).
2. Ventilation device as claimed in claim 1, wherein several of said communication openings (26) are formed radially in said partition (21) and are distributed roughly uniformly around a central axis (X-X1) of the motor (1).
3. Ventilation device as claimed in claims 1 or 2, wherein said nozzle (17) comprises an outer casing part (20) and an inner casing part which constitutes said partition (21), both casing parts (20, 21) defining between them said internal volume (V) of the nozzle.
4. Ventilation device as claimed in one of the preceding claims, further comprising at least one outlet opening (30) for said first air stream (F2) to leave said confinement space (E), said at least one


outlet opening (30) being arranged in a flange (12) which is an integral part of the stator (8).
5. Ventilation device as claimed in claim 4, wherein said at least one outlet opening (30) is formed near to an orifice (32) of one of said ducts (31).
6. Ventilation device as claimed in claim 5, wherein said flange (12) comprises a rib (33) for separating the air streams (F7, F8) leaving said outlet opening (30) and leaving said duct (31).
7. Ventilation device as claimed in claim 5, wherein said at least one outlet opening (30) consists of an orifice which is offset angularly from said orifice (32) of one of said ducts (31).
8. Ventilation device as claimed in one of the preceding claims, further comprising a second fan (28) designed to generate or assist an air flow (F4, F5, F6), inside said confinement space (E), from said inner stream (F2).
9. Rail traction electric motor (1) equipped with a ventilation device (11-33, E, C) according to one of the preceding claims.
10. Ventilation device for ventilating a rail traction electric motor substantially as herein described with reference to and as illustrated in the accompanying drawings.
Dated this 9th day of November, 1999.
(Dr. RAMESH KUMAR MEHTA)
OF REMFRY & SAGAR
ATTORNEY FOR THE APPLICANTS

Documents:

978-mum-2000-cancelled pages(30-11-2004).pdf

978-mum-2000-claims(granted)-(30-11-2004).doc

978-mum-2000-claims(granted)-(30-11-2004).pdf

978-mum-2000-correspondence(27-03-2006).pdf

978-mum-2000-correspondence(ipo)-(23-01-2007).pdf

978-mum-2000-drawing(30-11-2004).pdf

978-mum-2000-form 1(02-11-2000).pdf

978-mum-2000-form 19(01-08-2003).pdf

978-mum-2000-form 2(granted)-(30-11-2004).doc

978-mum-2000-form 2(granted)-(30-11-2004).pdf

978-mum-2000-form 3(20-11-2000).pdf

978-mum-2000-form 3(30-11-2004).pdf

978-mum-2000-form 5(02-11-2000).pdf

978-mum-2000-petition under rule 137(30-11-2004).pdf

978-mum-2000-petition under rule 138(30-11-2004).pdf

978-mum-2000-power of attorney(16-12-2004).pdf

abstract1.jpg


Patent Number 204188
Indian Patent Application Number 978/MUM/2000
PG Journal Number 43/2008
Publication Date 24-Oct-2008
Grant Date 23-Jan-2007
Date of Filing 02-Nov-2000
Name of Patentee ALSTOM
Applicant Address 25 AVENUE KLEBER, 75116 PARIS, FRANCE.
Inventors:
# Inventor's Name Inventor's Address
1 LUDOVIC MOREL 23, RUE DU MOULIN, 25290 ORNANS, FRANCE.
2 JEAN LUC RAGUIDEAU 95, RUE JOUFFROY, 75017 PAIRS.
3 BRUNO RAGUIN 11, CHEMIN DE LA COTE BLANCHE, 25720 BEURE,
PCT International Classification Number H 02 K
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 99 14 309 2999-11-09 France