Title of Invention

A LAUNDRY TREATMENT COMPOSITION

Abstract A laundry treatment composition comprising a water-soluble or water-dispersible rebuild agent for deposition onto a fabric during a treatment process wherein the rebuild agent undergoes during the treatment process, a chemical change by which change the affinity of the rebuild agent for .the fabric is increased, said chemical change occurring in or to acetate groups covalently bonded to be pendant on a polymeric backbone of the rebuild agent and which backbone comprises cellulose units or other B-1,4 linked polysaccharide units, the average degree of substitution of the acetate groups pendant on the saccharide rings of the backbone being from 0.55 to 0.70, the weight average molecular weight of the rebuild agent being in the range 12,000 to 20,000, the pH of an aqueous solution of the laundry treatment composition at 20°C at a concentrate of 1 g of composition per liter of water being in the range 9.5 to 11.0, provided that the laundry treatment composition does not comprise a composition including the following components: a) a cellulose acetate of average molecular weight 10,000, which comprises acetate groups covalently bonded to the cellulose backbone, with a degree of substitution of 0.58 or 0.65; b) a linear alkyl benzene sulphonate; and c) a nonionic surfactant comprising a C13-C15 alcohol ethoxylated with 7 moles of ethylene oxide per mole of alcohol, wherein the weight ratio of anionic surfactant to said ethoxylated alcohol nonionic surfactant is 1:1.
Full Text F0RM 2
THE PATENTS ACT, 1970
(39 of 1970)
COMPLETE SPECIFICATION
(See section 10,rule 13)
Title of the invention
A LAUNDRY TREATMENT COMPOSITION
HINDUSTAN LEVER LIMITED, a company incorporated under the Indian Companies Act, 1913 having its registered office at Hindustan Lever House, 165/166, Backbay Reclamation, Mumbai-400 020, State of Maharashtra, India
The following specification describes the nature of this invention (and the manner in which it is to be performed)


A Laundry Treatment composition
Technical Field
The present invention relates to laundry treatment compositions for laundry cleaning or treatment products, comprising an ingredient for deposition onto fabric during a washing, rinsing or other treatment process.
Background of the Invention
Repeated washing of garments, particularly those comprising cotton or other cellulosic fibres, causes gradual loss of material from individual fibres and the loss of whole fibres from the fabric. These processes of attrition result in thinning of the fabric, eventually rendering it semi-transparent, more prone to accidental tearing and generally detracting from its original appearance.
Hitherto, there has been no way of minimising this kind of damage except by employing less frequent washing and use of less harsh detergent products and/or wash conditions, which obviously tends to less effective cleaning.
In laundry cleaning or treatment products, it is essential for some ingredients to be deposited onto and adhere to the fabric for them to deliver their beneficial effects. Typical examples are fabric conditioners or softeners. Nevertheless, the benefits coriferred by. such conventional materials do not include rebuilding the fabric.


It has been found possible to include in laundry products, agents which deposit cellulose or cellulose-like materials onto the fabric to at least partially replace the lost material of the fibre.
WO-A-99/14245 discloses laundry detergent compositions containing cellule sic based polymers, to., provide appearance, and integrity benefits to fabrics. These polymers are cellulosic polymers in which the saccharide rings have pendant oxygen atoms to which substituents XR' are bonded, i.e. they are attached to the rings via an ether linkage. The groups VR' can be hydrogen, lower alkyl or alkylene linkages terminated by carboxylic acid, ester or amide groups. Optionally, up to five alkyleneoxy groups may be interspersed between the groups are the respective oxygen atom. At least some of these groups may undergo a chemical change such as hydrolysis,- in the wash liquor. However no such change would result in an increased affinity for the fabric. On the contrary, because the "ester" group is configured with the carbonyl group closer to the polysaccharide, than the. oxygen atom. (i-e,,.. esters, of carboxyalkyl groups), any hydrolysis will result in free acid substituents which will actually result in an increase in solubility and therefore, a decrease in affinity for the fabric.
WO-A-99/14295 discloses structures analogous to those described in WO-A-99/14245 but in one alternative, the substituents 'R' together with the oxygen on the saccharide ring, constitute pendant half-esters of certain dicarboxylic acids. A single example of such a material is given. The

dicarboxylic acid half-esters would tend to hydrolyse in thf wash liquor and thereby increase affinity of the material for a cotton fabric. However, first, this mechanism of action or behaviour is not mentioned. Second, the hydrolysis rate of such dicarboxylic acids half esters is not as great as that of esters of monocarboxylic acids (which are not disclosed: or claimed in WO-A-99/14295). Third, the degree of substitution for this variant is specified as being from 0.001 to 0.1. This is so'low as to make the enhancement of fabric affinity too low to be worthwhile for this mechanism of action. Fourth, the structures described and claimed insofar as they have such half ester substituents, must also have substituents of the type which are carboxyalkyl groups or esters thereof, i.e. of the type also described in .WO-A-99/14245. In the latter (ester) case, these would hydrolyse to the free acid form. The degree of substitution of the latter (0.2 to 2) is considerably higher than for the half-ester groups and the resultant increase in solubility would easily negate any enhanced affinity for the fabric by hydrolysis of the half-ester groups. .
Our copending patent application no. WO 00/18860 discloses compositions comprising a water soluble or water dispersible rebuild agent for deposition onto fabric during a treatment process,, wherein the rebuild agent undergoes during the treatment process, a chemical change by which the affinity of the rebuild agent for the fabric is increased. According to one aspect, the chemical change occurs in groups covalently bonded to be pendant to the polymeric backbone of the rebuild agent via an ester linkage, the ester-linked

groups being selected from monocarboxylic acid esters. In a second aspect, the backbone comprises cellulose units or other p-1,4 linked polysaccharide units, the average degree of substitution of the total of all groups pendant on the saccharide rings of the backbone being from 0.3 to 3.0. A preferred fabric rebuild agent is "cellulose monoacetate" which is used to. denote.. a.cetates with.a. degree of substitution of 1 or less.
Detergent compositions containing the rebuild agents are stated to give pH of the wash liquor from 7 to 10.5 for a main wash detergent. Many of the examples of the disclosure employ cellulose monoacetate with a degree of substitution of acetate groups of 0.48 or 0.50. .
The present inventors have now discovered that cellulose monoacetate of a given narrow range of degree of substitution and molecular weight, when used in a detergent composition which §ives a wash liquor of pH in the range 9.5 to 11.0 more prefetably 10 to 11 gives particularly improved deposition..
Definition of the invention
A laundry treatment; composition comprising a water-soluble or water-dispersible rebuild agent for deposition onto a fabric during a treatment process wherein the rebuild agent undergoes during the treatment process, a chemical change by which change the affinity of the rebuild agent for the fabric is increases, said chemical change occurring in or to acetate ...groups covalently bonded to be pendant on a

polymeric bakcbone of the rebuild agent and which backbone comprises cellulose units or other (3-1,4 linked polysaccharide units, the average degree of substitution of the acetate groups pendant on the saccharide rings of the backbone being from 0.55 to 0.70, the weight average molecular weight of the rebuild agent being in the range 12,000 to 2.0, Q00, the p.H. of. an aqueous, solution of the laundry treatment composition at 20°C at a concentration of lg of composition p§r litre of water being in the range 9.5 to 11.0, provided that the laundry treatment composition, does not comprise cellulose acetate of average molecular weight 10,000, which comprises acetate groups covalently bonded to the cellulose backbone, with a degree of substitution of 0.5§ 0r 0.65, the disclaimed composition comprising linear alkyl benzene sulphonate and a nonionic surfactant comprising a C13-C15 alcohol ethoxylated with 7 moles, of ethylene oxide per mole of alcohol, the weight ratio of anionic surfactant to said ethoxylated alcohol nonionic surfactant of the disclaimed composition being 1:1.
Throughout this specification, "average.degree of. substitution" refers to the number of substituted pendant groups per saccharide ring, averaged over all saccharide rings of the rebuild agent. Each saccharide ring prior to substitution has three -OH groups and therefore, an average degree of substitution of 3 means that each of these groups on all molecules of the sample, bears a substituent.
According to a second aspect, the present invention provides a method of rebuilding a fabric to replace fibre loss due to

washing, the process comprising treating the fabric with a composition according to the present invention.
The exact mechanism by which the rebuild agents exert their effect is not fully understood. Whether or not they can repair thinned or damaged fibres is not known. However, they are capable of replacing lost fibre -weight with deposited and/or bonded material, usually of cellulosic type. This can provide one or more advantages such as repair or rebuilding of the fabric, strengthening of the textile or giving it enhanced body-or smoothness, reducing its transparency, reducing fading of colours, improving the appearance of the fabric or of individual fibres, improved comfort during garment wear, dye transfer inhibition, increased-stiffness, anti-wrinkle, effect and ease of ironing.
Without being bound by any particular theory or explanation, the inventors have conjectured that the mechanism of deposition is as follows.
Cellulose is substantially insoluble.in water. Attachment of the acetate groups causes disruption of the' hydrogen bonding between rings of the cellulose chain, thus increasing water solubility or dispersibility. In the treatment liquor, it is believed that the ester groups are hydrolysed, causing the affinity for the fabric to increase and the polymer to be deposited on the fabric.

Detailed Description of the .Invention.
The Rebuild. Agent
The weight average molecular weight (M„J of the rebuild agent (as determined by GPC) is in the range 12,000 to 20,000, preferably 15,000 to 20,000.
By water-soluble, as used herein, what is meant is that the material forms an isotropic solution oh addition to water or another aqueous solution.
By water-dispersible, as used herein, what is meant is that the material forms a finely divided suspension on addition to water or another aqueous solution. Preferably, though, the term "water-dispersible" means that the material, in water at pH 7 and at 25°C, produces a solution or a dispersion having long-term stability.
By an increase in the affinity of the material for the fabric upon a chemical change, what, is meant is that at s.ome time during the treatment process, the amount of material that has been deposited' is greater when the chemical change is occurring or has occurred, compared to when the chemical change has not occurred and is not occurring, or is occurring more slowly, the comparison being made with all conditions being equal except for that change in the conditions which is necessary to' affect the rate of chemical change.

Deposition includes adsorption, cocrystallisation, entrapment and/or adhesion.
The Polymeric Backbone
The polysaccharide may be straight or branched. Many naturally occurring polysaccharides have at least some degree of branching, or at any rate, at least some saccharide rings are in the form of pendant side groups (and therefore are not in themselves counted in the, degree of substitution)- on a main polysaccharide backbone.
A polysaccharide comprises a plurality of saccharide rings which have pendant hydroxyl groups. The pendant groups can be bonded chemically or by other bonding mechanism, to these hydroxyl groups by any means described hereinbelow. The "average degree of substitution" means the average number of pendant groups per saccharide ring for the totality of polysaccharide molecules in the sample and is determined for all saccharide rings whether they form part of a linear backbone or are themselves, pendant, side, groups in the polysaccharide.
Other polymeric backbones suitable as according to the present invention include those described in Hydrocolioid Applications, A. Nussinswitch, Blackie 1997.
Pendant Groups which undergo the Chemical Change
In the case of the first aspect of the invention, the chemical, change which causes the increased fabric affinity

will usually be hydrolysis. In the case of the second aspect of the invention it is preferably lysis, for example hydrolysis or, perhydrolysis or else it is preferably bond-cleavage, optionally catalysed by an enzyme or another catalyst. Hydrolysis of ester-linked groups is most typical. However, preferably this change is not merely protonation or deprotonation, i.e. a pH induced effect.
The chemical change occurs in or to a group covalently bonded to a polymeric backbone, especially, the loss of one or more such groups. These group (s) is/are pendant on the backbone. In the case of the first aspect.of the invention these are ester-linked groups based on monocarboxylic acids.
Preferred for use in the invention are cellulosic polymers of formula (I):-


(I)

wherein the groups R are H or CH3CO.

Synthetic Routes
Those rebuild agents according to the present invention which are not commercially available may be prepared by a number of different synthetic routes, for example:-
(1) polymerisation of suitable monomers, for example,
enzymatic polymerisation of saccharides, e.g. per S. Shoda,
■& S. Kobayashi, Makromol. Symp. 1995, BS_, 179-184 or oligosaccharide synthesis by orthogonal glycosylation e.g. per H. Paul sen, Angew. Chem. Int. Ed. Engl. 1995, 3_4, 1432-14 34.;
(2) derivatisation of a polymeric backbone (either naturally occurring, especially polysaccharides, especially beta-1,4-linked polysaccharides,•especially cellulose, mannan, glucomannan, galactomannan, xyloglucan; or synthetic polymers) up to the required degree of substitution with acetate groups using a reagent (especially acetic acid halide, acetic anhydride or acetic acid) in a solvent which either dissolves the backbone, swells the backbone, or does not swell the backbone but dissolves or swells the product;
(3) hydrolysis of polymer acetate down to the required degree of substitution; or
(4) a combination of any two or more of routes (l)-(3).
The degree and pattern of substitution from routes (1) or (2) may be subsequently altered by partial removal of functional groups by hydrolysis or solvolysis or other

cleavage. Relative amounts of reactants and reaction times can also be used to control the degree of substitution. In addition, or alternatively, the degree of polymerisation of the backbone may be reduced before,' during, or after the derivatisation with functipnal groups. The degree of polymerisation of the backbone may be increased by further polymerisation or by cross- .linking- agents before.,, during., or after the derivatisation step.
Compositions
The rebuild agent may be incorporated into compositions containing only a diluent and/or also comprising another active ingredient. The compound is typically included in said compositions at levels of from 0.005% to 25% by weight, preferably 0.01% to 10%, most preferably 0.025% to 2.5%.
The active ingredient in the compositions is preferably a surface active agent or a fabric conditioning agent. More than one active ingredient may be included. For some applications .a: mixture of active.,ingredients may be used.
The compositions of the invention may be in any physical form e.g. a solid such as a powder or granules, a tablet, a solid bar, a paste, gel or (especially aqueous) liquid. In particular the compositions may be used in laundry compositions, especially in liquid or powder laundry composition, for example for use in a wash and/or rinse and/or drying process.

Fabric conditioning compositions may be in the form of a tumble dryer article, for example a sheet of. absorbent material on which the composition used in the present invention is absorbed, for use in a tumble drying process.
The compositions of the present 'invention are preferably laundry compositions, especially main wash (fabric washing) compositions or rinse-added softening compositions. The main wash compositions may include a fabric softening agent and rinse-added fabric softening compositions may include surface-active compounds, particularly non-ionic surface-active compounds, if appropriate.
The detergent compositions of the invention may contain a' surface-active compound (surfactant) which may, be chosen from soap and non-soap anionic, cationic, non-ionic, '*•.. amphoteric and zwitterionic surface-active compounds and mixtures thereof. Many suitable surface-active compounds are available and are fully described in the literature, for example, in "Surface-Active Agents and Detergents",'Volumes I and II, by Schwartz', Perry and" B'erch.
The preferred detergent-active compounds that can be used are soaps and synthetic non-soap anionic and non-ionic compounds.
The compositions of the invention may contain linear alkylbenzene sulphonate, particularly linear aikylbenzene sulphonates having an alkyl chain length of C8-C15. It is preferred if the level of linear alkylbenzene sulphonate is

from, 0 wt% to 30 wt%, more preferably 1 wt% to 25 wt%, most preferably from 2 wt% to 15 wt%.
The compositions of the invention may contain other anionic surfactants in amounts additional to the percentages quoted above. Suitable anionic surfactants are well-known to those skilled in the art. Examples include primary and secondary alkyl sulphates, particularly Cs-Cis primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates; dialkyl sulphosuccinates; and fatty acid ester sulphonates. Sodium salts are generally preferred.
The compositions of the invention may contain non-ionic surfactant. Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C8-C20 aliphatic alcohols ethoxyiated with an average of from 1 to 20 moles of ethylene oxide per mole of alcohol, and more especially the C10-C15 primary and secondary aliphatic alcohols ethoxyiated-with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol. Non-ethoxylated nonionic surfactants include alkylpolyglycosides, glycerol monoethers, and polyhydroxyamides {glucamide).
i
It is preferred if the level of total non-ionic surfactant is from 0 wt% to 30 wt%, preferably from 1 wt% to 25 wt%', most preferably from 2 wt% to 15 wt%.
Another class of suitable surfactants comprises certain mono-alkyl caticnic surfactants useful in main-wash laundry compositions. Cationic surfactants that may be used include quaternary ammonium salts of the general formula R1R2R3R4N+ X"

wherein the R groups are long or short hydrocarbon chains, typically alkyl, hydroxyalkyl or ethoxylated alkyl groups, and X is a counter-ion (for example, compounds in which Ri is a CB-C22 alkyl group, preferably a Ca-Ci0 or C12-Ci4 alkyl group, R2 is a methyl group, and R3 and R4, which may be the same or different, are methyl or hydroxyethyl groups); and cationic esters (for example, choline esters).
The choice of surface-active compound (surfactant) , and the amount present, will depend on the intended use of the detergent composition. In fabric washing compositions, different surfactant systems may be chosen, as is well known to the skilled formulator, for handwashing products and for products intended for use in different types of washing machine.
The total amount of.surfactant present will also depend on the intended end use and may be as high as 60 wt%, for example, in a composition for washing fabrics by hand. In compositions for machine washing of fabrics, an amount of from 5 to 40 wt% is generally appropriate. Typically the compositions will comprise at least 2 wt% surfactant e.g. 2-60%, preferably 15-40% most preferably 25-35%.
Detergent compositions suitable for use in most automatic fabric washing machines generally contain anionic non-soap surfactant, or non-ionic surfactant, or combinations of the two in any suitable ratio, optionally together with soap.
Any conventional fabric conditioning agent may be used in the compositions of the present invention. The

conditioning agents may be cationic or non-ionic. If the fabric- conditioning compound is to be employed in a main wash detergent composition the compound will typically be non-ionic. If used in the rinse phase, they will typically be cationic. They may for example be used in amounts from 0.5% to 35%, preferably from 1% to 30% more preferably from 3% to 25% by weight of the composition.
Preferably the fabric conditioning agent has two long chain alkyl or alkenyl chains each having an average chain length greater than or equal to C25. Most preferably at least 50% of the long chain alkyl or alkenyl groups have a chain length of Cia or above.
It is preferred if the long chain alkyl or alkenyl groups of the fabric conditioning agents are predominantly linear.
The fabric conditioning agents are preferably compounds that provide excellent softening, and are characterised by a chain melting LP to La transition temperature greater than 25°C, preferably greater than 35°C, most preferably greater than 45°C. This LP to La transition can-be measured by DSC as defined in " Handbook of Lipid Bila'yers, D Marsh, CRC Press, Boca Raton, Florida, 1990 (pages 137 and 337).
Substantially insoluble fabric conditioning compounds in the context of this invention are defined as fabric conditioning compounds having a solubility less than 1 x 10"3 wt % in deminerailised water at 20°C. Preferably the fabric softening compounds have a solubility less than 1 x 10"4 wt %, most preferably less than 1 x 10"8 to 1 x 10"5. Preferred

cationic fabric softening agents comprise a substantially water insoluble quaternary ammonium material comprising a single alkyl or alkenyl long chain having an average chain length greater than or equal to C2o or, more preferably, a compound comprising a polar head group and two alkyl or alkenyl chains having an average chain length greater than or equal to C14.
Preferably, the cationic fabric softening agent is a quaternary ammonium material or a quaternary ammonium material containing at least one ester group. The quaternary ammonium compounds containing at least one ester group are referred t'o herein as ester-linked quaternary ammonium compounds.
As used in the context of the quarternary ammonium catianic fabric softening agents, the term *ester group', includes an ester group which is a linking group in the molecule.
It is preferred for the ester-linked quaternary ammonium compounds to contain two or more ester groups. In both monoester and the diester quaternary.ammonium compounds it is preferred if the ester group(s) is a linking group between the nitrogen atom and an alkyl group. The ester groups(s) are preferably attached to the nitrogen atom via another hydrocarbyl group.
Also preferred are quaternary ammonium compounds containing at least one ester group, preferably two, wherein at least one higher molecular weight group containing at least one ester group and two or three lower molecular weight groups

are linked to a common nitrogen atom to produce, a cation and wherein the electrically balancing anion is a halide, acetate or lower alkosulphate ion, such as chloride or methosulphate. The higher molecular weight substituent on the nitrogen is preferably a higher alkyl group, containing 12 to 28, preferably 12 to 22, e.g. 12 to 20 carbon atoms, such as coco-alkyl, tallowalkyl, hydrogenated tallowalkyl or substituted higher alkyl, and the lower molecular weight substituents are preferably lower alkyl of 1 to 4 carbon atoms, such as methyl or ethyl',. or substituted lower alkyl. One or more of the said lower molecular weight substituents may include an aryl moiety or may be replaced by an aryl, .such as benzyl, phenyl or other suitable substituents.
Preferably the quaternary ammonium material is a compound having two C12-C22 alkyl or alkenyl groups connected to a quaternary ammonium head group via at least one ester link, preferably two ester links or a compound comprising a single long chain with an average chain length equal to or greater than C2o-
More preferably, the quaternary ammonium material comprises a compound having two long chain alkyl or alkenyl chains with an average chain length equal to or greater than C14. Even more preferably each chain has an average chain length equal to or greater than C16. Most preferably at least 50% of each long chain alkyl or alkenyl group has a chain length of C18. It is preferred if the long chain alkyl or alkenyl groups are predominantly linear.

The most preferred type of ester-linked quaternary ammonium material that can be used in compositions according to the invention is represented by the formula (A):
OCOR2
I
(A) (Ri)3N+ - (CHzJn CH X"
I , CH2OCOR2
wherein R1, n, R2 and X" are as defined above.
It is 'advantageous for environmental reasons if the quaternary ammonium material is biologically degradabie.
Preferred materials of this class such as 1,2 bis[hardened tallowoyloxy]-3-trimethylammonium propane chloride and their method of preparation are, for example, described in US-A-4 137 180. Preferably these materials comprise small amounts of the corresponding monoester as described in US-A-4 137 180 for example 1-hardened tallow-oyloxy-2-hydroxy-3-trimethylammonium propane chloride.
Another class of preferred ester-linked quaternary ammonium materials for use in compositions according to the invention can be represented by the formula:

(B) X"
wherein each R1 group is independently selected from Ci_« alkyl, hydroxyalkyl or C2-4 alkenyl groups; and wherein each R2 group is independently selected from Ce-28 alkyl or alkenyl groups; X" is any suitable counter-ion, i.e. a halide, acetate or lower alkosulphate ion, such as chloride or methosu'lphate.

It is especially preferred that each R1 group is methyl and * each n is 2.
Of the compounds of formula (B), Di-(tallowyloxyethyl)-dimethyl ammonium chloride, available from Hoechst, is the most preferred. Di-(hardened tallowyloxyethyl)dimethyl ammonium chloride, ex Hoechst and di-(tallowyloxyethyl)-methyl hydroxyethyl methosulphate are also preferred.
Another preferred class of quaternary ammonium cationic fabric softening agent is defined by formula (C):-


where R1, R2 and X are as hereinbefore defined.
A preferred material of formula (C) is di-hardened tallow-diethyl ammonium chloride, sold under the Trademark Arquad 2HT.
The optionally ester-linked quaternary ammonium material may contain optional additional components, as known in the art, in particular, low molecular weight solvents, for instance isopropanol and/or ethanol, and co-actives such as nonionic softeners, for example fatty acid or sorbitan esters.
The compositions of the invention, when used as main .wash fabric washing compositions-, will generally also contain one or more detergency builders. The total amount.of detergency builder in the compositions will typically range from 5 to 80 wt%, preferably from 10 to 60 wt%.
Inorganic builders that may be present include sodium carbonate, if desired in combination with a crystallisation seed for calcium carbonate, as disclosed in GB 1 437 950 (Unilever); crystalline and amorphous aluminosilicates, for example, zeolites as disclosed in G3 1 473 201 (Kenkel), amorphous aluminosilicates as disclosed in GB 1 473 202

!
(Henkel) and mixed-crystalline/amorphous aluminosilicates as disclosed in GB 1 470 250 (Procter & Gamble); and layered silicates as disclosed in EP 164 514B (Hoechst). Inorganic phosphate builders, for example, sodium orthophosphate, pyrophosphate and tripolyphosphate are also suitable for use with this invention.
The compositions of the invention preferably contain an alkali metal, preferably sodium, aluminosilicate builder. Sodium aluminosilicates may generally be incorporated in amounts of from 10 to 70% by weight (anhydrous basis), preferably from 25 to 50 wt%.
The alkali metal aluminosilicate may be either crystalline or amorphous or mixtures thereof, having the general formula: 0.8-1.5 Na20. Al203. 0.8-6 Si02
These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 Si02 units (in the formula above)'. Both the amorphous and the crystalline materials can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. Suitable crystalline sodium aluminosilicate ion-exchange detergency builders are described, for example, in GB 1 429 143 (Procter & Gamble). The preferred sodium aluminosilicates of this type are the well-known commercially available zeolites A and X, and mixtures thereof.
The zeolite may be the commercially available zeolite 4A now widely used in laundry detergent powders. However, according

to a.preferred embodiment of the invention, the zeolite builder incorporated in the compositions of the invention is maximum aluminium zeolite P (zeolite MAP) as described and claimed in EP 384 070A (Unilever). Zeolite MAP is defined as an alkali metal aluminosilicate of the zeolite ? type having a silicon to aluminium ratio not exceeding 1.33, preferably within the range of from 0.90 to 1.33, and more preferably within the range of from 0.90 to 1.20.
Especially preferred is zeolite MAP having a silicon to aluminium ratio not exceeding 1.07,.more preferably about 1.00. The calcium binding capacity of "zeolite MA? is generally at least 150 mg CaO per g of anhydrous material.
Organic builders that may.be present include polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates; monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di and trisuccinates, carboxymethyloxy succinates; carboxymethyloxymalonates, dipicolinates,
hydroxyethyliminodiacetates, alkyl- and alkenylmalonates and succinates; and sulphonated fatty acid salts. This list is not intended to be exhaustive.
Especially preferred organic builders are citrates, suitably used in amounts of from 5 to 30 wt%, preferably from iO to 25 wt%; and acrylic polymers, more especially acrylic/maleic copolymers, suitably used in amounts of from 0.5 to 15 wt%, preferably from 1 to 10 wt%.

Builders, both inorganic and organic, are preferably present in alkali metal salt, especially sodium salt, form.
Compositions according to the invention may also suitably contain a bleach system. Fabric washing compositions may desirably contain peroxy bleach compounds, for example, inorganic persalts or organic peroxyacids, capable of yielding hydrogen peroxide in aqueous solution.
Suitable peroxy bleach•compounds include organic peroxides such as urea peroxide, and inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulphates. Preferred inorganic persalts are sodium perborate monohydrate and tetrahydrate, and scdium percarbonate.
Especially preferred is sodium percarbonate having a protective coating against destabilisation by moisture. Sodium percarbonate having a protective coating comprising sodium metaborate and sodium s.ilicate is disclosed in GB 2 123 044B (Kao).
The peroxy bleach compound is suitably, present in an amount of from 0.1 to 35 wt%, preferably from 0.5 to 25 wt%. The peroxy bleach compound may be used in conjunction with a bleach activator (bleach precursor) to improve.bleaching action at low wash temperatures. The bleach precursor is suitably present in an amount of from 0.1 to 8 wt%, preferably from 0.5 to 5 wt%.

Preferred bleach precursors are peroxycarboxylic acid precursors, more especially peracetic acid precursors and pernoanoic acid precursors. Especially preferred bleach precursors suitable for use in the present invention are N,N,N',N',-tetracetyl ethylenediamine (TAED) and sodium noanoyloxybenzene sulphonate (SNOBS). The novel quaternary ammonium and phosphonium bleach- precurs.o.rs. disclosed, in OS 4 751.015 and OS 4 818 426 (Lever Brothers Company) and EP 402 971A (Unilever), and the cationic bleach precursors disclosed in EP 284 292A and EP 303 520A (Kao) are also of interest.
The bleach system can be either supplemented with or replaced by a peroxyacid. examples of such peracids can be found in US 4 686 063.and US 5 397 501 (Unilever). A preferred example is the imido peroxycarboxylic class of peracids described in-EP A 325 288, EP A 349 940, DE 382 3172 and E? 325 289. A particularly preferred example is phtalimido peroxy caproic acid (PAP). Such peracids are suitably present at 0.1 - 12%, preferably 0.5 - 10%.
A bleach stabiliser, (transistor,metal ..sequestrant) may also be present. Suitable bleach stabilisers include ethylenediamine tetra-acetate (EDTA), the polyphosphonates such as Dequest (Trade Mark) and non-phosphate stabilisers such as EDDS (ethylene diamine di-succinic acid). These bleach stabilisers are also useful for stain removal especially in products containing low levels of bleaching species or no bleaching species.
An especially preferred bleach system comprises a peroxy bleach -compound (preferably sodium percarbonate optionally

together with a bleach activator), and a transition metal bleach catalyst as described and claimed in EP 458 397A ,EP 458 398A and EP 509 787A (Unilever).
The compositions according to the invention may also contain one or more enzyme(s). Suitable enzymes include the proteases, amylases.,, cellulases,, oxidases, peroxidases and lipases usable for incorporation in detergent compositions. Preferred proteolytic enzymes (proteases) are, catalytically active protein materials which degrade or alter protein types of stains when present as in fabric stains in a hydrolysis reaction. They may be of any suitable origin, such as vegetable, animal, bacterial or yeast origin.
Proteolytic enzymes or proteases of various qualities and origins and having activity in various pH ranges of from 4-12 are available and can be used in the instant invention. Examples of suitable proteolytic enzymes are the subtilisins which are obtained from particular strains of B. Subtilis B. licheniformis, such as the commercially available subtilisins Maxatase (Trade Mark), as, supplied by Gist Brocades N.'V., Delft, Holland, and Alcalase (Trade Mark), as supplied by Novo Industri A/S, Copenhagen, Denmark.
Particularly suitable, is a protease obtained from a strain of\ Bacillus having maximum activity throughout the pH range of 8-12, being commercially available, e.g. from Novo Industri A/S under the registered trade-names Esperase (Trade Mark) and Savinase (Trade-Mark). The preparation of these and analogous enzymes is described in GB 1 243 785. Other commercial proteases are Kazusase (Trade Mark obtainable from


Showa-Denko' of Japan), Optimase (Trade Mark from Miles Kali-Chemie, Hannover, West Germany), and Superase (Trade Mark obtainable from Pfizer of U.S.A.).
Detergency enzymes are commonly employed in granular form in amounts of from about 0.1 to about 3.0 wt%. However, any suitable physical form of enzyme may be used.
The compositions of the invention may contain alkali metal, preferably sodium carbonate, in order to increase detergency and ease processing. Sodium carbonate may suitably be present in amounts ranging from 1 to 60 wt%, preferably from 2 to 40 wt%. However, compositions containing little or no -sodium carbonate are also within the scope of the invention.
Powder flow may be improved by the incorporation of a small amount of a powder structurant, for example, a fatty acid (or. fatty acid soap), a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate. One preferred powder structurant is fatty acid soap, suitably present in an amount of from 1 to 5 wt%.
Other materials that may be present in detergent compositions of the invention include sodium silicate; antiredeposition agents such as cellulosic polymers; inorganic salts such as sodium sulphate; lather control agents or lather boosters as appropriate; proteolytic and lipolytic enzymes; dyes; coloured speckles; perfumes; foam controllers; fluorescers and decoupling polymers.. This list is not intended to be exhaustive. If sodium sulphate is present it is preferable

if it is present at levels of or below 10 wt% of the total composition, more preferably at a level of or below 5wt%.
It is often advantageous if soil release or soil suspendng polymers are present.
Composition pH
The compositions of the present invention are required to give a pH of 9.5 to 11.0, when dissolved in water at a concentration of lg of laundry composition per litre of water, at 20°C.
The skilled person will be aware of measures which can be taken to ensure' that the detergent composition will have the required pH.
For example, alkaline components such as alkaline sodium silicate, sodium carbonate, sodium bicarbonate, sodium tripolyphosphate and the like can be included in the compositions at a level necessary to give a pH in the range 9 - 10.5. Typically, the sodium silicate level will be in the range 0 -10 wt%. The level of' sodium carbonate may be in the range 0 - 20, preferably 5 - 20%, more preferably 7 -17% by weight.
Production of Compositions
Particulate detergent compositions are suitably prepared by spray-drying a slurry of compatible heat-insensitive ingredients, and then spraying oh or post-dosing those

ingredients unsuitable for processing via the,slurry. The skilled detergent formulator will have no difficulty in deciding which ingredients should be included in the slurry and which should not.
Particulate detergent compositions of the invention preferably have a bulk density of at least 400 g/1, more •• preferably at least 500 g/1. Especially preferred compositions have bulk densities of at least 650 g/litre,. more preferably at-least 700 g/litre.
Such powders may be prepared either by post-tower densification of spray-dried powder, or by wholly non-tower methods such as dry mixing and granulation; in both cases a high-speed mixer/granulator may advantageously be used. Processes using high-speed mixer/granulators are disclosed, for example, in EP 340 013A, EP 367'339A, EP 390 251A and EP 420 317A (Unilever).
Liquid detergent compositions can be prepared by admixing the essential and optional ingredients thereof in any desired order to provide compositions containing components in the requisite concentrations. Liquid compositions according to the present invention can also be in compact form which means it will contain a lower level of water compared.,to a conventional liquid detergent.
Treatment Process

Treatment of the fabric with the rebuild agent can be made by any suitable method such as washing, soaking or rinsing of the substrate.
Typically the treatment will involve a washing or rinsing method such as treatment in the main wash or rinse cycle of a. washing, machine and involves contacting the fabric with an aqueous medium comprising the composition of the present invention.
The present invention will now be explained in more detail by way of the following non-limiting examples.
Examples
Example 1; Preparation of Cellnlose "Monoacetate"
This was prepared by the methods of WO 91/16359.
Example 1
340 ml of.acetic acid and 60 ml of water are heated to 80°C in a reactor; 63 g of cellulose triacetate are dissolved in this acetic solution. The reaction medium is mixed with 140 ml of methanol.
The reaction mixture, placed in an inert atmosphere, is maintained at a pressure of 6 bar at 150°C for 4 h. A further 100 ml of methanol are added, the mixture being maintained at the same pressure and temperature for 8 h.

After cooling, the cellulose acetate is precipitated by the addition of acetone, then recovered by filtration and washing.
The degree of substitution and the molecular weight are determined by NMR analysis of the proton and gel permeation chromatography.
The cellulose acetate thus prepared has a. degree of substitution of 0.55 and a molecular weight of 14,000. The product is soluble in water. .
Example 2 : Detergent Granulate Prepared by Non-Spray
Drying Method
The following composition was prepared by the two-stage mechanical granulation method described in EP-A- 367 339.
Component % w/w
NaPAS 13.5
Dobanol 25-7 2.5
STPP 4 5.;3
Na Carbonate 4.0
Polymer 0.28
Na Silicate 10.1
Minors 1.5
Water balance

Example 3: Spray-Dried Powder
Component . %w/w
NaPAS ' 11.5
Dobanol 25-7 6.3
Soap 2.0
Zeolite 24.1
SCMC 0.6
Na Citrate 10.6
Na Carbonate 23.0
Polymer 0.3
Silicone Oil 0.5
Dequest 2066 0.4
Solcalan CP5 0.9
Savinase 16L - 0.7
Lipolase 0.1
Perfume 0.4
Water/salts to 100

Component

%

vr/w





Raw Material Specification

Component
LAS
Na-LAS
Dobanol 25-7
LES
Zeolite
STPP
Dequest 2066
Silicone oil
Tinopal CBS-X
Lipolase
Savinase 16L
Sokalan CP5
Deflocculating
SCMC
Minors

Specification
Linear Alkyl Benzene Sulphonic-acid, Marlon AS3, ex Huls
LAS-acid neutralised with NaOH
C12-15 ethoxylated alcohol, 7EO, ex Shell
Lauryl Ether Sulphate, Dobanol 25-S3, ex Shell
Wessalith P, ex Degussa
Sodium Tri Polyphosphate, Thennphos NW, ex Hoechst
Metal chelating agent, ex Monsanto
Antifoam, DB 100,. ex Dow Corning
Fluorescer, ex Ciba-Geigy
Type 100L, ex Novo
Protease, ex Novo
Acrylic/Meleic Builder Polymer ex BASF Polymer Polymer A-11 disclosed in EP-A- 34 6 995 Sodium Carboxymethyl Cellulose antiredeposition polymers, transition-metal scavangers/bleach stabilisers, fluorescers, antifoams, dye-transfer-inhibition polymers, enzymes, and perfume.

Examples 11 and Comparative Example ft,

Method
100% cotton fabric was mercerised, bleached, woven, not dyed and previously desized by washing in lg/1 Synperonic A7 -f 4.5g/l sodium carbonate at 95°C, followed by rinsing in de-ionised water at 95CC. The fabric was cut up into 22cm x 22cm squares. Threads running parallel to the edges were removed to a depth of 1cm, in an-' attempt to prevent' the loss of threads during the washes. The weight of each square was ~7g and each cloth was to be washed separately. Therefore 70ml of liquor gave a liquor:cloth ratio of 10:1
Two formulations were made up. The formulation of Example 11 contained a sodium carbonate based buffer to give a final wash liquor pH of 10.5. Comparative Example A comprised a phosphate based buffer to give a wash liquor at

a dosage level of lg composition per litre of water of pH 7.
All cloths were, pre-washed in the appropriate, formulation, without cellulose acetate, at 40°C and for 30 minutes to condition the cloths to the pH.
Three rinses were then performed. After rinsing the cloths were squeezed out and hung .in the test room at 20°C and 65% humidity for 24 hours to dry and equilibrate. After 24 hours the cloths were weighed.
The cloths were then subjected to repeated wash and dry cycles as follows. To each of four bottles were added water (70 ml, 40°C). To two of the bottles was added the formulation of Example 11 (0.039g) and to the other two was added the composition of Comparative Example A (0.049g). This gave equal quantities of surfactant and cellulose acetate and equal ionic strength.
The cellulose; acetate, .used in, Example 11, As.obtained hy. the method of Example 1 and had a degree of substitution of 0.58 and a weight average molecular weight determined by GPC of 16200.
To each of the bottles was then added one of the appropriately conditioned cloths. The cloths were washed with gentle agitation for 30 minutes at 40°C. Three rinses where then performed. After rinsing the cloths were squeezed out and allowed to dry. In all, each cloth was

subjected to 15 wash/dry cycles. After wash numbers 1, 6, 10 and 15, the cloths were allowed to equilibrate at 20°C and 65% humidity for 24 hours and then weighed. From the weights of each of the cloths, the percentage weight gain of each cloth ( the rebuild) was calculated. The values are set out in Table 1 below. It is clear that cloths washed. pH 10.5 show a substantially greater -rebuild than, those'washed at pH 7.0.
Table 1

% weight,gain
Wash number Example 11 (pH 10.5) Comparative Example A (pH 7.0)
1 0.47 0.20
6 0.94 0.41
10 2.16 0.94
15 2.09 1.12

WE CLAIM:
1. A laundry treatment composition comprising a water-soluble or water-dispersible rebuild agent for deposition onto a fabric during a treatment process wherein the rebuild agent undergoes during the treatment process, a chemical change by which change the affinity of the rebuild agent for .the fabric is increased, said chemical change occurring in or to acetate groups covalently bonded to be pendant on a polymeric backbone of the rebuild agent and which backbone comprises cellulose units or other B-1,4 linked polysaccharide units, the average degree of substitution of the acetate groups pendant on the saccharide rings of the backbone being from 0.55 to 0.70, the weight average molecular weight of the rebuild agent being in the range 12,000 to 20,000, the pH of an aqueous solution of the laundry treatment composition at 20°C at a concentrate of 1 g of composition per liter of water being in the range 9.5 to 11.0, provided that the laundry treatment composition does not comprise a composition including the following components:
a) a cellulose acetate of average molecular weight 10,000, which comprises acetate groups covalently bonded to the cellulose backbone, with a degree of substitution of 0.58 or 0.65;
b) a linear alkyl benzene sulphonate; and
c) a nonionic surfactant comprising a C13-C15 alcohol ethoxylated with 7 moles of ethylene oxide per mole of alcohol, wherein the weight ratio of anionic surfactant to said ethoxylated alcohol nonionic surfactant is 1:1.

2. A composition according to claim 1, wherein the chemical change is hydrolysis, perhydrolysis, or bond-cleavage, optionally catalysed by an enzyme or another catalyst.
3. A composition according to claim 1, wherein the chemical change is not protonation or deprotonation.

4. A composition according to claim 1,. which further comprises a surfactant.
5. A composition according to claim 1 which further comprises a sodium aluminosilicate builder.
6. A composition according to claim 1 which further comprises a bleach system.
7. A composition according to claim 1, comprising from 0.005% to 25% by weight of the rebuild agent.
8. A method of rebuilding a fabric to replace fibre loss due to washing, the process comprising treating the fabric with a composition according to claim 1 at a pH in the range 9.5-11.0.
9. A composition according to claim 1, comprising from 0.01% to 10% by weight of the rebuild agent.
10. A composition according to claim 1, comprising from 0.025% to 2.5% by weight of the rebuild agent.
Dated this 20th day of September 2002
Meghna Vaidya
Of S. MAJUMDAR & CO. Applicants' Agent

Documents:

in-pct-2002-01304-mum-cancelled pages(15-10-2004).pdf

in-pct-2002-01304-mum-claims(granted)-(15-10-2004).doc

in-pct-2002-01304-mum-claims(granted)-(15-10-2004).pdf

in-pct-2002-01304-mum-correspondence 1(20-9-2002).pdf

in-pct-2002-01304-mum-correspondence 2(27-1-2006).pdf

in-pct-2002-01304-mum-correspondence(ipo)-(12-10-2006).pdf

in-pct-2002-01304-mum-form 19(23-6-2003).pdf

in-pct-2002-01304-mum-form 1a(11-2-2004).pdf

in-pct-2002-01304-mum-form 2(granted)-(15-10-2004).doc

in-pct-2002-01304-mum-form 2(granted)-(15-10-2004).pdf

in-pct-2002-01304-mum-form 3(20-9-2002).pdf

in-pct-2002-01304-mum-form 5(20-9-2002).pdf

in-pct-2002-01304-mum-form-pct-ipea-409(15-10-2004).pdf

in-pct-2002-01304-mum-form-pct-isa-210(15-10-2004).pdf

in-pct-2002-01304-mum-petition under rule 138(8-10-2004).pdf

in-pct-2002-01304-mum-power of attorney(16-2-2004).pdf


Patent Number 204141
Indian Patent Application Number IN/PCT/2002/01304/MUM
PG Journal Number 23/2007
Publication Date 08-Jun-2007
Grant Date 05-Jan-2007
Date of Filing 20-Sep-2002
Name of Patentee HINDUSTAN LEVER LIMITED
Applicant Address HINDUSTAN LEVER HOUSE, 165/166, BACKBAY RECLAMATION, MUMBAI - 400 020, MAHARASHTRA, INDIA.
Inventors:
# Inventor's Name Inventor's Address
1 HOPKINSON ANDREW UNILEVER R&D PORT SUNLIGHT QUARRY ROAD EAST, BEBINGTON, WIRRAL, MERSEYSIDE, CH63 3JW, UNITED KINGDOM.
PCT International Classification Number C11D3/22
PCT International Application Number PCT/GB01/01134
PCT International Filing date 2001-03-15
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 0007660.4 2000-03-29 U.K.