Title of Invention

MATERIAL IN POWDER OR WIRE FORM ON A NICKEL BASIS FOR A COATING AND PROCESS THEREOF

Abstract A material in powder or wire form on a nickel basis for the production of a coating with a high level of resistance to corrosion and wear by means of a thermal coating process is of the following composition (in percent by weight): C 0.005 -1.0; Cr 10.0 -26.0; Mo 8.0 -20.0; Fe 0.1 -10.0; Si 3.0 -7.0; B 1 .0 -4 .0; Cu 0.1 -5.0; Ni Balance. The material in powder form can be alloyed and sprayed out of the melt or agglomerated out of different alloyed and non-alloyed metal powders. The coating material can also be used in the form of a filling wire or an alloyed and cast bar material.
Full Text The invention concerns a material in powder or wire form on a nickel basis for the production of a coating with a high level of resistance to corrosion and wear by means of a thermal coating process, for example by thermal spraying, plasma powder build-up welding or arc welding. The invention also concerns processes for applying such a material and the uses of such a coating.
The use of nickel-based alloys with additives of chromium and molybdenum to give protection from wear and corrosion has long been known and is successfully involved in many branches of industry, for the purposes of thermal spraying and welding.
Thus for example US-A-4 325 99 5 describes a relatively large number of nickel-based alloys with additives such as chromium, molybdenum, boron, silicon and other components. US-A-3 999 952 also discloses alloys in the alloying range of between 5 and 15% by weight of B; between 5 and 50% by weight of Cr; between 1 and 50% by weight of Mo; and between 20 and 96% by weight of Fe, which moreover may additionally contain between 1 and 50% of Ni.
If consideration is given to those two specifications - or DE-A-25 56 960 and DE-A-38 23 140 - then it is noted that they primarily discuss coating or producing sintered bodies. In regard to those previously known alloys attention is directed to their good resistance to corrosion.
With knowledge of that state of the art the inventor set himself the aim of more substantially improving alloy compositions of that kind and in particular enhancing their resistance to wear and corrosion beyond the previously known level.
That object is attained by the teachings of the independent claims; the appendant claims set forth advantageous configurations.
By virtue of the invention it was in fact possible to manufacture alloys and with same to produce coatings whose resistance to wear and corrosion goes far beyond those properties of known alloys. That is

afforded in fact by the addition of copper in a given alloying range to
the additive elements molybdenum, chromium, carbon, boron and silicon,
more specifically in the following ranges (in each case in percent by
weight):
C 0.005 - 1.0;
Cr 10.0 - 26.0;
Mo 8.0 - 20.0;
Fe 0.1 - 10.0;
Si 3.0 - 7.0;
B 1.0 - 4.0;
Cu 0.1 - 5.0;
Ni Balance,
in particular:
C 0.01 - 0.5;
Cr 14.0-20.0;
Mo 10.0-18.0;
Fe 0.5 - 5.0;
Si 4.0 - 6.5;
B 1.5 - 3.5;
Cu 1.0 - 4.0;
Ni Balance,
or:
C 0.05 - 0.3;
Cr 15.0-18.0;
Mo 12.0-16.0;
Fe 2.0 - 4.0;
Si 4.5 - 5.5;
B 2.0 - 3.0;
Cu 2.0 - 3.0;
Ni Balance.
The coating material is preferably used in powder form and can then also be mixed with an Ni-B-Si-powder and/or an Ni-Cr-B-Si-powder.
The invention also embraces a process for applying a material according to the invention for the production of coatings with a high level of resistance to corrosion and wear on a workpiece by a thermal coating process, in which the coating material in powder form is alloyed and sprayed from the melt or however agglomerated from various alloyed and non-alloyed metal powders.
In addition it has been found desirable for the coating material to be used in the form of filling wire or alloyed and cast bar material.
The operation of applying the material according to the invention can be implemented by thermal spraying by means of a plasma powder

build-up welding process, a flame spraying process with subsequent fusing-in, a flame spraying process - in particular a high-speed flame spraying process - , an arc two-wire spraying process or with an arc welding process.
Tests have shown that a coating produced in the described manner preferably permits the following situations of use:
* as a high-temperature protective layer;
* as an anti-corrosion layer;
* as an anti-wear layer.
Those protective layers serve to give protection from wear and corrosion in the chemical industry or in the pharmaceutical industry, in the paper industry, in the glass industry or in the plastics-processing industry.
Further advantages, features and details of the invention will be apparent from the following description of preferred examples. EXAMPLE 1:
A shaft-protector sleeve or bush, which was very severely corroded
at the surface, for an agitator in the paper industry, was to be coated
by flame spraying and subsequent fusing-in, with a self-flowing alloy in
powder form affording a high level of resistance to wear and corrosion.
The composition of the alloy adopted was as follows (in percent by
weight):
C 0.1;
Cr 16.5;
Mo 13.2;
Fe 4.5;
B 3.5;
Si 5.0;
Cu 1.5;
Ni Balance.
After cleaning and turning-down of the corroded surface, it was
prepared by blasting with corundum of a grain distribution of between
0.3 and 0.6 mm, and then a layer was sprayed on to it, of a layer
thickness of 1.4 mm, using an autogenous flame spray torch.,After the
spraying operation the layer was fused-in with an autogenous fusing-in
torch and slowly cooled down - in order to avoid cracks.

After the operation of cooling it down to room temperature, the coated shaft protector sleeve or bush was machined to a surface roughness of 3 jum Ra by turning and grinding. It was not possible to detect any flaws visually at the surface of the layer.
After the maximum running time which is known for the non-coated shaft protector sleeve or bush, the sleeve or bush coated as described hereinbefore was dismantled. When the coating was checked, it was not possible to detect any corrosion attack after that running time. EXAMPLE 2;
The pump shaft of a pump in a chemical installation which, due to the medium involved therein - and the precipitated salt crystals contained therein - was subjected to a very severe corrosion and wear loading, had to be replaced after about two weeks, because of that effect on the pump shaft.
The attempt was now made to prolong that very short operating life by means of a coating. As the component is relatively sensitive to heat, a layer had to be applied without a fusing-in operation, for which reason high-velocity flame spraying (HVOF) was used as the coating process.
The spraying material in powder form that was adopted for that
coating was of the following chemical composition (in percent by
weight):
C 0.4;
Cr 18.2;
Mo 16.1;
Fe 4.1;
B 2.1;
Si 5.5;
Cu 3.0;
Ni Balance.
After preparation of the surface to be coated, by blasting with silicon carbide, it was coated with an HVOF-gun using the adopted spraying material in powder form, the thickness of the layer being 0.3 mm; the temperature of the component was 80°C during the coating procedure.
The finished processed layer on the pump shaft was 0.2 mm thick, with very good surface quality.

As was found in an operational test, the service life of the pump shaft was increased by a factor of three by the applied coating. EXAMPLE 3:
A slide valve seat in the sugar industry, which was very severely loaded by wear, had to be replaced after a relatively short operating life because of damage to the sealing surface.
To reduce the maintenance costs, it was suggested that a coating
affording better resistance to wear and corrosion should be produced by
a plasma powder build-up welding process (PTA) with transferred arc and
the following coating material in powder form (in percent by weight):
C 0.25;
Cr 20.5;
Mo 18.5;
Fe 1.0;
B 1.5;
Si 4.0;
Cu 2.0;
Ni Balance.
The PTA-coating operation was implemented with a current strength of 130-150 A with a powder through-put rate of 1.5 kg/h. The plasma gas used was argon/hydrogen and the protective gas was argon.
The layer applied by build-up welding was 4.0 mm in thickness and the finished processed layer was 3.0 mm thick, with a clean, pore-free and flaw-free sealing surface.
A considerable increase in service life was found in subsequent use. EXAMPLE 4;
In a sugar factory the inside of a flange was found to suffer from heavy attack at one side, by wear and corrosion. As the component is comparatively large the coating operation had to be carried out in the installed condition.
To produce the coating, a protective gas welding process (MIG) was
adopted, using a filling wire with a diameter of 1.6 mm, of the
following composition (in percent by weight):
C 0.25;
Cr 18.0;
Mo 13.0;
Fe 4.2;
B 1.5;
Si 3.0;
Cu 2.5;
Ni Balance.

After the MIG-welding procedure the coated area was dressed and the installation was put back into operation again. Even after prolonged operating times no problems occurred due to wear at the treated location. EXAMPLE 5;
An intermediate storage container of a diameter of 2.50 m and a depth of 3.0 m for cellulose solutions in a paper factory was to be protected from corrosion. In view of the dimensions of the intermediate storage container the two-wire electric arc spray process was suggested because of its relatively high spray material through-put, in order to reduce the stoppage time for the coating operation.
The spray additive material used was filling wires of a diameter of
1.6 mm. The composition of the sprayed-on layer (in percent by weight)
was as follows:
C 0.5;
Cr 17.0;
Mo 15.2;
Fe 3.0;
B 2.5;
Si 4.5;
Cu 3.0.
Preparation of the surface to be coated was effected by blasting
with corundum of a grain size of between 0.6 and 0.8 mm. Immediately
after the preparatory operation the surface was semi-automatically
sprayed using a movement arrangement for the spray gun. The spraying
parameters were as follows:
Current strength 200 A;
Voltage 32 V;
Pressure of the atomisation air 4.5 bars;
Spraying material through-put 8 kg/h;
Spraying distance between 200 and 250 mm.
The layer thickness was 1.2 mm after the spraying procedure. In order to reduce the degree of roughness of the layer produced, the surface was lightly ground after the coating operation. The finished layer has no visible flaws or cracks.
The result of the treatment was highly satisfactory but until now it is not possible to report on longer-term results in use.


WE CLAIM:
1. A material in powder or wire form on a nickel basis for producing a layer with
a high degree of resistance to corrosion and wear by means of a thermal coating
process of the following composition (in percent by weight):
C 0.005 - 1.0;
Cr 10.0 - 26.0;
Mo 8.0 - 20.0;
Fe 0.1 - 10.0;
Si 3.0 - 7.0;
B 1.0 - 4.0;
Cu 0.1 - 5.0;
Ni Balance.
2. The material as claimed in claim 1, wherein the material in powder or wire
form is of a composition within the following limits (in percent by weight):
C 0.01 - 0.5;
Cr 14.0 - 20.0;
Mo 10.0 - 18.0;
Fe 0.5 - 5.0;
Si 4.0 - 6.5;
B 1.5 - 3.5;
Cu 1.0 - 4.0;
Ni Balance.

3. The material as claimed in claim 1 or claim 2, wherein the material in powder
or wire form is of a composition within the following limits (in percent by
weight):
C 0.05 - 0.3;
Cr 15.0 - 18.0;
Mo 12.0 - 16.0;
Fe 2.0 - 4.0;
Si 4.5 - 5.5;
B 2.0 - 3.0;
Cu 2.0 - 3.0;
Ni Balance.
4. The material as claimed in one of claims 1 to 3, wherein the material in powder form is mixed with an Ni-B- Si-powder, an Ni-Cr-B-Si-powder or both.
5. The material as claimed in one of claims 1 to 3, wherein in particular for flame spraying and subsequent fusing-in with a self-flowing alloy in powder form it is of the following composition (in percent by weight):
C about 0.1;
Cr about 16.5;
Mo about- 13.2;
Fe about 4.5;
Si about 5.0;
B about 3.5;
Cu about 1.5;
Ni Balance.

6. The material as claimed in one of claims 1 to 3, wherein it is in powder form
and in particular for application by high-velocity flame spraying of the
following chemical composition (in percent by weight):
C about 0.4;
Cr about 18.2;
Mo about 16.1;
Fe about 4.1;
Si about 5.5;
Cu about- 3.0;
Ni Balance.
7. The material as claimed in one of claims 1 to 3, wherein it is in powder form
and in particular for application by a plasma powder build-up welding process
with transferred arc of the following composition (in percent by weight):
C about 0.25;
Cr about 20.5;
Mo about 18.5;
Fe about 1.0;
Si about 4.0;
B about 1.5;
Cu about- 2.0;
Ni Balance.

8. The material as claimed in one of claims 1 to 3, wherein it is in the form of a
filling wire and in particular for application by means of protective gas welding
processes is of the following composition (in percent by weight):
C about 0.25;
Cr about 18.0;
Mo about 13.0;
Fe about 4.2;
Si about. 3.0;
B about 1.5;
Cu about 2.5;
Ni Balance.
9. The material as claimed in one of claims 1 to 3, wherein in the form of a filling
wire, particularly upon application in a two-wire arc spraying process, it forms
a sprayed-on layer of the following composition (in percent by weight):
C 0.5;
Cr 17.0;
Mo 15.2;
Fe 3.0;
Si 4.5;
B 2.5;
Cu 3.0.
10. A process for applying a material as claimed in one of claims 1 to 9, for the
production of coatings with a high degree of resistance to corrosion and wear
on a workpiece by a known thermal coating procedure characterised in that the
coating material in powder form is alloyed and sprayed out of the melt.

11. The process for applying a material as claimed in one of claims 1 to 9, for the production of coatings with a high degree of resistance to corrosion and wear on a workpiece by a known thermal coating procedure wherein the coating material in powder form is agglomerated out of various alloyed and non-alloyed metal powders.
12. The process as claimed in claim 10 or claim 11, wherein the material in powder form is mixed with an Ni-B-Si-powder, an Ni-Cr-B-Si-powder or both.
13. The process for applying a material as claimed in one of claims 1 to 9, for the production of coatings with a high degree of resistance to corrosion and wear on a workpiece by a known thermal coating procedure wherein the coating material in the form of filling wire or alloyed and cast bar material.
14. The process for applying a material as claimed in one of claims 1 to 9, in particular by means of a process as claimed in one of claims 9 to 11, by known thermal spraying.
15. The process as claimed in claim 14, wherein the workpiece is coated by means of a known plasma powder build-up welding process.
16. The process as claimed in claim 14, wherein the workpiece is coated by means of a known flame spraying process with subsequent fusing-in.
17. The process as claimed in claim 14, wherein the workpiece is coated by means of a known flame spraying process, in particular by means of a known high-velocity flame spraying process.

The process as claimed in claim 14, wherein the workpiece is coated by means of a knwon arc two-wire spraying process.
19. The process as claimed in claim 14, wherein the workpiece is coated by means of a known arc welding process.

Documents:

1331-mas-1997 abstract granted.pdf

1331-mas-1997 abstract-duplicate.pdf

1331-mas-1997 abstract.pdf

1331-mas-1997 assignment.pdf

1331-mas-1997 claims granted.pdf

1331-mas-1997 claims-duplicate.pdf

1331-mas-1997 claims.pdf

1331-mas-1997 correspondence others.pdf

1331-mas-1997 correspondence po.pdf

1331-mas-1997 description (complete) granted.pdf

1331-mas-1997 description (complete)-duplicate.pdf

1331-mas-1997 descriptuion (complete).pdf

1331-mas-1997 form-19.pdf

1331-mas-1997 form-2.pdf

1331-mas-1997 form-26.pdf

1331-mas-1997 form-4.pdf

1331-mas-1997 form-6.pdf

1331-mas-1997 others.pdf

1331-mas-1997 petition.pdf


Patent Number 202079
Indian Patent Application Number 1331/MAS/1997
PG Journal Number 05/2007
Publication Date 02-Feb-2007
Grant Date 21-Sep-2006
Date of Filing 19-Jun-1997
Name of Patentee M/S. CASTOLIN S. A
Applicant Address 168, RUE DU CENTRE, CH-1025 ST. SULPICE,
Inventors:
# Inventor's Name Inventor's Address
1 INGO KRETSCHMER CHEMIN DES UTTINS 11, CH-1028 PREVERENGES
2 DR. GARY ROBERT HEALTH CHEMIN DES COTTAGES 4, CH-1001 LAUSANNE
3 DR. PETER HEIMGARTNER RUE DU CENTRE 64, CH-1025 ST. SUPLICE
PCT International Classification Number C22C 19/05
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 196 25 218.0 1996-06-25 Germany
2 196 28 346.9 1996-07-13 Germany