Title of Invention

A METHOD FOR PROVIDING A PUSH ROD AND BALL END COMBINATION FOR POSITIONING COMPONENTS OF A BRAKE SYSTEM AND A PUSH ROD AND BALL END COMBINATION THEREFOR

Abstract A push rod-and-ball end combination for assembling a brake system (20), comprises: a push rod (40); a ball end (44) for coupling to said push rod ; a force transfer member (50) placed between said push rod and said ball end ; said force transfer member having both a flowable property and a solidifying property, wherein said force transfer member is flowable when being placed between said push rod and said ball end and, after a passage of time, said force transfer member solidifies.
Full Text -2-
Fleld of the Invention
[0001) The invention relates to brakino; systems and, more particularly, a method of providing a push rod-and ball end combination for positioning components of a brake system *nd a push rod-and-baii end combination therefor.
Background Of The invention
[0002] Braking system, such as air brake systems, have generally been used to control movement of motor vehicles in a safe and effective manner, In particular, air brakes are commonly used on commercial vehicles such as trucks, trailers, and buses, which typically have large gross vehicle weights. The considerable inertia! mass of these heavy-duty vehicles in combination with the high speeds at which they travel often requires a braking system which responds rapidly with substantial braking power. One system component which may be instrumental in the operation of air brake systems is the brake actuator. The brake actuator typically provides the necessary force when braking the vehicle.
[0003] FiG. 1 depicts a push rod generally known in the art. The push rod is a component of brake actuator 12 and is commonly found in many air disc brake systems. As shown, push rod 10 typically extends outwardly away from a mounting face 17 of brake actuator 12. The end of push rod 10 engages with ball end 16 of arm 14, typically a socket part of arm 14. Usually, the overall length L1 of push rod 10 and ball end 16 relative to mounting face 17 is important for proper braking. Because of such importance, the overall length L' may be adjustable. Traditional braking

-2A
systems, as illustrated in FIG, 1, often used shims 18, or spacers, placed between bait end 16 and push rod 10 to variably adjust overall length L'.
rfl0P4j U.S. Patent No, 5,579,873 to Kohar et al, ("Kohar") relates to a brake actuator system having calipers that may close upon a disc in order to apply the brakes. Similar to the push rod of RG. 1, Kohar may also use spacers to operate as shims In adjusting ihe calipers.
[0005] It is typically accepted and Known that the overall length of the push rod and ball end relative to a mounting face surface of the actuator is usually essential to proper functioning of$i& brake system; If this length is too sfiorT, a user may need to apply the brakes in a more vigorous-manner to brake the vehicle than If the overall length was properly ^ifermfned. If the overall length is too Jong, the brakes may be applied continuously or when a user does not wish the vehicle to be braked, which may cause premature wear on the brakes. Because of the importance of the overall length, using shims to variably adjust the overall length may negatively affect accurate determinations of this length, which may possibly affect braking performance,
[0006| Usually, the overall length is determined within an acceptable tolerance range, Similarly, the components that mak© up the overall length, namely the push rod, ball end, and any shims used, are also typically manufactured within a known tolerance range. Combining the components typically results In the combination of the tolerances of the individual components to determine the overall tolerance range. This combination of the tolerances is known in the art to be defined a$ a "tolerance stack up". The more shims used, the larger the overall tolerance range may become. In some instances, especially where an accurate determination of the overall length is desired, the resulting tolerance stack up may be larger than the acceptable tolerance range for the overall length, resulting in the overall length to be out of tolerance. Furthermore, variability in. the actual dimensions of the~compohents that results in an out of tolerance overall fength may

-3-
necessitate provisions for adjustments in order to bring the overall length back within tolerance, such provisions m turn may contribute to tolerance Stack up.
[0007] Another disadvantage of using shims is that ft may increase set up time for positioning the push rod relative to the bait end. The mor© shims involved to position the push rod relative to the ball end, the more time is typically needed to choose the correctly sized shJms or interchange sftfme, Furthermore, if components of the braking system are interchanged, such as parts of the brake actuator, the shims may shift out of position, thereby necessitating repositioning of the push rod relative to the bail end, Thfo problem may be exacerbated if the combination of shims chosen are not suited to the components of the braRiTTafsystamr^here-variabHfty between braking systems sometimes favor particular combinations of shims. Adhering the shims to one another may reduce set up time but may also exacerbate tolerance stack up due to the adhesive material now being placed between the shims and affecting the overall length.
[00083 What is desired, therefore, is a push rod and bail end assembly that provides an accurate determination of the overall length relative to the mounting face surface. Another desire is a push rod and ball end assembly that reduces tolerance stack up. A further desire is a push rod and ball end assembly that reduces variability in overail length caused by tolerance stack up. Still another desire is a push rod and ball end assembly that reduces set up time.
Summary Of The Invention
[00093 Accordingly, it is an object of the invention to provide a push rod and ball end assembly that has an accurately determined overall length and distance from a surface of an actuator's mounting face,

-4-
[00010] It is another object of the invention to provide a push rod and ban end assembly that maintains its accurately determined overall length over prolonged use of the brake system.
[00011] It is another object of the invention to provide a push rod and ball end assembly that reduces set up time when interchanging components of a brake system.
[00012] These and other objects of the Invention are achieved by a push rod-and-ball end combination for positioning component* of a brake ay stem, comprising:
a push rod ;
a ball end for coupling said push rod ;
a force transfer member placed between said push rod and said ball end ;
said force transfer member having both a flowable property and a solidifying property, wherein said force transfer member is flowable when being placed between said push rod and said ball end and, after a passage of time, said force transfer member solidifies.
[00013] In the preferred embodiment, the force transfer member is self hardening, where it automatically solidifies without user intervention. In other embodiments, an additive is added to the force transfer member to solidify or facilitate solidifying the force transfer member.
[00014] The ball end may optionally include a hole extending from a first end to a second end of the ball end for permitting the force transfer member to be placed, or injected, between the push rod and ball end.
[00015] In another aspect of the invention, the present invention provides a method of providing a push rod-and-ball end combination for positioning components of a brake system, comprising the steps of:
providing a push rod of a brake actuator and providing a ball end ;
positioning the push rod relative to the ball end ;
placing a force transfer member between the push rod and the ball end ; and
solidifying the force transfer member.

-6-
£00016] The method may optionally include the step of temporarily or permanently fixing the position of the push rod relative to the ball end.
[00017] Prior to placing the force transfer member between the push rod and ball end, or in embodiments where th© ball end is temporarily fiXSGf relative to the push rod, the method may optionally include the step of adjusting a distance of the bail end relative to 3 mounting face of the bf&kQ actuator.
[000181 Additionally, the method may optionally Include the step of providing a hole in the ball end, wherein the hole extends an entire iength of thlFBalFSmT TrvisWerpermiis injection of \he.fonatiaDsMJnenabfiJLttiroygh. into the hole and in between the ball end and push rod.
[00019] To assist ensuring a proper amount of the force transfer member is placed between the ball end and push rod, the method may include adjusting a flow characteristic of the force transfer member, such as pressure, temperature, flow rate, and combinations thereof, as it is placed between the push rod and the bail end. The method may also continue to place the force transfer member between the push rod and bail end until a desired pressure is achieved.
JOD020] For embodiments where the force transfer member is not self hardening, or does not automatically solidify without user intervention, the method may include the step of adding an additive to the force transfer member to facilitate solidification.
[00021] The invention and its particular features and advantages will become more apparent from the following detailed description considered with reference to the accompanying drawings.

-8-
/Accompanying
Brief Description Of Theffiawjngs {000223 FIG. 1 depicts a traditional brake system known in the art
£020231 RG. 2 depicts a braks system in accordance with the invention,
[00024] FIG. 3 depicts a push rod and ball ond in accordance With tha invention.
£00025] FIG, 4a depicts the push rod positioned relative to the ball end:
[00026] FIG, 4b depicts a force transfer m0mber placed between the push rod and ball end in accordance with the Invention.
[000273 FIG. 5a depicts another embodiment a1 the bafl end. £00028} FIG. 5b depicts another embodiment of the push rod, [00029] FIG. 5c depicts a perspective view of the ball end of FIG. 5a.
[00030] FIG. 6 depicts a method for positioning the ball end relative to the push rod.
Detailed Description Of The Drawings
[0O031] FIG. 2 depicts a brake system 20, including a brake actuator 22, caliper 26 for grasping a disc brake (shown in FIG. 1) during braking, push rod 40, ball end 44, and arm 28 for receiving ball end 44 and transferring the force from ball end 44 to caliper 26, Braking is applied by a vehicle operator pressing on a brake pedal, which causes actuator 22 to push upon push rod 40, which In turn extends away from a mounting face suffaee-32-arKl-pushes

-7-
upon ball end 44, which in turn pushes upon arm 28. As a result, arm 28 rotates about pivot 34 and causes cafiper26 to grasp ih& disc brake, which brakes the axle and wheels. As once can see, the overall length of push rod 40 and ball end 44 relative to mounting face surface 32 affects the rotation of pivot 34 and, therefore, braking, The overall length, represented by dimension L, Is shown in FIG. 4b.
i IDO032J FIG. 3 more particularly depicts push rod 40 and ball end 44.
As shown, ball end 44 is Inserted into an opening 42 of push rod 40, Sail end 44 may be inserted to any depth into opening 42 along an inner diameter surface 46 of bail end 44, A shoufder 48 of bail end 44 will be a stopping point, and represents the maximum depth;foTth©1nseTtion of inner diameter surface 46 Into opening 42.
[00033] FIGS. 4a and 4b depict a cross sectional view along a length of ba!f end 44 and push rod 40. As shown, ball end 44 is positioned relative to push rod 40 in accordance with the invention. FIG. 4a shows bail end 44 inserted to a desired depth within push rod 40. As mentioned under the description of FIG. 3, bait end 44 may be inserted into opening 42 to any position along Inner diameter surface 46 up to a point whef-e shoulder 48 contacts push rod 40.
[00034] Usually, a depth of opening 42, represented by dimension D, is greater than a length of inner diameter surface 46, represented by D\ so that ball end 44 does not bottom out, thereby limiting adjustment of bail end 44 relative to push rod 40. Traditionally, shims are-generaliy placed between shoulder 48 and push rod 40 to fix a position of ball end 44 relative to push rod 40.
[00035] However, as described above, the use of shims present several disadvantages. The invention overcomes these disadvantages by -usmg-a-facce. transfer member 50 instead of shims, as shown in FIG. 4b.

-8-
Once ball end 44 is positioned at a desired depth relative to push rod 40, force transfer member 50 is injected through a hole 52 extending the entire length of bad end 44, Force transfer member 50 exits hofe 52 and fills an area defining cavity 54 In between bali end 44 and push rod 40.
[00038] A benefit of positioning ball end 44 relative to push rod 40 and all other components that affect overall length L prior tD placing force transfer member 50 in cavity 54 Is that this sequence reduces tolerance stack up, This is because overall length L is not dependent upon the,;amount Of fares transfer member 50 placed in cavity 54. Therefore, the tolerances, and tolerance stack up, associated with the components may be negated, corrected, or compensated for by positloning'bathsnd 44 relative to push rod 40 and then fixing this position with force transfer member 50. Conversely, the amount of force transfer member 50 is dependent upon overall length L,
[00037] This inventive sequence is very different from the traditional sequence of positioning shims to determine overall length L and final position of ball end 44 relative to push rod 40, where overall length L is dependent upon the amount of shims used. Hence, under the traditional sequence, overall length L is subject to the tolerances, and tolerance stack up, associated with the components of the brake system.
[00038] To ensure cavity 54 is completely filled with force transfer member 50f pressure, temperature, and/or flow rate of force transfer member 50 may be varied so that air bubbles are_ noltrapped in cavity 54, Moreover, force transfer member 50 is continuously injected into hole 52 until it begins to back out of hole 52, thereby providing a visual indication that cavity 54 Is filled since hole 52 has been filled.
[00039] (n another embodiment, and still maintaining the benefit of reducing tolerance stack up by removing the dependency of overall length L upon the amount of force transfermembef^G-plaGed in cavity 54, farce

-9-
transfer member 50 may be placed in cavity 54 prior to positioning ball end 44 relative to push rod 40. This embodiment achieves the benefit of reducing tolerance stack up provided force transfer member 50 Is flowable so that, upon positioning ball end 44 into opening 42, excess force transfer member 50 and/or any trapped air may enter opening 42 and exit cavity 54.
[00040] In a further embodiment shown in Fi E0OO41J In still another further embodiment shown in FIG. 5b, push rod 40 includes a protrusion 62 extending into ball end 44. In this embodiment, outer diameter surface 64 of protrusion 62 includes recess 58 for permitting trapped air to escape. Recess 58 in outer diameter surface 64 may be used instead of or in addition to recess 58 in inner diameter surface 46,
[00042] Force transfer member 50 may be of a variety of materials and be in a liquid or soiid state. In a preferred embodiment, member 50 is molten zinc or a zinc alloy, in other embodiments, member 50 is any fiowabie compound having an ability to-be injected into hole 52 and cavity 54 and, subsequently, to harden and position bail end 44 relative to push rod 40. it is preferred for member 50 to be of an incompressible compound in both the solid and liquid states. In other embodiments, member 50 may be compressible in the liquid state but should, when hardened or solidified, be an incompressible sofid material.

-10-
[00043] in a preferred embodiment, member 50 solidifies or hardens after a passage of time without user intervention, fn other embodiments, an additive is combined with member 50 or member 50 is heated to facilitate solidification. Member 50 may be a solid, such as a powder, and is hardened after a solution is added to the powder, The additive may be Injected into hole 52 prior to, during, or after member 50 is injected, in furthe'r embodiments, the additive lines or coats opening 42 of cavity 54 so that, upon or subsequent to member 50 being injected through hole 52, member 50 begins to solidify.
[00044] In the embodiments where an additive Is added before, during, or after member 50 is injected into hole 52, member 50 solidifies after a passage of time, no matter how smaif orTarge,' The invention envisions member 50 solidifying upon coming in contact, or instantaneously, with the additive, in these embodiments, a fraction of a second may have passed between contact and solidification and it is understood that these embodiments are part of the invention.
[00045] Force transfer member 50 may be injected using any known or novei injection machines. The machine for injecting force transfer 50 Is not germane to the Invention.
[0004B] FIG, 6 depicts a method 70 for positioning; ball end 44 relative to push rod 40. Method 70 includes the steps of providing 72 a push rod, providing 74 a ball end, and positioning 76 ball end 44 relative to push rod 40,
[00047J As mentioned above under FIGS. 3 and 4a,'ball end 44 is positioned 76 relative to push rod 40 by inserting inner diameter surface 46 into opening 42 to a desired depth.
[00048] Once positioned, method 70 includes piacing 78 force transfer member 50 between push rod 40 and ball end 44. A benefit of positioning 76 baii end 44tetetive^aimsh-feeh40 and all other components that affect overall

11
length L prior to placing 78 force transfer member 50 in cavity 54 is that, in this sequence, method 70 reduces tolerance stack up, This benefit Is more particularly described under FIGS. 4a and 4b.
[00049] Either with or without user Intervention, method 70 also includes the step of solidifying 80 force transfer member 60,
[000501 In the preferred embodiment md after a passage of time, force transfer member automatically solidifies 80. In other embodiments, method may include the step of adding 96 an additive to force transfer member 50 in order to facilitate solidification or hardening. Method may add 96 the additive as a requiremento-ras-an aid-for^soIMMcatforr^l\?tethod-may add 96 the additive before, during, or after placing 78 the force transfer member In between push rod 40 and bafl end 44.
[00051] After solidifying 80 the force transfer member in place, method 70 may include fixing 82, or locking, the position of bail end 44 relative to push rod 40. Fixing 82 the position may be either temporary or permanent depending upon whether or not later adjustments or interchangeably of components of brake system 20 are envisioned.
[00052] Method 70 may also include the step of providing 88 hole 52 in bail end 44, where hole 52 extends the entire length of ball end 44. Hole 52 permits placing 78 force transfer member 50 between push rod 40 and bait end 44-by injecting 90 member 50 into hole 52, which will then travel to and fill cavity 54.
tooo53j Method 70 may inject 90 member 50 into hole 52 until a desired pressure is achieved in member 50, thereby helping to ensure that cavity 54 is sufficiently filled and able to transfer forces between push rod 40 and bait end 44. To reduce air bubbles in cavity 54, which may negatively afTecTtfi^abitity-of-push rod 40 to transfer forces to balLend44f_rj3ethod 70

-12-
may adjust 92 the pressure, temperature, and/or flow rate of force transfer member 50. Additionally, force transfer member 50 may be injected 90 into hole 52 until it begins to back out of hole 52, thereby providing a visual indication that cavity 54 is filled since hole 52 has been filled,
[O00543 In another aspect, srri etitl maintaining the benefit of reducing tolerance stack up by removing the dependency of overall length L upon the amount of force transfer member 50 placed in cavity 34, method 70 may place 78 force transfer member 50 in cavity 54 prior to positioning 76 ball end 44 relative to push rod 40. This aspect achieves the benefit of reducing tolerance stack up provided force transfer member 50 is flowable so that, upon positioning 76 ball end^^^toxpef^^Telcces^force-transfer member 50 and/or any trapped air may enter opening 42 and exit cavity 54.
100055] In a further aspect, method 70 may optionally include the step of providing 84 a groove in a surface, such as outer diameter surface 64 of protrusion 62 shown in FIG. 5b, of the push rod to release air trapped between the push rod and ball end.
[00056] In still another further aspect, method 70 may optionally include the step of providing 86 a recess in a surface, such as inner diameter surface 46 of ball end 44 shown in FIG. 5a, of the bail end to release air trapped between the push rod and ball end,
[0OQ573 Although the invention has been described with reference to a particular arrangement of parts, features and the like, these are not intended to exhaust all possible arrangements or features, and indeed many other modifications and variations will be ascertainable to those of skill in the art,

-13-WE CLAIM;
1. A push rod-and-bal! end combination for positioning components of a
brake system, comprising:
a push rod ;
a bail end for coupling to said push rod ;
a force transfer member placed between said push rod and said ball end;
said force transfer member having both a flowabie property and a solidifying property, wherein said force transfer member is flowabie when being placed between said push rod and said ball end and, after a passage of time, said force transfer member solidifies.
2. The combination as claimed in claim 1, wherein said force transfer
member is self hardening.
3. The combination as claimed in claim 1, comprising an additive for
solidifying said force transfer member.
4. The combination as claimed in claim 1, wherein a hole extends the
entire length of said ball end thereof for permitting said force transfer member to
be injected between said push rod and said baft end.

-14-
5. The combination as claimed in claim 1, wherein said ball end
comprises a recess for permitting air to escape from between said ball end and
said push rod.
6. The combination as claimed in claim 1, wherein said push rod
comprises a recess for permitting air to escape from between said push rod and
said ball end.
7. A method of providing a push-rod-and-ball end combination for
positioning components of a brake system, comprising the steps of:
providing a push rod of a brake actuator and providing a ball end ; positioning the push rod relative to the ball end ;
placing a force transfer member between the push rod and the ball end ; and
solidifying the force transfer member.
8. The method as claimed in claim 7, comprising the step of fixing the
position of the push rod relative to the ball end.
9. The method as claimed in claim 8, comprising the step of permanently
fixing the position of the push rod relative to the ball end.

-15-
10. The method as claimed in claim 7, comprising the step of adjusting a
distance of the ball end relative to a mounting face of the brake'actuator prior to
placing the force transfer member between the push rod and ball end .
11. The method as claimed in claim 7, comprising the step of providing a
hole in the ball end, wherein the hole extends an entire length of the ball end.
12. The method as claimed in claim 11, comprising the step of injecting the
force transfer member into the hole.
13. The method as claimed in claim 7, comprising the step of placing the
force transfer member between the push rod and the ball end until a desired
pressure is achieved.
14. The method as claimed in claim 7, comprising the step of adjusting a
flow characteristic of the force transfer member as it is placed between the push
rod and the ball end.
15. The method as claimed in claim 14, wherein the flow characteristic is
selected from the group consisting of a pressure, a temperature, a flow rate, and
combinations thereof.

-16-
16. The method as claimed in claim 7, comprising the step of adding an
additive to the force transfer member to facilitate solidification.
17. A push rod-and ball end combination for positioning components of a
brake system, comprising :
a brake actuator having a mounting face ;
a push rod ;
a ball end connected to the push rod and extending out beyond the mounting face by a distance ;
a force transfer member disposed between said push rod and said ball end, said force transfer member having both a flowable state and a solidified state; and
wherein the distance which said ball end extends out beyond the mounting face is variable without varying a position of said push rod while said force transfer member is in the flowable state, and wherein the distance which said ball end extends out beyond the mounting face is fixed without varying a position of said push rod while said force transfer member is in the solidified state.
18. The apparatus as claimed in claim 17, wherein said force transfer
member is self hardening.

-17-
19. The apparatus as claimed in claim 17, comprising an additive for
solidifying said force transfer member.
20. The apparatus as claimed in claim 17, wherein a hole extends the entire
length of said ball end thereof for permitting said force transfer member to be
injected between said push rod and said ball end
21. The apparatus as claimed in claim 17, wherein said ball end comprises
a recess for permitting air to escape from between said ball end and said push
rod.
22. The apparatus as claimed in claim 17, wherein said push rod
comprises a recess for permitting air to escape from between said push rod and
said ball end.
23. A method of providing a push rod-and-ball end combination for
positioning components of a brake system, comprising the steps of:
providing a push rod of a brake actuator and providing a ball end, the push rod and the ball end being connected so as to be displaceable relative to each other;
adjusting a position of the ball end relative to a mounting face of the brake actuator;

-18-
placing a flowable force transfer member between the push rod and the ball end ; and
solidifying the force transfer member such that the push rod and the ball end are now fixedly connected to each other.
24. The method as claimed in claim 23, comprising the step of fixing the
position of the bait end relative to the mounting face.
25. The method as claimed in claim 24, comprising the step of permanently
fixing the position of the ball end relative to the mounting face.
26. The method as claimed in claim 23, comprising the step of providing a
hole in the ball end, wherein the hole extends an entire length of the ball end.
27. The method as claimed in claim 26, comprising the step of injecting the
force transfer member into the hole.
28. The method as claimed in claim 23, comprising the step of placing the
force transfer member between the push road and the ball end until a desired
pressure is achieved.

-19-
29. The method as claimed in claim 23, comprising the step of adjusting a
flow characteristic of the force transfer member as it is placed between the push
rod and the ball end.
30. The method as claimed in claim 29, wherein the flow characteristic is
selected from the group consisting of a pressure, a temperature, a flow rate, and
combinations thereof.
31. The method as claimed in claim 23, comprising the step of adding an
additive to the force transfer member to facilitate solidification.
32. A push rod-and-ball end combination for positioning components of a
brake system substantially as herein described, particularly with reference to the
accompanying drawings.
33. A method of providing a push rod-and-ball combination for positioning
components of a brake system substantially as herein described, particularly with
reference to the accompanying drawings.
A push rod-and-ball end combination for assembling a brake system (20), comprises:
a push rod (40);
a ball end (44) for coupling to said push rod ;
a force transfer member (50) placed between said push rod and said ball end ;
said force transfer member having both a flowable property and a solidifying property, wherein said force transfer member is flowable when being placed between said push rod and said ball end and, after a passage of time, said force transfer member solidifies.

Documents:

00572-kol-2003-abstract.pdf

00572-kol-2003-claims.pdf

00572-kol-2003-correspondence.pdf

00572-kol-2003-description(complete).pdf

00572-kol-2003-drawings.pdf

00572-kol-2003-form-1.pdf

00572-kol-2003-form-18.pdf

00572-kol-2003-form-2.pdf

00572-kol-2003-form-3.pdf

00572-kol-2003-form-5.pdf

00572-kol-2003-g.p.a.pdf

00572-kol-2003-letters patent.pdf

00572-kol-2003-priority document.pdf

572-KOL-2003-(09-04-2012)-CORRESPONDENCE.pdf

572-KOL-2003-(09-04-2012)-FORM-27.pdf

572-KOL-2003-CORRESPONDENCE.pdf

572-KOL-2003-FORM 27-1.1.pdf

572-KOL-2003-FORM 27.pdf


Patent Number 202612
Indian Patent Application Number 572/KOL/2003
PG Journal Number 09/2007
Publication Date 02-Mar-2007
Grant Date 02-Mar-2007
Date of Filing 04-Nov-2003
Name of Patentee HALDEX BRAKE CORPORATION
Applicant Address 10930 NORHT POMONA AVENUE, KANSAS CITY, MO-64153-1297
Inventors:
# Inventor's Name Inventor's Address
1 FISHER ,ALBERT D 9616 NORTH CAMPBELL DRIVE ,KANSAS CITY MO 64155 ,
PCT International Classification Number F 16 D 65/18
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/288,122 2002-11-05 U.S.A.