Title of Invention

A SAFETY-CAP LOCKING SYSTEM OF AN ENGINE COOLING DEVICE AND A METHOD THEREOF

Abstract The present invention provides a safety cap system with a pressure and temperature activated external locking cum unlocking means for an automotive cooling system to prevent accidental removal of the safety cap.The safety cap further uses a torque overriding mechanism to ensure an effective closure and removal torque.
Full Text A SAEETY-CAP LOCKING SYSTEM OF AN ENGINE COOLING DEVICE AND
7 A METHOD tHEREOF '
Tectthical field
The present invention relates to a safety cap system with an external locking cum unlocking
means for an automotive cooling device, to prevent premature unlocking of the safety cap under abnormal pressure and temperature conditions. The present invention further relates to a safety cap system with a torque overriding means and a pressure and temperature controlled element to provide an external locking cum unlocking means for the safety cap and a method thereof
Background and prior art
With the advent of engines with increased horsepower, smaller radiators and higher
thermostat opening temperatures; much more heat is accumulated in the engines of cars and other vehicles of today. These vehicles include trucks, LCVs, MCVs, vans, cars, snowmobiles, marine engines, ofF-road vehicles and sport utility vehicles. These vehicles have less engine surface to dissipate the heat into the atmosphere than older type of engines. To contain the excess heat build-up problem, the pressurized cooling system was developed. The radiator or any other safety-caps in these pressurized systems function to provide a safe opening so that liquid or any other suitable medium can be vented out and to maintain the desired system pressure.
Pressurized vessels are often provided with a closure cap or a valve which, when removed, allows the tank to release pressure and be filled with refilling coolant. However, the premature removal of the closure cap subsequent to the pressurized vessel involves a sudden release of pressure when the cap is removed. This sudden release of pressure creates a dangerous situation resulting in expulsion of some liquid and steam from within the tank.
During operation, when an engine becomes very hot, the engine cooling fluid can reach a temperature as high as 118 to 129 ° C and pressure levels as high as 110-117 kPa. (USA-NHTSA- Federal Register Vol 66 No. 108 June 1, 2001/Proposed rules). Under such high temperature and pressure conditions, the sudden release of pressure upon removal of closure cap, subsequent to the pressurization of the reservoir is also dangerous to the effect that it may result in the cap of the cooling device getting blown off. In effect, the cap may become a dangerous projectile or a missile, thereby exposing the persons in the vicinity to the threat of serious bodily injuries, should the cap blow off the cooling device during

unscrewing operation and also spraying the persons close to the cooling device with the hot fluid or steam that is ejected.
Some of the conventional pressure cap units are so designed that once the pressure increases in the system it is capable of being removed when the cooling device is in hot condition. Under this condition the user is exposed to the risk of being injured by the highly pressurized cap and getting scalded from the steam jet that emerges out of the cooling device.
There have been numerous instances where the high-pressure steam or hot liquid is ejected out from the engine cooling system during cap removal process, thereby causing serious bodily injuries.
US 4927049 teaches an internal thermally locking radiator cap for fitting on the filler neck flange of an automotive radiator, which prevents the radiator cap from becoming detached from the filler neck flange when the radiator is hot. The cap uses a bi-metallic strip captured on the top surface of the radiator cap and having an end that goes through the opening of the radiator cap and engages the filler neck flange to lock the cap in place. US 5042677 discloses a radiator cap with a safety plate or wire made of memory alloy. The safety plate or wire bends downward under ambient temperature. High temperature water in the radiator causes the safety plate to extend out due to the memory characteristic of the alloy and the safety plate thus presses against the neck of the filling hole. One such provision to remove the excess pressure conditions before the cap is removed completely was disclosed in US Patent No 5603425, wherein a radiator cap with sealing members is disclosed. However, the product covered under the above said patent has the following limitation that a user of this cap, while closing the cap, does not seem to receive any feedback to indicate that the cap has reached its desired torque limit; as result the cap can be tightened below the desired limits resulting in high installation torque and high removal of torque further leading to inconvenience to the operator using the cap. The tightening of the cap may result in improper seating of the small o-ring, which further leads to ineffective sealing thereby leading to pressure and coolant loss.
US 6378717 discloses a closure cap without a ratcheting with an internal locking means with a temperature controlled element to prevent unscrewing of the cap when the heat in the reservoir is in excess levels. Further, an exclusive and special reservoir is required for the closure cap of this design. In addition, the instant design may not be adaptable to radiator application because of lack of controlled vent path and also due to loss of coolant.

In addition, closure caps of an engine cooling device, functioning on the basis of temperature sensing can fail to actuate the sensor if an end user tries to locally cool the cap by pouring cold water on the heated cap or the cap may fail to cooperate if a snow falls on the cap when the bonnet is kept opened for cooling.
Objects of the invention
In order to overcome the above-mentioned hazards of an engine cooling system, the
primary object of the present invention is to provide a system with a highly safe and
pressure sensitive cap, which obviates the aforesaid drawbacks of the conventional ones.
An object of the present invention is to provide a system, which is so designed that the
safety-cap cannot be removed before the internal pressure of the associated cooling device
has been completely released, whereby the danger of scald caused by a jet of steam or a
bodily injury due to the ejection of safety cap is completely eliminated.
Another object of the present invention is to provide a means for relieving the pressure in
the cooling device, in a systematic manner by locking the safety cap beyond a certain
pressure and temperature levels.
Yet another object of the present invention is to provide a system for safety caps used in
pressurized environments, more particularly to an improved safety cap on the cooling
system of internal combustion engines.
Further object of the invention is to provide a system that can cater to the needs of
automatic lock and release mechanism of a safety cap of a cooling device, subject to
pressure and temperature factors.
Still another object of the present invention is to provide a safety cap with a torque
overriding action to provide correct installation and removal torque.
Summary of the invention
The present invention provides a safety cap system with a pressure and temperature
sensitive external locking cum unlocking means for an automotive cooling device, to prevent premature unlocking of the safety cap. The present invention further provides a pressure and temperature controlled means to provide an external locking cum unlocking means for the safety cap along with an overriding torque mechanism to provide and indicate exact installation and removal torque for the safety cap and a method thereof. Brief description of the accompanied diagrams
Brief description of the accompanied diagrams
The present invention will now be described in detail with reference to embodiments
illustrated in the accompanied drawings.

Fig 1 is a sectional view of the safety cap with a flange along with a plunger device coupled
to a reservoir container.
Fig 2 is closer sectional view of the safety cap with a plunger device.
Fig 3 depicts a pair of plunger devices disposed on either side of the safety cap.
Fig 4 is a cross section view of a plunger device with locking cum unlocking means for the
safety cap having grooves and blind cavities.
Fig 5 & 5A show a sectional view and an upper view of a metal cap with a plunger device.
Fig 6 & 6A depict a view of metallic cap with a pair of plunger devices.
Fig 7 provides a view on the functional aspects of the plunger device for a metallic cap with
a flange having grooves and blind cavities.
Fig 8 provides a view of pressure and temperature sensing plunger device.
Fig 9 is a functional view of the plunger device with pressure and temperature sensing
metallic sensors.
Fig 10 shows a photogenic view of locking of a plastic safety cap and a metallic cap. Detailed description of the invention
Referring initially to Figures 1 and 2, a removable safety cap (6) with a flange (3) is
coupled with the neck (19) of the reservoir container (1), with a torque overriding means
(13) for an effective installation and removal torque. An inlet (2) as a means to circulate the
coolant into the reservoir container. A plunger device (4), as locking cum unlocking means
for the safety cap is disposed and sealed to the reservoir wall (5) with one end projected
towards the flange (3) of the safety cap (6) and other end extending into the reservoir
container (1). The plunger device (4) effects the locking cum unlocking of the safety cap
under abnormal and normal conditions respectively. A vent path is provided between the
neck (19) and the safety cap (6) for a steady release of residual levels of pressure and
temperature during the removal of the safety cap.
In another exemplary embodiment of the present invention, as represented by Figure 3 of
the accompanied drawings, which is same as described in Figures 1 and 2, but differing in
the area where a pair of plunger devices (4 and 4a) are disposed on either side of the safety
cap (6) of the wall of the reservoir container for an effective locking cum unlocking of the
safety cap.
Now, referring to Figures 4.1, 4.2 and 4.3 of Figure 4 of the accompanied drawings,
wherein the working of the plunger device is depicted to clearly show the three stages viz.,
normal, locking cum unlocking means of the safety cap of the plunger device. When the

safety cap (6) with grooves (20) is coupled to the neck (19) of the reservoir container (1),
the movable shaft (7) that is disposed in the outer sleeve (8) of the plunger device is rested
below the flange (3) of the safety cap (6) under normal pressure and temperature
conditions. However, in the event of an increase in pressure, say for instance pressure
levels more than 2psi and/or temperature levels more than about 50° C in the reservoir
container (1) during the running of a vehicle, the movable shaft (7) is projected towards the
flange (3) and passes through the grooves (20) and locks the flange (3) of the safety cap (6)
to effectively arrest the rotary motion of the safety cap (6), thereby preventing the user from
opening the cap. The movable shaft (7) will return to the normal position (Fig 4.1) when
the pressure and temperature conditions of the reservoir container (1) return to normal state
to enable the user to remove the cap.
In another exemplary embodiment of the present invention as represented in Figures 4.5
and 4.6, wherein the movable shaft (7) locks the flange (3) of the safety cap having blind
cavities (21), whenever the pressure and temperature levels (as stated above) of the
reservoir are above the normal. Further, the movable shaft returns to the normal state as
shown in Figure 4.4 whenever the pressure and temperature conditions of the reservoir (1)
return to normal state.
In yet another exemplary embodiment of the present invention as represented in Figure 5, a
removable metallic safety cap (6) with a flange (3) having grooves is mounted on the neck
(19) of the reservoir (1) (in the instant case, the reservoir is a radiator), to control the
installation and removal torque of the safety cap (6). A plunger device (4) is disposed and
sealed to the reservoir wall (5) with one end projected towards the safety cap (6) and other
end extending into the reservoir (1).
Figure 5a provides an upper view of the metallic cap with plunger locking the cap.
The working methodology of the metallic cap as shown in Figure 5 is same as that of the
plastic cap.
In another exemplary embodiment of the present invention, as represented by Figure 6 of
the accompanied drawings, which is same as described in Figures 1 and 2, but differing in
the area where a pair of plunger devices (4 and 4a) are disposed on either side of the safety
cap (6) of the wall of the reservoir container (1) for an effective locking cum unlocking of
the safety cap.
Figure 6(a) of the accompanied diagram depicts an upper view of the metallic cap with a
pair of plunger locking devices.

In yet another exemplary embodiment of the present invention, as represented by Figure 7 the functional aspects the plunger device for a metallic cap is shown. The functional aspects of the plunger device for the metallic caps are similar to the description as provided under Figure 4.
Now, referring to Figure 8, where a cross section of the plunger device is provided having a movable shaft (7) housed in the outer sleeve (8) of the plunger device that engages/disengages the flange (3) means (not represented in this Figure) of the safety cap at a predetermined pressure and temperature levels. Further, said outer sleeve (8) having threaded, push type or snap fit configuration, preferably a threaded, to firmly dispose the plunger device to the reservoir container. Movable shaft (7) that is housed in the outer sleeve (8) supported at the lower end by a bottom pin (9) to provide a dead end stop the shaft (7). A top sealing means (16 & 17) are disposed to prevent leakage of cooling material through the plunger device. Another aspect of the sealing means (16 & 17) is that it prevents the inlet of air during the cooling cycle of the reservoir container. A shaft neck seal (12) is disposed at the neck of the plunger unit to have an effective sealing between the neck and the plunger unit, both during installation and operation of the plunger device. Shaft cylinder seal (11) and shaft inner seal (15) are located on the shaft (7) near the metallic strip sensor (10) to provide effective sealing to avoid the loss of coolant and air during operating conditions. Yet another sleeve seal (18) is provided on the outer periphery of the plunger device (4) to act as a sealing means to avoid the coolant and air loss between the reservoir container and the plunger device.
Now by referring to Figure 9, wherein the working of the plunger device is shown in various stages of operation, a pressure and temperature sensing means in the form of metallic strip sensor (10) is disposed in the free space between the bottom pin (9) and the shaft (7) to provide linear motion to the shaft during pre determined conditions of pressure and temperature levels of the reservoir container. The metallic strip sensor (10) can either be in conical or helical forms which are thermally and physically sensitive to react. When pressure and temperature conditions within the reservoir container are at certain predetermined levels due to the running of an engine, the resultant temperature/pressure is transmitted to the plunger unit, which is sensed by the metallic strip sensor (10), which expands and projects movable shaft (7) towards the flange (3) of the safety cap (not shown in this diagram) and locking the safety cap. Once the temperature/pressure conditions

return to less than the predetermined conditions the shaft (7) retracts as a result of retraction
of the metallic strip sensor and releases the lock of the safety cap.
The selected metallic sensor material of the present invention can sense pressure variations
from about 2 psi and temperature variations from about SO^C.
The safety cap system of the present invention can be adapted to safety caps selected from
O ring caps, coolant caps, radiator caps and other conventional caps for coolant devices,
both made of plastic and metal.
Accordingly, the present invention provides a safety cap system for engine cooling devices,
said system comprising a reservoir with a neck for storing cooling material, a removable
safety cap with torque overriding means coupled firmly to the neck of said reservoir, a
flange means disposed on the circumference of safety cap, at least an external locking cum
unlocking means with a movable shaft disposed on the reservoir in close proximity with the
flange means to engage or disengage the safety cap under specified temperature and/or
pressure conditions in the reservoir, a pressure and/or temperature sensitive metallic sensor
housed in said reservoir to sense variations in pressure and/or temperature levels to effect
the locking or unlocking of the safety cap by suitably directing the shaft.
An embodiment of the present invention, wherein the reservoir container is selected from
surge tank, radiator, de-gas tank and over flow tank.
Another embodiment of the present invention, wherein the safety cap is made of metal and
plastic material.
Yet another embodiment of the present invention, wherein the safety cap is selected from a
threaded cap, a bayonet-locking cap and a rotary cap.
Still another embodiment of the present invention wherein the flange means comprises
grooves or blind cavities.
It is also an embodiment of the present invention, wherein the pressure and/or temperature
sensitive metallic sensor is a plunger device with a movable shaft.
Yet another embodiment of the present invention, wherein said plunger device comprises
an outer sleeve to house the movable shaft, the pressure and thermal sensor and a pin to act
as a dead end support for the movable shaft.
Still another embodiment of the present invention, wherein upper end of the outer sleeve is
disposed close to the flange and the lower end with an opening is suspended in the reservoir
container.

Further embodiment of the present invention, wherein said metallic sensor disposed
between the movable shaft and bottom pin is selected from conical and helical shapes.
Still another embodiment of the present invention, wherein the outer sleeve of the plunger
device having a configuration selected from threaded, push-type and snap-fit for an
effective fitment of the plunger device to the reservoir container.
Yet another embodiment of the present invention, wherein the plunger device is sealed by
sealing means selected from shaft neck seal, shaft top seal, shaft cylinder seal, shaft outer
seal, shaft inner seal and sleeve seal.
It is also an embodiment of the present invention, wherein a pair of plunger devices is
optionally disposed on either side of the reservoir container for an effective locking cum
unlocking of the safety cap.
Yet another embodiment of the present invention, wherein the coolant material is selected
from liquid or gaseous materials.
In another embodiment of the present invention, a method of providing fail-proof safety cap
for engine cooling devices, using the system of the present invention, said method
comprising the steps of coupling the safety cap to the reservoir container of a cooling
device and tightening it effectively by torque overriding mechanism, locking the safety cap
externally by directing the movable shaft of the plunger device towards the flange of the
safety cap, to arrest the rotary movement of the safety cap, when the pressure and
temperature conditions in the reservoir container are above the normal levels, and
unlocking the safety cap, to facilitate the rotary movement after the pressure and
temperature conditions return below the pre-determined limit.
In an embodiment of the present invention, the method wherein the metallic sensor of the
plunger device activates the movable shaft when the pressure and temperature levels in the
reservoir container exceeds or reverts to a predetermined level thereby locking/unlocking
the safety cap.
In another embodiment of the present invention, the method wherein the movable shaft is
disposed to unlock the safety cap by retracting the shaft from the flange under normal
pressure and temperature conditions, to facilitate the rotary movement of the safety cap.
In yet another embodiment of the present invention, the method wherein the plunger unit is
disposed for activation when the pressure in the reservoir container exceeds a pressure level
of above 2psi and thereby engaging the locking mechanism of the safety cap.

In still another embodiment of the present invention, the method wherein the plunger unit
disengages the locking mechanism of the safety cap when the pressure in the reservoir
container is less than 2psi.
In yet another embodiment of the present invention, the method wherein the proper seating
of the safety cap is due to torque overriding means of the safety cap, leads to an effective
sealing of pressure and heat of the reservoir container.
The embodiments of the present invention are further explained as follows:
A safety cap for the cooling device of an engine serves as a part of a coolant recovery
system. The safety-cap is designed to hold pressure and vent the excess pressure. The so
called venting characteristic of the cap directs the pressurized substance through the vent
tube into a contiguously oriented drain channel and thus prevent any accident like
drenching or scalding the attendant.
The present invention relates to a pressure cap unit with pressure locking means, which is
applied for engines selected from trucks, vans, snowmobiles, marine engines, off-road
vehicles and sport utility vehicles.
The Radiator Cap system of the present invention, having a torque overriding mechanism
provides following benefits: -
The ratcheting action provides correct installation torque and correct removal torque,
thereby the Cap is not tightened beyond desired limits, further leading to the convenience
of the operator using the cap. The ratcheting action further provides proper seating of the
small o-ring, for effective sealing to prevent pressure loss from the system. The user of the
present system is also provided with proper feedback given in terms of feel and sound
indicating that the cap has reached its full tight position.
Advantages
1. The locking mechanism of the present invention locks the safety cap from being
removed by the end user during the periods of dangerously high pressure thus meeting the proposed standards of Department of Transport - National Highway Traffic Safety Administration, USA (NHTSA)
2. The system of the present invention can be retrofitted easily to the existing coolant systems of the various internal combustion automotives.
3. The locking cum unlocking system of the present invention is lighter and does not add much weight to the system.

4. Adaptation of the system of the present invention results in substantial de-escalation of injury claims.
5. The system of the present invention does not require major modifications/alterations of the connected systems and subsystems.


We claim
1. A safety cap system for engine cooling devices, said system comprising a reservoir with
a neclc for storing cooling material, a removable safety cap with torque overriding means coupled firmly to the neck of said reservoir, a flange means disposed on the circumference of safety cap, at least an external locking cum unlocking means with a movable shaft disposed on the reservoir in close proximity with the flange means to engage or disengage the safety cap under specified temperature and/or pressure conditions in the reservoir, a pressure and/or temperature sensitive metallic sensor housed in said reservoir to sense variations in pressure and/or temperature levels to effect the locking or unlocking of the safety cap by suitably directing the shaft.
2. The safety cap system as claimed in claim 1, wherein the reservoir container is selected from surge tank, radiator, de-gas tank and over flow tank.
3. The safety cap system as claimed in claim 1, wherein the safety cap is made of metal and plastic material.
4. The safety cap system as claimed in claim 1, wherein the safety cap is selected from a threaded cap, a bayonet-locking cap and a rotary cap.
5. The safety cap system as claimed in claim 1, wherein the flange means comprises grooves or blind cavities.
6. The safety cap system as claimed in claim 1, wherein the pressure and/or temperature sensitive metallic sensor is a plunger device with a movable shaft.
7. The safety cap system as claimed in claim 6, wherein said plunger device comprises an outer sleeve to house the movable shaft, the pressure and thermal sensor and a pin to act as a dead end support for the movable shaft.
8. The safety cap system of as claimed in claim 6, wherein upper end of the outer sleeve is disposed close to the flange and the lower end with an opening is suspended in the reservoir container.
9. The safety cap system as claimed in claim 6, wherein said metallic sensor disposed between the movable shaft and bottom pin is selected from conical and helical shapes.
10. The safety cap system as claimed in claim 6, wherein the outer sleeve of the plunger device having a configuration selected from threaded, push-type and snap-fit for an effective fitment of the plunger device to the reservoir container.

11. The safety cap system as claimed in claim 6, wherein the plunger device is sealed by sealing means selected from shaft neck seal, shaft top seal, shaft cylinder seal, shaft outer seal, shaft inner seal and sleeve seal.
12. The safety cap system as claimed in claim 6, wherein a pair of plunger devices is optionally disposed on either side of the reservoir container for an effective locking cum unlocking of the safety cap.
13. The safety cap system as claimed in claim 1, wherein the coolant material is selected from liquid or gaseous materials.
14. A method of providing fail-proof safety cap in minimi d in rliim 1" for engine cooling devices, said method comprising the steps of coupling the safety cap to the reservoir container of a cooling device and tightening it effectively by torque overriding mechanism, locking the safety cap externally by directing the movable shaft of the plunger device towards the flange of the safety cap, to arrest the rotary movement of the safety cap, when the pressure and temperature conditions in the reservoir container are above the normal levels, and unlocking the safety cap, to facilitate the rotary movement after the pressure and temperature conditions return below the pre-determined limit.
15. The method as claimed in claim 14, wherein the metallic sensor of the plunger device activates the movable shaft when the pressure and temperature levels in the reservoir container exceeds or reverts to a predetermined level thereby locking/unlocking the safety cap.
16. The method as claimed in claim 14, wherein the movable shaft is disposed to unlock the safety cap by retracting the shaft from the flange under normal pressure and temperature conditions, to facilitate the rotary movement of the safety cap.
17. The method as claimed in claim 14, wherein the plunger unit is disposed for activation when the pressure in the reservoir container exceeds a pressure level of above 2psi and thereby engaging the locking mechanism of the safety cap.
18. The method as claimed in claim 14, wherein the plunger unit disengages the locking mechanism of the safety cap when the pressure in the reservoir container is less than 2psi.
19. The method as claimed in claim 14, wherein the proper seating of the safety cap is due to torque overriding means of the safety cap, leads to an effective sealing of pressure and heat of the reservoir container.

20. The safety cap system for engine cooling devices substantially as here in described and
illustrated with reference to accompanying drawings.
21. The method of providing fail-proof safety cap system for engine cooling devices
substantially as here in described with reference to accompanying drawings.


Documents:

692-mas-2002 abstract (provisional) duplicate.pdf

692-mas-2002 abstract (provisional).pdf

692-mas-2002 abstract duplicate.pdf

692-mas-2002 abstract.pdf

692-mas-2002 claims duplicate.pdf

692-mas-2002 claims (provisional) duplicate.pdf

692-mas-2002 claims (provisional).pdf

692-mas-2002 claims duplicate.pdf

692-mas-2002 claims.pdf

692-mas-2002 correspondence others.pdf

692-mas-2002 correspondence po.pdf

692-mas-2002 description (complete) duplicate.pdf

692-mas-2002 description (complete).pdf

692-mas-2002 description (provisional) duplicate.pdf

692-mas-2002 description (provisional).pdf

692-mas-2002 drawings (provisional).pdf

692-mas-2002 drawings duplicate.pdf

692-mas-2002 drawings.pdf

692-mas-2002 form-1.pdf

692-mas-2002 form-13.pdf

692-mas-2002 form-19.pdf

692-mas-2002 form-26.pdf

692-mas-2002 form-5.pdf

692-mas-2002 petition.pdf


Patent Number 200452
Indian Patent Application Number 692/MAS/2002
PG Journal Number 30/2009
Publication Date 24-Jul-2009
Grant Date 18-May-2006
Date of Filing 18-Sep-2002
Name of Patentee M/S. SUNDRAM FASTENERS LIMITED
Applicant Address 98 A, VII FLOOR, DR. RADHAKRISHNAN SALAI, CHENNAI 4
Inventors:
# Inventor's Name Inventor's Address
1 PREMKUMAR RAMANATHAN SUNDRAM FASTENERS LIMITED 98 A, VII FLOOR, DR. RADHAKRISHNAN SALAI, CHENNAI 4
2 GIRI PRASAD RAJAGOPAL SUNDRAM FASTENERS LIMITED 98 A, VII FLOOR, DR. RADHAKRISHNAN SALAI, CHENNAI 4
3 KUMARESAN NARAYANASWAMY SUNDRAM FASTENERS LIMITED 98 A, VII FLOOR, DR. RADHAKRISHNAN SALAI, CHENNAI 4
PCT International Classification Number F1697/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA