Title of Invention

A METHOD OF FACILITATING A MOBILE INTERNET PROTOCOL HANDOFF FROM A SOURCE ACCESS ROUTER TO ONE OF A PLURALITY OF POTENTIAL TARGET ACCESS ROUTERS

Abstract A method of facilitating a mobile Internet Protocol (IP) handoff from a source access router to one of a plurality of potential target access routers in a mobile terminal, the method comprising the steps of: 1) detecting entry into an area served by at least two of the plurality of potential target access routers; 2) transmitting an address of the source access router from the mobile terminal v to at least one of the potential target access routers; and 3) performing an IP handoff operation from the source access router to one of the plurality of potential target access routers on the basis of capability information received from at least one of the plurality of potential target access routers.
Full Text


ROTOCOL TO DETERMINE OPTIMAL TARGET ACCESS ROUTERS FOR
SEAMLESS IP-LEVEL HANDOVER
FIELD OF THE INVENTION
The invention relates generally to telecommunications networks. More particularly, the invention concerns a mechanism for enabling seamless mobility in mobile telecommunications networks.
BACKGROUND OF THE INVENTION
Telecommunication networks for mobile devices include cellular communication systems; mobile Internet Protocol (IP) networks; paging systems; and others. Cellular systems generally allow mobile terminals to move geographically by "handing off localized communication links among transmission towers and associated base stations. Similarly, mobile IP networks allow IP-enabled devices such as wireless Personal Digital Assistants (PDAs) and mobile computers to move about geographically dispersed areas while maintaining a connection to the Internet.
Mobile devices can provide both voice-based connections and IP connections using different base stations and infrastructures. For example, a Web-enabled cell phone might maintain a voice connection using a first transmission channel and maintain a mobile IP connection using a second (and independent) transmission channel> such that handoffs occur independently for the two channels. Alternatively, voice services can be combined with the IP service, such that a single connection is maintained for both services. Voice connections can also be provided over IP in a combined service.
FIG. I shows a conventional mobile IP network that covers three service areas SAl, SA2, and SA3. For the sake of simplicity, only IP services are shown, although as explained above, separate transmission networks can be provided for voice services.

As shown in FIG. 1, a mobile terminal MT is within service area SAl served by base station BSl (also called an access point or AP). Base station BSl is connected to an access router AHl, which in turn connects to an Internet service provider ISPl that provides access to the Internet. Other base stations such as BS3 may also be connected to access router ARl, such that a common IP address is used for mobile terminals even though the terminals may pass through different service areas. In other words, although there may be a hand off of radio frequency channels when the mobile terminal moves between service area SAl and service area SA3, it may not be necessary to change the IP address used to communicate with the mobile terminal because the Internet connection is still served by the same access router ARl.
A second service area SA2 is served by a separate base station BS2, which is in turn connected to a different access router AR2. Due to the network topology, access routers ARl and AR2 use different blocks of IP addresses for communicating with mobile terminals roaming within their associated service areas. If mobile terminal MT moves from service area SAl to service area SA2, some mechanism is needed to hand off the Internet connection from access router ARl to access router AR2. Similarly, if service areas SAl and SA2 are separated by a large logical distance (e.g., ARl and AR2 are connected to different ISPs), some coordination mechanism is needed to permit data transmitted to a terminal previously operating in service area SAl to be forwarded to service area SA2 if that terminal moves into area SA2.
One conventional scheme for handing off IP connections is depicted in FIG, 2. Service area SAl is served by access router ARl, which is designated the "home agent" for cotrnnunicating with a particular mobile terminal MT. While mobile terminal MT moves within service area SAl, access router ARl conununicates with the mobile terminal using an IP address that is assigned to access router ARl. IP packets (e.g., e-mail, Web pages, and the like) are transmitted over the Internet to ISPl, which forwards the traffic to ARl, which in turn knows that a particular IP connection is associated with the mobile terminal in its service area.

If mobile terminal MT moves to a difierent service area SA2 served by a different access router AR2, packets that were previously transmitted to ARl will no longer reach the mobile terminal. One conventional solution is to advertise (e.g., broadcast) the existence of access router AR2 in service area SA2, such that when mobile terminal MT moves into service area SA2, it is notified of the existence of access router AR2, and it receives a new IP address for communicating within service area SA2. Mobile terminal MT or access router AR2 then sends a binding update to home agent ARl (e.g., through a land line LL or over the Internet), so that home agent ARl knows the IP address that will allow packets to reach the mobile terminal in service area SA2. The home agent treats this address as a "care of address, and all further packets to the original IP address are forwarded to the new IP address. In essence, two separate IP addresses arc used to communicate with the mobile terminal: a home agent address and a care of address that changes at each new point of attachment. This scheme is described in the Internet Engineering Task Force (IETF) Request for Comments (RFC) number 2002 (October 1996).
The above scheme assumes that the target access router (AR2) is known by the originating access router (ARl) prior to the handoff (e.g., mobile terminal MT has accepted the advertisement from AR2 and is assigned an IP address for communicating with it). If there are multiple access routers in the target area each with overlapping service areas, there is no easy way for the mobile terminal to select from among them. For example, suppose that a mobile terminal is receiving high bandwidth video data while moving out of a service area. Two other overlapping service areas served by two access routers controlled by two different service providers may be available to accept the handoff of the mobile terminal's IP connection. One of the two access routers may provide high-speed access, to the Internet, while the second one may not. There is no way for the mobile terminal to specify or select from among the two access routers.
Another problem concerns handoff speed. The conventional scenario shown in FIG. 2 may not be able to provide fast handoff speed because of the handshaking required

between the mobile terminal and the new access router AR2. Packets may be lost if landoff of the ]P comieclion is not performed smoothly. Moreover, if an IP :onncction is used for voice-quality signals or music, latency introduced by the landoff may unacceptably disrupt the comieclion.
(\nother difficulty with handing off IP connections in mobile networks arises where heterogeneous networks (using different access technologies) served by potentially different (and incompatible) service providers are concerned. Referring again to FIG, 1, if service area SAl is served by MCI while service area SA2 is served by AT&T, then the two service providers must agree on a coordination mechanism to accept handoffs of IP services from each other's system. Moreover, as new access routers are added to each service provider's system, the details of each new access router must be communicated throughout the system (e.g., from a central authority) to ensure that all access routers in both systems are aware of tlie others. This approach can result in a single point of failure, and requires coordination of effort among different service providers.
The problem of providing seamless handovers in IP environments is related to ongoing efforts in the Internet Engineering Task Force (IETF), namely in the Context Transfer, Handoff Candidate Discovery, and Seamless Mobility (SeaMoby) and Mobile IP working groups. Context transfer and fast handover protocols have been developed to exchange session-related information or proactively establish mobile IP connectivity, respectively. Both protocols assimie that the target access router is known when requesting the desired functionality (see FIG. 1). Although the discovery of the handoff candidate is included in the SeaMoby working group charter, discovery protocols for physically adjacent access routers have not been studied so far. However, research regarding obtaining physical locations of networking elements has been conducted. Location tracking technologies, such as the Global Positioning System (GPS), provide physical location information of devices attached to the positioning system. Other systems use such information to accurately locate devices. However, since the location is not ia relation to any coverage area of an access

technology, the location information is not applicable for candidate selection purposes.
Location systems based on radio frequency technologies use the signal of the wireless access technology to determine the position of the mobile node. In contrast to GPS systems, the obtained location is related to the coverage area of the base station being used for location determination. However, the obtained location is specific for the mobile node and does not give any indication of overlapping coverage areas of access routers. Thus, these systems cannot be used to determine physically adjacent networking elements. Moreover, the location determination is usually very specific for the access technology used, and is therefore not suited for multiple access technology scenarios. Besides the lack of accuracy of the obtained location, there is no indication of overlapping coverage areas needed for physical adjacency determination.
What is needed is a system and method for addressing some or all of the aforementioned problems.
SUMMARY OF THE INVENTION
The invention provides a system and method to facilitate seamless handoffs in mobile networks, such as mobile IP networks, A first aspect of the invention enables an access router to dynamically leam about other access routers that are geographically adjacent by receiving information from mobile tcnninals that move into the service area of the access router. A second aspect of the invention allows access routers to share capability information without requiring a centralized scheme (e.g., using a peer-to-peer approach). A third aspect of the invention allows a target access router to be selected and a hando IT arranged on the basis of capability information associated with one or more target access routers and on the basis of the direction of movement of the mobile node. Other features and advantages of the invention will become apparent through the following detailed description, the figures, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a conventional mobile IP network covering three service areas SAl, SA2, and SA3.
FIG. 2 shows a conventional scheme for handing off IP connections, in which a mobile terminal registers with a home agent ARl but also communicates using a second IP address through a "care of agent AR2.
FIG. 3 shows a system according to the invention including a plurality of access routers ARi and AR2, each of which includes a capability map (304 and 308) describing capabilities of geographically proximate access routers.
FIG. 4 shows steps in a method to leam about a physical neighborhood and.for acquiring capability information from physically adjacent access routers.
FIG. 5 shows steps in a method for selecting a target access router on the basis of previously stored capability information.
FIG. 6 shows a mobile terminal MT moving from a service area associated with a first access router ARl to an area serviced by three different access routers AR2, AR3, and AR4.
FIG. 7 shows a mobile terminal 701 equipped with processing functions and memory to carry out various aspects of the invention.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 shows a system employing various principles of the invention. As shown in FIG. 3, a first access router ARl serves a first service area (not shown) in which a mobile terminal MT may be located. Although not explicitly shown in FIG. 3, it is assumed that each access router transmits and receives data packets through one or more base stations that cover corresponding geographic areas. It is also assumed that

each access router provides Internet-compatible connections (e.g., IP protocol compatibility) such that data packets received at each router can be forwarded to one or more mobile terminals within the corresponding service area. Each access router includes an IP address used for communicating directly with the access router and a block of IP addresses that can be allocated and used by tlie access router for communicating with mobile terminals served by Ihe access router. For purposes of illustration, ARl is shown as having an IP address of 10.1.0.0, and AR2 is shown as having an IP address of 10.2.0.0.
According to one aspect of the invention, each access router creates and maintains a local capability map (elements 304 and 308 in FIG. 3) (hat stores information concerning other access routers that are geographically adjacent. According to one aspect of the invention, as a mobile terminal MT moves into Ihe area serviced by an access router, ihe mobile terminal transmits the IP address of the access router for the service area from which the mobile terminal is leaving. In other words, each mobile terminal passes to the next access router information concerning the previously used access router (the previous router's identity, i.e., its IP address). An inference can be drawn that, by virtue of moving out of one router^s service area and into another router's service area, the two routers are geographically adjacent. Once each access router knows about the other one, they can exchange capability information that can be used to select a target access router for future handoffs. The capability information, along with the physical neighborhood AR map, can also be constructed through manual configuration.
As shown in FIG. 3, access router ARl includes a learning function 301, a selector function 302, and an exchange function 303. Similarly, access router AR2 contains such functions (elements 305, 306, and 307) in addition to the capabilities map 308. Other access routers AR3 and AR4 are shown without internal details. In general, each learning function 301 and 307 receives information from mobile terminals that move into the service area associated with an access router (e.g., the IP address of the previously used access router).

Exchange functions 303 and 305 exchange capability informalion between two access routers in response to the learning ftinction. For example, when mobile terminal MT is about to move out of the service area supported by ARl and into the service area of AR2, the mobile terminal transmits to AR2 the IP address (in this case, 10.1.0.0) of the originating access router ARl. In response, learning function 307 stores the IP address of ARl into capability map 308, and causes exchange function 305 to transmit a request (over the Internet, or through other means) to ARl to exchange capability information. Thereafter, exchange functions 303 and 305 of the respective access routers exchange capability information (described in more detail below) concerning each respective router's capabilities. For example, if ARl can support link bandwidths of 28 KBPS and AR2 can support link bandwidths of 56 KBPS, this information is stored in each access router's respective capability map. In this manner, each access router learns about capabilities of neighboring routers.
Selector functions 302 and 306 select target access routers for mobile terminals based on capability information stored in capability maps 304 and 308 respectively. For example, if mobile terminal MT is about to move from a service area served by ARl into a service area served by multiple target access routers (including, for example, AR2 and AR4), selector function 302 in ARl consults capability map 304 to determine which access router best suits the capabilities needed by mobile terminal MT- A movement detection scheme is used to inform ARl which ARs are reachable by the mobile terminal upon movement of the mobile temiinal. As explained in more detail below, selection of target routers can be done based on policies stored in each router.
Capabilities associated with each access router may include static capabilities (e.g., bandwidths supported by the router, security protocols; service providers; etc.) and dynamic capabilities (e.g., current loading level or network delays). Examples shown in FIG. 3 include bandwidths supported; seciuity schemes; ISP connected to the router; IP address of the router; quality of service parameters; and dynamic loading conditions.

Any or all of the functions depicted in FIG. 3 can be implemented using computer software executing on a general-purpose or special-purpose digital computer. The capabilities information can be stored in a computer memory, relational database, or other data structure. Conventional access routers can be modified to incorporate the fijnctions illustrated in FIG. 3.
Suppose that the user of mobile terminal MT is watching a movie over an IP connection requiring a connection bandwidth of 256 kilobytes per second (KBPS). Suppose fiirther that terminal MT is about to move from an access router that presently supports such a bandwidth to an area served by two access routers, AR2 and AR4. The movement detection scheme allows ARl to know that AR2 and AR4 can cover MT after it moves out of service area SAl. Selector function 302 in access router ARl consults capability map 304 and detennines that of (he two access routers in the area, only AR4 supports such a bandwidth. Thereafter, ARl arranges a handoff between mobile terminal MT and access router AR4. Arranging a handoff may include procedures of context transfer (see, e.g., R. Koodli and C, Perkins, "A Context Transfer Framework for Seamless Mobility," Work in Progress, Internet Draft, February 2001), or fast handover (see, e.g., G. Tsirtsis ct al., "Fast Handovers for Mobile IPv6,' Work in Progress, Internet Draft, April 2001).
A handoff can be arranged in various ways, including instructing the MT to contact AR4; sending a message to AR4 to arrange the handoff; or by other means. It will be appreciated that the selection function can be performed in another router, processor, or mobile terminal.
Suppose that the user of mobile terminal MT requires a high-security connection that supports 128-bit encryption. When terminal MT moves from one service area to another, it informs the old access router of the list of reachable access routers. The old access router selects a target router based on the MT's requirements and the stored capability information of the appropriate neighbor routers. The selection process is explained in more detail below. Other selection schemes can of course be used.

no. 4 shows steps of a method that can be used to Jeam a physical neighborhood and 0 share capability information among different access routers on the basis of mobile enninals moving into a service area associated with an access router. In step 401, nobile tenninal MT detects service areas of AR2. In step 402, the mobile terminal ;ends the IP address of ARl to AJ12. In one embodiment, the IP address is not sent vhen the MT is switched on; instead, it is only sent during movement of the mobile erminal.
In step 405, a check is made to determine whether ARl is in the capability map of \R2. Assuming that it is not, then in step 403, AR2 sends a request to ARl (over the Internet, for example) requesting a list of capabilities of ARl. In step 404, ARl and ^R2 exchange capabilities (including the IP address of AR2) such that both access routers know about the capabilities of the other.
In one embodiment, entries in each router's capability map can be purged if too much time has elapsed since the last handoff occurred between them (e.g., step 406 in FIG. 4). Such purging would be done on the theory that many mobile terminals moving from one service area to another would cause a certain number of handoffs over the time period, and that absence of any handoff from a particular router after such a time might indicate that the router has been removed or disabled or its coverage area has changed, thereby altering the neighborhood map.
Alternatively, entries can be changed upon receiving an unsolicited message from other routers indicating changes in capabilities. Such might be the case, for example, for dynamic capabilities such as current load conditions. Routers can periodically transmit requests to all access routers in a capability map seeking an exchange of updated capability information.
Initial capability maps can be established manually and then updated dynamically over time as outlined above.

FIG. 5 shows steps of a method that can be used to select a target access router to enable handoff to the selected target access router. In step 501, the mobile terminal detects the service areas of several ARs upon movement into their coverage areas. In step 502, the list of these ARs is sent to the currently serving access router, e.g., ARl. In step 503, ARl determines the intersection of reachable ARs and those ARs in the capability map that fit MT's and generic AR requirements. If the intersection is empty, two different policies can be applied. In the first one (step 504), ARl determines instead the intersection of reachable ARs and all neighbors contained in the capability map. When applying the second policy (step 505), a failure indication is delivered to mobile terminal MT, indicating that a handoff based on the delivered requirements is not feasible. The cunrent AR in collaboration with the mobile terminal can then decide whether the mobile terminal can be handed over to an AR among the neighboring ARs that tlie mobile terminal can hear that best partially suits the mobile terminal's requirements. This may also be a policy decision for the current AR, if it initiates the handover procedure. In step 506, ARl selects a target access router from the intersection set. In step 507, ARl initiates a handoff to the selected target access router.
It should be appreciated that each mobile terminal MT could directly transmit capabilities of one access router to another access router in order to perform sharing of capability information, rather than requiring each access router to transmit messages to another access router. Moreover, instead of capability matching occurring in the access routers, each mobile terminal could decide for itself which target access router is optimal, based on capability information transmitted from one of the potential target access routers (e.g., the capability map could be transmitted to the mobile terminal, which would then make the selection). Alternatively, target router selection can be made in the originating access router based on its capability maps.
Although described above in the context of transitioning between service areas, the inventive principles can also be applied to balance loads among access routers even in

the absence of service area transitions. For example, when one mobile terminal moves into a service area served by an overloaded access router, the overloaded access router may learn about the existence of the router presently serving the mobile terminal, and can direct some of the mobile terminals presently connected through the overloaded access router to switch to the newly discovered access router.
The capabilities that can be exchanged among routers are wide-ranging and can include static and dynamic capabilities. Examples include bandwidlhs supported by the router; dynamic loading conditions; security schemes; quality-of-servicc (QoS) capabilities; file formats (e.g., MP3, JPEG, and others); geographic location of the router; streaming media support; transmission technology (e.g., CDMA, TDMA, GSM); power levels; estimated signal range; proximity to other access routers; ISP connected to tlie router, current weather conditions; audio and/or video conferencing facilities; cost (e.g., price per minute or per units of data); promotional infomiation (e.g., free access if certain routers are used); advertising; and the like. A mobile terminal that supports more than one transmission technology (e.g., IEEE 802.11 and GSM), for example, can specify a capabiUty requirement that an access router must be associated with a base station that supports either transmission technology before a handofT will be accepted. Moreover, routers can exchange information concerning access points with which each access router is associated. This information can be used to facilitate access router selection, as described in more detail below.
Although in one embodiment capabilities are exchanged only when a mobile terminal moves into a different service area, in other embodiments of the invention each access router periodically queries the other access routers stored in its capability map (e.g., once per hour or once per day) even in the absence of service area transitions. Moreover, it will be appreciated that network addresses (or other identifying information for access routers) of potential target access routers can be transmitted through a mobile terminal back to an originating (current) access router, radier than vice versa, in order to permit sharing of neighborhood information.

According to one variation of the invention, access routers can recursively share information based on information received from one mobile terminal. For example, suppose that a mobile terminal moves into a new service area and forwards the IP address of the previous access router to the new access router. If the capabiHty map includes geographic information (e.g., current location of the router) or signal strength information (e.g., current signal strength associated with the same mobile terminal), the new router could infer that other access routers were similarly close enough to store in its own capability map.
The principles can be applied to access routers that are themselves mobile. For example, suppose that a large sporting event is held at a stadium in a large city. Multiple service providers with truck-mounted access routers and/or transmission equipment can park next to the stadium and provide service to mobile terminals for users attending the sporting event. Each user's mobile terminal can select a different one of the service providers (and access routers) on the basis of each truck's location and capabilities. One of the trucks may have the capability to provide free access at limited bandwidths to mobile terminals willing to accept advertisements on the their mobile terminals. Another of the trucks may provide higher bandwidth access (e.g., video rates) but at a cost of 10 cents per minute. Routers associated with each truck can share capabilities with the other on the basis of a mobile terminal that transitions between access routers associated with each truck. It will be appreciated that transmission equipment could be provided on one truck while access routers are provided in another truck or a trailer. As explained above with respect to one embodiment, once handovers stop happening from a particular AR in an AR's physical neighbor map, it will be removed. This is because each entry in the physical neighbor map has a lifetime associated with it. When a handover occurs to or from a neighboring AR, this lifetime is updated.
] FIG. 6 shows a mobile terminal MT moving from a service area associated with a first access router ARl to an area serviced by three different access routers AR2, AR3, and AR4. A mobile temiinal user arriving at a stadium might transition from a service

area associated with access router ARl to potentially overlapping service areas supported by different trucks parked at the stadium (e.g., access routers AR2, AR3, and AR4). As mobile users move from the service area associated with ARl into the stadium and encounter multiple access routers at the stadium, access router ARl would learn about the capabilities of the access routers at the stadium, and would then be able to selectively control the handoff of other mobile terminals on the basis of capability information associated with each access router at the stadium and (optionally) each mobile terminal's capability requirements. Under this scenario, two different mobile terminals moving into the same geographic location could be assigned to different access routers, depending on the capabilities required by each mobile terminal.
As another example, suppose that the user of a mobile terminal is traveling toward a shopping mall equipped with free Internet access. As the user draws near, he or she may be invited to switch to the free access router in exchange for enduring advertising. (The user could establish a profile in advance indicating a preference for free access routers where they are available). But a different user who makes the same movements might instead be automatically handed off to a high-quality cost-based access router because of an application program presently operating in the mobile terminal (e.g., a video phone call). Users could also establish conditional capability requirements; for example, default to firee access routers unless a video call is in progress, in which case a cost-based router that can guarantee bandwidth would be selected.
There are various methods of detecting movement of a mobile terminal to a new service area. In one approach, the mobile terminal "helps" the access router by listening to beacons of neighboring base stations associated with different access routers. This decision made by the mobile terminal to start listening to these neighborhood beacons can be made by the mobile terminal or be initiated by the AR at a time when a handover is deemed necessary. For example, the current AR's signal to the mobile terminal might be fading, or the mobile terminaFs signal to the current

AR might be fading, or both. One of the two entities (mobile terminal or AR) or both might decide that a handover is necessary. (In order to conserve power, the mobile terminal need not constantly listen to neighboring beacons when not necessary to do so). When the mobile terminal detennines that the signal strength associated with the current access router falls below a threshold level and that the signal strength associated with a different access router is higher, the mobile terminal can initiate a handoff request using the principles outlined above.
When a mobile terminal hears signals from neighboring base stations or access points, it forwards this infomialion back to its current serving AR. This information could be low-level link layer information from these base stations, or it could be the IP addresses of the ARs they arc attached to, or both. This information is forwarded in its entirety to the AR to which the mobile terminal is currently attached. These base stations can rely on different transmission technologies. If the IP addresses of the potential target ARs are made available to the current router as described above, then a potential target AR list is immediately available to the current router. These form the list of ARs that the mobile terminal could be handed over to because these are the ARs that the mobile terminal can hear. The target router is chosen fiom this list based on their capabilities or, if there is more than one possible router for handover, it can be done based on some policy.
In the event that the mobile terminal does not forward FP addresses of the potential target access routers that it hears and only forwards link level (e.g., base station identifiers) information, then the current AR identifies the ARs among the neighbors to which the base stations are attached. It therefore multicasts the base station IDs it hears to all the routers in its neighborhood list. The ARs to which these base stations belong reply back with an acknowledgement. The potential target access router list is thus formed in this scenario and a process similar to the one explained in the previous paragraph is used to identify the target access router. This multi-cast message can be avoided if the link-level IDs of base stations can be exchanged at the time of capability exchange. In the latter approach, the original access router would consult

its capability map to determine which access router(s) are associated with the bcacon(s).
In the event that a mobile terminal is unable to assist the current router in identifying the best target AR in its neighborhood, and the current AR or the mobile terminal determines that a handover is necessary, the current AR can use the foUowing procedure to identify the target AR. The current AR multi-casts a polling message with the mobile terminal's ID to all of its neighbors. The neighboring ARs poll their base stations to determine whether they can hear the mobile tenminars signal. These base stations send out a beacon to which the mobile terminal must respond. In another approach, the base stations could listen in to the mobile terniinaPs control signals. The base stations that can hear the signal forward this information to their ' respective ARs, which then respond to the AR that sent out the polling message. Once ARs respond to the polling message, the current AR has a list of potential target ARs. It then uses the capability information or some policy decision to identify the target AR for the mobile tenninal.
In one embodiment, a security feature is included to prevent so-called "denial of service" attacks or corrupted capability information. In this embodiment, the second (target) access router queries the first (originating) access router to validate that the mobile terminal was recently served by the first access router. Such a query can be perfonned by transmitting an IP packet from the second access router to the first access router, and receiving a validation response from the first access router. If the validation was not successful, the capability exchange operation would be inhibited and the first access router would not be added to the second access router's neighborhood map. (This would also prevent the situation where a mobile terminal leaves an East Coast service area, is turned off, and then is turned on again in a West Coast service area). This would prevent a malicious mobile terminal from pretending to be handed off from the first access router when in fact it was previously served by a third access router. This feature could alternatively be implemented by voluntarily

transmitting the packet from the first access router to the second access router providing vahdation information.
FIG. 7 shows one possible implementation of a mobile terminal that can be used to carry out the inventive principles. The mobile terminal 701 includes a transmit/receive circuit 702 that communicates with one or more base stations. The base stations may be the same base stations used by conventional voice-based cellular phone networks (e.g., using CDMA or TDMA technology), or they may be separate and apart from such phone networks. Nevertlieless, circuit 702 transmits digital data comprising IP packets that are to be routed through the mobile IP network. The receiving part of the circuit receives signal strength or beacon information from base stations, which is processed by a signal strength detector 703. Data interface circuit 704 converts digital messages into a format suitable for transmission through transmit/receive circuit 702 and vice versa. Depending on the circuit implementation, data interface 704 may not be necessary.
Mobile IP handoff processing circuit 705 makes decisions on the basis of the signal strength and previously stored capabilities requirements or profile 706. The capabilities requirements can be manually entered by a user (e.g., using a graphical user interface or keypad), or they can be automatically set depending on which of various application programs 707 are executing on the mobile terminal. For example, if the user is executing a movie application that requires a certain bandwidth, the application could automatically set a capability requirement corresponding to that bandwidth. Thereafter, mobile terminal 701 would transmit this requirement when attempting a handoff to a new access router.
Some or all of the functions shown in FIG. 7 can be implemented using application-specific integrated circuits; microprocessors programmed with software; signal processing devices; specialized circuits; or combinations of the above. Consequently, the arrangement of functions shown in FIG, 7 is not intended to imply a specific arrangement of hardware circuits.

As explained previously, the IP handoff mechanisms described herein can co-exist with other handoff mechanisms in a single mobile terminal. For example, although FIG. 7 shows a mobile IP handoff processing function, a completely separate handoff function can co-exist in the mobile terminal for the purpose of separately handing off voice connections based on entirely different criteria. Alternatively, voice connections can be implemented 'over an IP connection, and voice handoff considerations can thus be incorporated into the decisionmaking process. For example, packet latency might be a much bigger concern when making decisions regarding target access routers, due to the ability of humans to perceive echoes and delays in packetized speech where packets are delayed.
The term "mobile terminar* should be understood to include IP-enabled cellular telephones; wirelessly accessible Personal Digital Assistants (PDAs) such as those manufactured by PALM Inc.; notebook computers that can communicate wirelessly; and other mobile devices that can communicate using packetized digital communications over various transmission technologies (including CDMA, GSM, TDMA, and others) or media (radio, infrared, laser, and the like).
The term "access router" should be understood to include computer-implemented devices that route packets, such as IP packets, to addresses in a network based on routing information. However, it should be understood that access routers are distinct from base stations/access points, which may rely on different transmission schemes to transmit information (e.g., GSM or CDMA). One or more base stations could be associated with a single access router, as shown in FIG. 1. Alternatively, more than one access router could be associated with a single base station.
The term "mobile IP network" should be understood to include a network or networks (even if incompatible in transmission technology or operated by different carriers) that communicate wirelessly with mobile terminals using Internet Protocol.
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will

appreciate that there are numerous variations and permutations of the above described systems and techniques that fall within the spirit and scope of the invention as set forth in the appended claims. Any of the method steps described herein can be implemented in computer software and stored on computer-readable medium for execution in a general-purpose or special-purpose computer.



We claim:
1. A method of discovering target access routers in a mobile Internet environment to
enable seamless Internet Protocol (IP) handoff of a mobile terminal between access routers,
comprising the steps of:
(1) discovering a local geographical neighborhood by transmitting, from a first access router through the mobile terminal to a second access router, an identifier that identifies the first access router;
(2) sharing access router capability information between the first access router and the second access router based on the identifier transmitted in step (1); and
(3) selecting a target access router for a mobile terminal handoff operation on the basis of the access router capability information shared in step (2).

2. The method of claim 1, wherein step (2) is performed by transmitting an IP packet from the second access router to the first access router, and receiving access router capability information from the first access router in response to the transmitted IP packet.
3. The method of claim 1, wherein in step (3) the target access router is selected also on the basis of the direction of movement of the mobile terminal.
4. The method of claim I, wherein step (2) is performed by transmitting access router capability information from the second access router to the first access router through the mobile terminal.
5. The method of claim 1, wherein step (3) is performed by the first access router on
the basis of capability information stored in the first access router.
6. The method of claim 1, fiirther comprising the step of purging capability
information concerning the first access router if no mobile terminal has been handed off fix)m
the first access router to the second access router during a certain time interval.
7. The method of claim I, wherein step (3) is performed by comparing capability
requirements of the mobile terminal with access router capability information shared in step
(2).

8. The method of claim 3, further comprising the steps of:
(a) detecting a beacon corresponding to the second access router and providing beacon information to the first access router; and
(b) the first access router querying neighbors to determine whether any of the neighbors corresponds to the beacon information provided in step (a),
9. The method of claim 1, wherein step (1) comprises the step of transmitting an IP
address of the first access router to the second access router.
10. In a mobile terminal, a method of facilitating a mobile Internet Protocol (IP)
handoff from a source access router to one of a plurality of potential target access routers, the
method comprising the steps of:
(1) detecting entry into an area served by two or more of the plurality of potential target access routers;
(2) transmitting an address of the source access router from the mobile terminal to one or more of the potential target access routers; and
(3) performing an IP handoff operation from the source access router to one of the plurality of potential target access routers on the basis of capability information received from one or more of the plurality of potential target access routers.
11. The method of claim 10, wherein step (3) is performed in the mobile terminal by
selecting a target access router on the basis of bandwidth capabilities required by the mobile
terminal.
12. The method of claim 10, wherein step (3) is performed by the source access router on the basis of capability information received by the source access router from the one or more plurality of potential target access routers.
13. The method of claim 10, wherein step (3) comprises the step of performing the IP handoff to one of the plurality of potential target access routers that best matches capabilities required by the mobile terminal.
14. The method of claim 10, wherein step (3) is performed independently of any
voice-channel handoff operation that is also supported by the mobile tenninal.

15. A method of sharing capability information in a mobile communication network
for use in making handoff decisions among access routers, coniprising the steps of;
(1) detecting a condition that a mobile terminal presently served by a first access router is entering an area served by a second access router,
(2) transmitting a network address of the first access router from the mobile terminal to the second access router; and
(3) exchanging capability information between the first access router and the second access router, such that each access router learns capabilities of the other access router.
16. The method of claim 15, further comprising the step of:
(4) using the exchanged capability information from step (3) to make a handoff
decision for a mobile IP terminal.
17. The method of claim 15, wherein step (3) is performed by transmitting an IP packet from the second access router to the first access router requesting capability information and receiving an IP packet from the first access router containing capability information describing capabilities of the first access router.
18. The method of claim 15, wherein the capability information comprises a bandwidth supported by one of the routers.
19. The method of claim 15, wherein the capability information comprises dynamic loading conditions associated with one of the routers.
20. The method of claim 15, wherein the capability information comprises security schemes supported by one of the routers.

21. The method of claim 15, wherein the capability information comprises the geographic location of one of the access routers.
22. The method of claim 15, wherein the capability information comprises signal transmission technologies supported by a base station associated with one of the access routers.
23. The method of claim 15, wherein the capability information comprises a cost of access using one of the access routers.

24. The method of claim 15,
wherein step (1) comprises the step of detecting a condition that the mobile terminal is entering an area served by at least two potential target access routers;
wherein step (3) comprises the step of exchanging information concerning both of the at least two potential target access routers; and
further including the step of selecting one of at least two potential target access routers on the basis of the capability information exchanged in step (3).
25. The method of claim 15, further comprising the step of:
(4) purging capability information of the first access router if no handoffs from the first access router have been detected within a predetermined time period.
26. The method of claim 16, wherein step (4) comprises the step of selecting an optimum target router on the basis of a predetermined policy.
27. The method of claim 26, wherein the policy specifies that a lowest cost access router should be selected.
28. The method of claim 15, further comprising the step of:
(4) redirecting one or more mobile terminals away from a loaded access router to a less loaded access router on the basis of capability information obtained as a result of step
(3).
29. The method of claim IS, wherein step (1) comprises the step of detecting that the
mobile terminal is entering an area served by at least two potential target access routers, and further comprising the step of:
(4) selecting one of the two potential target access routers on the basis of a best match between a capability dictated by an application program executing on the mobile terminal and the capabilities of the two potential target access routers.
30. A method of handing off a mobile terminal in a mobile IP network comprising a
plurality of access routers each associated with a service area, the method comprising the
steps of:
(I) receiving a request to initiate a handoff operation for a mobile terminal in the mobile IP network;

(2) finding an optimal access router to receive the handofT operation for the mobile terminal by evaluating capability information for a plurality of access routers, wherein the capability information was previously obtained by exchanging information among access routers on the basis of information transmitted by one or more mobile terminals in the mobile IP network; and
(3) effecting the handoff operation to the optimal access router.

31. The method of claim 30, wherein step (2) comprises the step of comparing capability requirements associated with the mobile terminal in step (1) with dynamic capability information associated with each of the plurality of access routers.
32. The method of claim 30, wherein step (2) comprises the step of comparing bandwidth requirements of the mobile terminal with bandwidth capabilities of each access router.
33. The method of claim 30, wherein step (2) comprises the step of selecting an access router on the basis of the cost of access.
34. The method of claim 30. wherein step (2) comprises the step of selecting an access router on the basis of a security scheme.
35. A mobile terminal adapted to participate in handoff decisions in a mobile IP network comprising a plurality of access routers, comprising:
a transmit/receive circuit capable of transmitting and receiving digital data within the mobile IP network; and
a mobile IP handoff processing circuit coupled to the transmit/receive circuit, wherein the mobile IP handoff processing circuit transmits a network address of a first access router in the mobile IP network to a second access router in the mobile IP network.
36. The mobile tenninal of claim 35, further comprising a capabilities storage area
reflecting capabilities needed by the mobile terminal, wherein the mobile IP handoff
processing circuit transmits one or more capabilities stored in the capabilities storage area to
an access router in the mobile IP network.
37. The mobile terminal of claim 35, wherein the mobile IP processing circuit
transmits a bandwidth requirement that is dependent on an application that is presently
executing on the mobile tenninaL

38. The mobile terminal of claim 35, further comprising a signal strength detector
coupled to the transmit/receive circuit and to the mobile IP handoff processing circuit,
wherein the mobile IP handoff processing circuit in response to detecting that signal strength
has dropped below a threshold, initiates a handoff process within the mobile IP network.
39. An access router for use in a mobile IP network having a plurality of access
routers each of which routes IP packets among mobile terminals in a service area, comprising
a processor that executes computer-readable instructions for performing the steps of:
(1) receiving from a mobile terminal a network address of another access router in communication with the mobile terminal;
(2) storing the network address into a capabilities map that defines capabilities of geographically proximate access routers; and
(3) using the stored network address to make a handoff decision conceming a second mobile terminal in the mobile IP network.
40. The access router of claim 39, wherein the processor further executes computer-
readable instructions that perfoiro the step of:
(4) exchanging capabilities infonnation with the another access router, such that the
access router and the another access router become aware of the others' capabilities on the
basis of the network address received from the mobile teraninal.
41. The access router of claim 40, wherein the processor executes computer-readable
instructions that exchange bandwidth capacity infomiation between the access router and the
another access router, wherein the instructions in step (3) select an access router on the basis
of the bandwidth capacity information.
42. The access router of claim 40, wherein the processor executes computer-readable instructions that exchange dynamic loading infonnation between the access router and the another access router, wherein the instructions in step (3) select an access router on the basis of the dynamic loading information.
43. The access router of claim 40, wherein the processor executes computer-readable instructions that make a handoff decision conceming a second mobile terminal in the mobile IP network on the basis of a policy stored in the access router.

44. The access router of claim 43, wherein the policy results in selection of an access router on the basis of access cost.
45. The access router of claim 40, wherein the processor executes computer-readable instructions that make a handoff decision by comparing capability requirements received from a second mobile terminal with capability information previously obtained in step (4).
46. A system comprising a plurality of access routers in a mobile IP network,
wherein each access router comprises computer-executable instructions that, when executed,
perform the steps of:
(1) receiving from a first mobile terminal an IP address associated with another access router in the mobile IP network;
(2) using the IP address associated with the other access router to discover capabilities of the other access router;
(3) storing capabilities of the other access router in a capabilities map that maps each of a plurality of access routers to capabilities associated with each access router; and
(4) in response to a request to perform a bandofT of an IP service involving a second mobile terminal, finding an optimum access router to effect the handoff on the basis of the previously stored capabilities map.
47. The system of claim 46, wherein each access router comprises computer-
executable instructions that perform the step of comparing capabilities requirements received
from the second mobile terminal with the capabilities map.
48- The system of claim 46, wherein each access router comprises computer-executable instructions that perform the step of finding an optimum access router by comparing the previously stored capabilities map with a policy.
49. The method of claim 1, further comprising the step of, after step (1), validating that the first access router recently served the mobile terminal and, if the first access router did not recently serve the mobile terminal, inhibiting the sharing of capability information in step (2).
50. The method of claim 49, wherein the step of validating comprises the step of transmitting an IP packet from the second access router to the first access router and

receiving a response from the first access router confirming that the mobile terminal was recently served by the first access router.
51. The method of claim 1, wherein step (2) comprises the step of sharing information concerning an access point associated with the second access router.

52. A method of discovering target access in a mobile Internet substantially as herein described with . re|erence to the accompanying drawings.


Documents:

2047-chenp-2003-assignement.pdf

2047-chenp-2003-claims duplicate.pdf

2047-chenp-2003-claims original.pdf

2047-chenp-2003-correspondnece-others.pdf

2047-chenp-2003-correspondnece-po.pdf

2047-chenp-2003-description(complete) duplicate.pdf

2047-chenp-2003-description(complete) original.pdf

2047-chenp-2003-drawings.pdf

2047-chenp-2003-form 1.pdf

2047-chenp-2003-form 26.pdf

2047-chenp-2003-form 3.pdf

2047-chenp-2003-form 5.pdf

2047-chenp-2003-other documents.pdf

2047-chenp-2003-pct.pdf


Patent Number 202110
Indian Patent Application Number 2047/CHENP/2003
PG Journal Number 05/2007
Publication Date 02-Feb-2007
Grant Date 08-Sep-2006
Date of Filing 23-Dec-2003
Name of Patentee M/S. NOKIA, INC
Applicant Address 6000 Connection Drive, Irving, TEXAS 75039
Inventors:
# Inventor's Name Inventor's Address
1 CHASKAR, Hemant, M. 111 Locust Street, Apt. 40-C-1 Woburn, MA 01801
2 TROSSEN, Dirk 300 Mystic Valley Parkway Arlington, MA 02474
3 KRISHNAMURTHI, Govind 276 Massachusetts Avenue, #105 Arlington, MA 02474
PCT International Classification Number H04Q 7/00
PCT International Application Number PCT/IB2002/002404
PCT International Filing date 2002-06-25
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/892,611 2001-06-28 U.S.A.