Title of Invention

A PROCESS FOR CATALYTICALLY CRACKING HYDROCARBON STOCKS

Abstract Abstract A process for catalytic cracking hydrocarbon stocks to increase simultaneously the yields of diesel oil and liquefied gas, carrying out in a riser or fluidized-bed reactor, which comprises: (a) Gasoline stock, an optional pre-lifting medium, and a catalytic cracking catalyst are charged into the bottom of the reactor and they contact in the lower zone of the reactor to produce an oil-gas mixture with a lot of liquefied gases; (b) The resultant oil-gas mixture and the reacted catalyst from step (a) flow upwardly and contact in the upper zone of the reactor conventional catalytic cracking feed entered, the reactor from at least two sites having different heights higher than the lower part of on the reactor, to produce an oil-gas mixture with a lot of diesel oils; (c) The resultant oil-gas mixture from step (b) enters a fractionation system where it is separated into the desired liquefied gas, gasoline and diesel oil products, heavy cycle oil and slurry are optionally circulated back to the reactor; (d) The spent catalyst may pass steam stripping and enters a regenerator and undergoes coke-burning and then is circulated back for reuse. The process can simultaneously increase the yields of liquefied gas and diesel oil, reduce the sulfur and olefin contents in the gasoline and raise the octane number. It can be carried out in an existing catalytic cracking unit which need not to be refitted in a big way.
Full Text Background of the Invention
The present invention relates to a process for catalytic cracking of hydrocarbon oils in the absence of hydrogen, and specifically relates to a process for catalytic cracking of petroleum hydrocarbon stocks In the absence of hydrogen to increase simultaneously the yields of diesel oil and liquefied gas.
Liquefied gas is one of the important petrochemical products, of which light olefins are important chemical raw materials of high commercial value. Diesel oil has high heat efficiency and the exhaust tail gas from vehicles running on diesel oil contains less harmful constituents, so it meets the more and more rigorous requirements for envircnmeT-cal protection all over the world. Thus, following the increase in the number of vehicles running on diesel oil, the market demand for diesel oils is also growing.
Diesel oil comes mainly from fraction oils produced by the primary and secondary processing of crude oil. In the primary processing, i.e. the atmospheric and vacuum distillation , the yield of diesel fractions from crude oil is fixed, sc "o potential can be tapped. In the secondary processing, catalytic cracking is usually adopted for producing diesel oil . Featuring large-volume treatment and flexible operation conditions , this process of catalytic cracking is an important means for improving the yields of liquefied gas and diesel oil.
CN1031834A discloses a catalytic cracking process for producing more light olefins. Although this process can produce large quantities of liquefied gas, but its yield of diesel oil is relatively low, generally less than 10wt%, and moreover it requires a special catalyst and processing unit.
CN10858B5A discloses a method for obtaining higher yields of liquefied gas and gasoline under the following reaction conditions: a reaction temperature of 480°-550'C, a pressure of 130-350KPa,a WHSV of l-150h'S a catalyst/oil ratio of 4-15,

and a steam/hydrocarbon stock weight ratio of 0.05-0.12:1. The yield of liquefied gas in the reaction products is 30-40wt% , but that of diesel oil is comparatively low.
CNl160746A discloses a catalytic cracking process for raising the octane number of low-grade gasoline fractions, wherein a low-grade gasoline is introduced into a riser reactor through its lower part and the reaction is curried out under "he conditions of a reaction temperature of 600'-730°C, a WHSV of i-180h', and catalyst/oil ratio of 6-180, then a high octane gasoline is mainly obtained. The feedstocks employed in this process are low-grade gasolines, such as straight-run gasoline, Gc>sr gasoline and so on, and the yields of liquefied gas and diesel oil In the reaction products are 24-39wt% and 0.5-2.3vt% respectively.
USPS, 7 84 ,4 63 discloses a process carried out in a reaction system comprising at least two riser reactors, wherein a low-grade gasoline is introduced into one of the riser reactors and catalytic cracking reaction occurs. By this process, the gasoline octane number and yield of liquefied gas are improved. However, this process cannot give higher yield of diesel oil, and in requires that the reaction unit should be revamped by adding at least another riser.
'JS?5,345,403 discloses a process of recracking of cacsiytic naphtha to obtain a maximum yield of light: olefins. The process is carried out in a riser reactor comprising two reaction zones, namely an upstream reaction zone in the lower part of the reactor and a downstream reaction zone in the upper part. In the upstream reaction zone, the feedstock is a light catalytic naphtha (having a boiling point below 140°C) , and the reaction conditions are: an oil-catalyst contact temperature of 620°-775°C, an oil and gas residence time of less than 1.5 sec, a catalyst/oil ratio of 75-150, and the proportion of steam accounting for 2-50wt% the weight of naphtha, while in the downstream reaction zone, the feedstock is a conventional catalytic cracking stock (having a boiling point of 220'-575°C) , and the reaction conditions are: a temperature of 600°-750°C and an oil and gas residence time of less than 20 sec. Compared with conventional catalytic cracking, the yields of liquefied gas and light cycle oil (i.e. diesel oil) of this process increase by 0,97-1.21 percentage points and 0,13-0.31 percentage points higher.

CN1034949A discloses a process for converting petroleum hydrocarbons in which the stocks, ethane, gasoline, catalytic cracking stock and cycle oil, are successively upwardly introduced into a riser reactor through its lowermost part. This process is mainly aimed at producing light olefins, but the total yield of gasoline, diesel oil and liquefied gas decreases.
ErG365536Ai disclosed a process for catalytic cracking hydrocarbon feedstock, in which a hydrocarbon feedstock is charged into the lower part of the riser reactor wherein said hydrocarbon feedstock is admixed with freshly regenerated cracking catalyst, and a recycle portion of a light liquid hydrocarbon stream is charged into the riser zone at a level above the hydrocarbon feedstock charging level. This process operates in such a manner to produce maximum quantities of fuel oil, or alternatively to produce maximum quantities of olefins in different conditions , but can' t increase the yields of diesel oil and of olefins simultaneously.
US P4 ,422, 925 discloses a process for fluidized catalytic cracking hydrocarbon feedstock for producing gaseous olefins, which comprises charging gaseous C; to C, rich stock into the lowermost portion of the riser reaction zone to contact with hot freshly regenerated catalyst and charging heavy hydrocarbon stock to an upper section of the riser, and intrcducir.g naphnha or gas oil into a section between said lower and upper sections of said riser. This process can produce high yield of light olefins but the increment of yield of diesel oil is very small.
US P3894932 disclosed a method for converting hydrocarbons which comprises passing C3-C4 gaseous hydrocarbon fraction through a lower portion of a riser, introducing gas oil at one or more spaced apart downstream intervals , and introducing C,-C, hydrocarbon or isobutylene or gas oil through the upper portion of the riser. This method is aimed at producing aromatics and isobutane but can't increase the yields of diesel oil and liquefied gas simultaneously.
Another method of increasing the yield of liquefied gas is by adding a catalyst promoter to the catalytic cracking catalyst. For example, lA/ I'SXjS^yO A\ discloses a method of adding a HZSM-5 zeolite in an amount of 0.01-1% by weight of

the catalyst directly into the catalytic cracking unit.
USP3, 758, 403 discloses a catalyst comprising ZSM-5 zeolite and large-pore zeolite (e.g. the Y-type and X-type) (in a ratio of l:10-3:l)as active components, thereby raising the yield of liquefied gas and the gasoline octane number by a big margin, while the yields of propene and butene are increased by about 10wt%. Furthermore, CN10G457eB, USP4,9aO,053 and CN1043520^ have disclosed catalysts comprising mixtures of ZSM-5 zeolite and Y-type zeolite as active components, resulting in that remarkable increases in the yield of liquefied gas are achieved. However, this kind of methods is used to mainly increase the yield of liquefied gas by -sans of modifying the catalysts, while the increase in the yield of diesel oil is less.
The above-mentioned pa^enned processes can only increase the yield of liquefied gas, but cannot increase the yield of diesel simultaneously, or if any, the yield of diesel oil is insignificant. Moreover, some ox tihe above-mentioned patented processes require special catalysts or reaction units, or the existing units should be largely refitted to meet their specific requirements.
The object of the present invention is to provide a catalytic cracking process for increasing the yields of diesel oil and liquefied gas simultaneously on the basis of the prior art.
Nummary of the Invention
The present invention relates to a process for catalytic cracking hydrocarbon stocks to increase simultaneously the yields of diesel oil and liquefied gas, carrying out in a riser or fluidized-bed reactor, which comprise:
(a) Gasoline stock, an optional pre-lifting medium, and a catalytic cracking catalyst are charged into the reactor through the bottom of the reactor and they contact in the lower zone of the reactor to produce an oil-gas mixture with a lot of liquefied gases;
(b) The resultant oil-gas mixture and the reacted catalyst from step (a) flow upwardly and contact, in the upper zone above the lower zone of the reactor, conventional catalytic cracking feed introduced from at least two sites having different heights higher than the lower part of on the reactor.

to produce a diesel-rich oil-gas mixture;
(c) The resultant oil-gas mixture from step (b) enters a fractionation system where it is separated into the desired liquefied gas, gasoline and diesel oil products, heavy cycle oil and slurry, wherein the heavy cycle oil and slurry are optionally circulated back to the reactor;
(d) The spent catalyst may pass through steam sfripping and enteis a regenerator and undergoes coke-burning and then is circulated back for reuse.
Accordingly, the present invention provides a process for catalytically cracking hydrocarbon stocks in a riser or fiuidized bed reactor, comprising the steps of: (a) charging a gasoline stock and a catalytic cracking catalyst into a lower zone of the reactor to permit contact between the catalyst and the gasoline slock and to produce a liquefied gas-rich oil-gas mixture containing reacted catalyst; (b) introducing the liquefied gas-rich oil-gas mixture with reacted catalyst produced in step (a) into a reaction zone above the tower zone of the reactor and further introducing at least one conventional catalytic hydrocarbon feed independently into at least two sites in said upper zone, each site having a different height above the lower zone of the reactor, to produce a diesel-rich oil-gas mixture; and (c) separating the resulting oil-gas mixture produced in step (b) in a fractionation system into liquefied gas, gasoline and diesel oil products, heavy cycle oil, and slurry.

Brief Pegcription of the Drawing
The attached drawing is a schematic diagram of a riser reactor illustrating the flow of the catalytic cracking process provided by the present invention for increasing the yields of diesel oil and liquefied gas simultaneously. The parts of the riser reactor are indicated by the reference signs in the drawing as follows:
The reference signs 1, 2, 9, 10, 11, 13, 14, 15, 16, 17, 18 and 19 are for -the pipelines; 3 for the riser reactor, wherein I is for gasoline cracking zone, 11 for heavy oil cracking zone. III for light oil cracking zone, and IV for termination reaction zone; 4 for disengaging section; 5 for steam stripper; 6 for slant pipe (spent catalyst); 7 for regenerator; 8 for slant pipe (regenerated catalyst) ; and 12 for fractionation system.
Detailed Description of the Invention
The present invention relates to a process for catalytic cracking hydrocarbon stocks to increase simultaneously the yields of diesel oil and liquefied gas, carrying out in a riser or fluidi zed-bed reactor, which comprises the following steps:
(a) Gasoline stock, an optional pre-lifting medium, and a catalytic cracking catalyst are charged into the reactor through the bottom of the reactor and they contact in the lower zone of the reactor to produce a liquefied gas-rich oil-gas mixture;
(b) The resultant oil-gas mixture and the reacted catalyst from step (a) flow upwardly and contact, in the zone upper than the lower zone of the reactor, conventional catalytic

cracking feed introduced from at least two sites having different heights higher than the lower part of on the reactor, to produce an oil-gas mixture with a lot of diesel oils;
(c) The resultant oil-gas mixture from step (b) enters a fractionation system where it is separated into the desired liquefied gas, gasoline and diesel oil products, heavy cycle oil and slurry, wherein the heavy cycle oil and slurry are optionally circulated back to the reactor;
(d) The spent catalyst may pass through steam stripping and enters a regenerator and undergoes cok.e-burninq and then is circulated back for reuse.
Particularly, the present invention relates to a process for catalytic cracking hydrocarbon stocks re give simultaneously higher yields of diesel oil and liquefied gas, carrying out in a riser or fluidized-bed reactor, wherein said reactor comprises a gasoline cracking zone, a heavy oil cracking zone, a light oil cracking zone and a optional termination reaction zone, wherein said process comprises the following steps:
(a) Gasoline stock and an optional pre-lifting nedium are charged into the gasoline cracking zone of the reactor, contact a catalytic cracking catalyst to produce an oil-gas mixture, and then the resultant oil-gas mixture and reacted catalyst rise up and enter the hea""/y oil cracking zone;
(b) Conventional catalytic cracking feed solely, crmixed with slurry and/or heavy cycle oil, is charged into the reactor through the bottom of the heavy oil cracking zone, contact the oil-gas mixture and reacted catalyst rising from the gasoline cracking zone to produce an oil-gas mixture, and then the resultant oil-gas mixture and reacted catalyst rise up and enter the light oil cracking zone;
(c) Conventional catalytic cracking feed solely, or mixed with slurry and/or heavy cycle oil, is charged into the reactor through the bottom of the light oil-cracking zone, contact the oil-gas mixture and reacted catalyst rising from the heavy oil cracking zone to produce an oil -gas mixture, and then the resultant oil-gas mixture and reacted catalyst rise up and enter an optional termination reaction zone;
(d) A reaction terminating medium is optionally charged

into the reactor through the bottom of the termination
reaction zone to terminate the reaction, from where
the resultant oil-gas mixture and catalyst flow
forward to a disengaging section to separate; and
(e) The reaction products are separated out in the
fractionation system to obtain the desired liquefied
gas, gasoline and diesel oil products, and the spent
caTialyst may pass through steam stripping and then
enters a regenerator and undergoes coke-burning, and
then is circulated back for reuse.
.^_"ong them said gasoline stock used in the gasoline
cracking zone is a distillate oil having a boiling range of
30'-210"C selected from straight-run gasoline, catalytic
gasoline and coker gasoline, or mixtures thereof, preferably
a catalytic gasoline fraction having C^*-205°C; and it can also
be a narrow fraction of gasoline of a certain stage, such as
that having a boiling range of 90°-140'C or 110°-210°C. Said
gasoline stock may be fractions obtained from the present
reacticr. -jnit per se or from other sources. Said pre-lifting
medium is a dry gas or steam. The weight ratio of said
pre-lifting medium to gasoline stock is in the range of 0-5:1.
In the gasoline cracking zone, the reaction temperature is about 500°-700'C, preferably about 620'-680'C; the reaction pressure is from atir.ospheric pressure to 300 KPa, preferably about 100-250 KPa; the residence time is about 0.1-3.0 sec, preferably about G.2-1.5 sec; the weight ratio cf catalyst to gasoline stock is about 10-150, preferably about 20-80; the weight ratio of gasoline stock to conventional catalytic cracking feed is about 0.02-0.50:1, preferably about 0.1-0.3:1; and the regenerated catalyst has a temperature of about 600'-750°C, preferably about 660°-710°C.
Said gasoline stock may be introduced from the bottom of the gasoline cracking zone or through spray nozzles arranged around the gasoline cracking zone, wherein the gasoline stock is cracked to form a liquefied gas and at the same time the sulfur and olefin contents in the gasoline are reduced while the gasoline octane number is raised. When hot catalyst comes into contact with the gasoline stock, its temperature reduces and simultaneously a trace of coke deposits on the catalyst, hence diminishing the activity of the catalyst and passivating the metals supported thereon, which is advantageous for increasing the yield of diesel oil. When the catalyst in this

state contacts the conventional catalytic cracking feeds in the heavy oil cracking zone and light oil cracking zone, more diesel oil is produced. The resultant oil-gas mixture and reacted catalyst from the gasoline-cracking zone enter the heavy oil-cracking zone directly.
The conventional catalytic cracking feeds used in the heavy oil cracking zone and light oil cracking zone are selected at least one from straight-run gas oils, coker gas oils, deasphaited oils, hydrofined oils, hydrocracking tail oils, vacuum residues and atmospheric residues , or mixtures thereof. Said conventional catalytic cracking feed used in steps (b) and (C) iTiay the same or different. A portion of about 20-95wt% of said conventional catalytic cracking feed solely, or mixed vith slurry and/or heavy cycle oil, is charged into the hea-i/y oil cracking zone; and a portion of about 5-80'wt% of said conventional catalytic cracking feed solely, or mixed with slurry and/or heavy cycle oil, is charged into the light cil crackir.g zone.
The function of heavy oil cracking zone is to control the cracking reaction of gasoline stock, to enhance the level of heavy oil cracking severity and to ensure the conversion of heavy oil fractions so as to increase the yisld of dissel oil from the feedstock in the heavy oil cracking zone and improve the feedstock's selectivity to diesel oil in the light oil cracking zone. In the heavy oil cracking zone, the weight ratio of catalyst to feedstock is about 5-20, preferably about 7-15; the oil-gas mixture residence time is about 0.1-2 sec, preferably about 0.3-1.0 sec; and the reaction pressure is from atmospheric pressure to 300 KPa, preferably about 100-230 KPa. The portion of feedstock to be processed in the heavy oil cracking zone is relatively heavier and more difficult to be cracked.
The function of light oil cracking zone is to carry out cracking of the conventional catalytic cracking feed in this zone under an environment formed through the controlling processes of the gasoline cracking zone and heavy oil cracking zone, which is beneficial for improving the feedstocks' selectivity to diesel oil in the heavy oil cracking zone and light oil cracking zone. In the light oil cracking zone, the weight ratio of catalyst to feedstock is about 3-15, preferably about 5-10; the oil-gas mixture residence time is about 0,1-6

sec. , preferably about 0.3-3 sec.; and the reaction pressure is from atmospheric pressure to 300 KPa, preferably about 100-230 KPa. The portion of feedstock to be processed in the light oil cracking zone is relatively lighter and easier to be cracked.
The recracking of heavy cycle oil and slurry is to convert unreacted fractions of them irito valuable light oil products-
A termination reaction zone can be arranged after the light oil cracking zone. The function of the termination reaction zone is to diminish secondary cracking of light oils from the heavy oil cracking zone and light oil cracking zone, to increase the yield of diesel oil and to control the degree of conversion of the catalytic stocks as a whole. Said reaction terminating medium is selected at least one from waste water, softened water, recycle oils, heavy oil fractions, coker gas oils, deasphalted oils, straight-run gas oils and hydrocracking tail oils, cr -i^xt^xires thereof. Depending on the type of reaction terminating medium used and the operation parameters in the heavy oil cracking zone and light oil cracking zone, particularly that of the light oil cracking zone, the weight ratio of reaction terminating medium to conventional catalytic cracking feed is about 0-30wt%. Controlled by the quantity of terminating medium injected, the temperature in the reaction termination zone is in the range of about 470°-550"C, and the material residence time is about 0 .2-3.0 sec.
The catalyst applicable in the process according to the present invention can be one comprising at least one active component selected from Y-type or HY-type zeolites with or without rare earth, ultra-stable Y-type zeolites with or without rare earth, zeolites of ZSM-5 series, or high-silica
zeolites having pentatomic ring structure and P -zeolites, or
mixtures thereof, and can also be an amorphous silica-alumina catalyst. In short, all the catalytic cracking catalysts can be applied in the process according to the present invention.
Said riser or fluidized bed reactor comprising a gasoline cracking zone, a heavy oil cracking zone, a light oil cracking zone and a termination reaction zone has a total height of 10-50 m, wherein the heights of the zones account for 2-20%,

2-40%, 2-60% and 0-40% respectively; more accurately, the height of each of the four zones is determined in accordance with the specific operating parameters required in each reaction zone,
The process according to the present invention can be carried out in conventional catalytic cracking reactors. However, since the gasoline cracking zone in certain existing catalytic cracking units is to long, it has to be refitted, for example, the feed inlet in the gasoline cracking zone has CO be rearranged at a higher Iccacion. The present process can also be carried out in reactors with a gasoline cracking zone of different structures.
The process of the present invsniiion is further illustrated with reference to the attached drawing (exemplified with riser reactor).
The flow scheme shows the ca^calycic cracking process for higher yields of both diesel oil and liquefied gas, but the shape and dimensions of the riser reactor are not restricted to what is shown in the schematic diagram, whereas they are determined by the specific conditions of operation.
The flow scheme of the process according to the present invention is as follows:
A gasoline stock and a pre-lifr^ing medium from pipelines 1 and 2 respectively are charged in a preset ratio into the riser reactor 3 through a location at a height of 0-80% of the gasoline cracking zone I contact a catalyst, which is a fresh one or a regenerated one, and then the resultant oil-gas mixture and reacted catalyst rise up and enter the heavy oil cracking zone II; a portion of conventional catalytic cracking feed solely from pipeline 13, or mixed with a recycling slurry from pipeline 16 and/or heavy cycle oil from pipeline 17, is charged into the reactor via pipeline 13 through the bottom of the heavy oil cracking zone II contacts the reactant oil-gas mixture and catalyst rising from the gasoline cracking zone, and then the resultant oil-gas mixture and reacted catalyst rise up and enter the light oil cracking zone III; another portion of conventional catalytic cracking feed solely from pipeline 14, or mixed with a recycling slurry from pipelines 16 and 18 and /or heavy cycle oil from pipelines 17 and 19, is charged into the reactor via pipeline 14 through the bottom

of the light oil cracking zone contacts the reactant oil-gas mixture and catalyst rising from the heavy oil cracking zone, and then the resultant oil-gas mixture and reacted catalyst rise up and enter the termination reaction zone IV; optionally, a reaction terminating medium from pipeline 15 IS charged into the reactor through the bottom of the termination reaction zone IV, from which the reactant cil-gas mixture and spent catalyst flow into the disengaging section 4 with or without a dense fluidized bed reactor, and then the oil-gas mixture and steam via pipeline 11 enter the fractionation system 12 and are separated into dry gas, liquefied gas , gasoline, diesel oil, heavy cycle oil and slurry, and then the slurry can be circulated back to the hea-.-y oil cracking zone via pipelines 16 and 13 in sequence, or to the light oil cracking zone via pipelines 16, 18 and 14 in sequence; and the heavy cycle oil can be circulated back to the heavy oil cracking zone via pipelines 17 and 13 in sequence, or to the light oil cracking zone via pipelines 17, 19 and 14 in sequence. The spent catalyst enters the steam stripper 5 for steam stripping, and then enters the regenerator 7 via the slant pipe 6 to undergo coke-burning and regeneration in the presence of air; the air is introduced into the regenerator 7 via pipeline 9, and flue gas is discharged therefrom via pipeline 10, and the hot regenerated catalyst is circulated back to the bottom of the gasoline cracking zone of the riser reactor for reuse.
The advantages of the present invention are embodied in the following points;
1. The process of the present invention can be carried out in an existing conventional catalytic cracking unit, which need not to be revamped in large scale, and it does not require special catalyst either, while the yields of liquefied gas and diesel oil can be increased by a big margin;
2. In the gasoline cracking zone, when the gasoline stock and hot catalyst comes into contact, a trace of coke deposited on the catalyst will cause passivation of the metals supported on the catalyst, hence reducing the adverse effects of the metals on product distribution. Since a large portion of strong acid sites on the zeolite and the matrix are covered by the trace of coke, this is beneficial for inhibiting coke-forming tendency during cracking of conventional catalytic cracking

feed as well as for improving the selectivity to diesel oil;
3. In respect of the portion of relatively light fractions m the feedstock which can be easily cracked, the measures of operating at lower temperature with less rigorous reaction severity, shorter contact cracking and preventing secondary cracking can effectively improve the selectivity to diesel oil ;
4. As sulfur contained in the gasoline stock is mainly distributed in the heavy components, the reaction in the gasoline cracking zone of the riser reactor occurs zo crack selectively ^he heai'v components therein, thus the sulfur conteni: can be reduced remarkably;
5. In ■che process according to the present invention, the gasoline stock injected into the reactor can substitute completely or partially for the pre-lif ting steam, as a result, the energ-y tor.3-j:ir.pticn of the reaction unit and waste '-rater discharged therefrom are reduced, so this is beneficial for environ-vsnt protection as well as for diminishing hydrothermal deactivation of the catalyst; and
6 . The gasoline octane number can be maintained at a higher level or raised, while olefins of gasoline can be reduced.
The process of the present invention is further illustrated by the following non-limiting examples.
The properties of feedstocks and catalysts used in the examples are shown in Tables 1 and 2 respectively. The conventional catalytic cracking feed used was vacuum gas oil mixed with 17wt%, 16wt% of vacuum residues, and the gasoline stocks were the catalytic gasolines formed in the reaction unit. Catalysts A and B were products of the Qilu Catalysts Plant of the SINOPEC, and catalyst 0 was a product of the Lanzhou Catalysts Plant of the CNPC.
Example 1
This example was conducted to demonstrate that the yields of liquefied gas and diesel oil can be increased simultaneously

by the process of the present invention. The process was carried out in a pilot plant riser reactor.
The total height of the reactor was 10 m, wherein the heights of the gasoline cracking zone, heavy oil cracking zone, light oil cracking zone and termination reaction zone were 1 m, 2 m, 5 m, and 2 m respectively.
The pre-lif ting steam and catalytic gasoline (having a RON and MON of 92.4 and 79.1 respectively and an olefin content of 47.5wt%) in a weight ratio of 0.05:1 were charged into the reactor through a location at a height of 40% the height of the gasoline cracking zone, contacted catalyst A, and then the resulrant oil-gas mixture and reacted catalyst rose up and entered the heavy oil cracking zone; a portion of 65wt% of snock A and 100wt% of heavy cycle oil were charged into the reactor through the bottom of heavy oil cracking zone, contacted the reactant oil-gas mixture and catalyst from the gasoline cracking zone, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the light oil cracking zone; a portion of 35wt% of stock A was charged into the reactor through the bottom of light oil cracking zone, contacted the reactant oil-gas mixture and catalyst from the heavy oil cracking zone, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the termination reaction zone; softened water in an amount of 5% by weight of stock A was charged into the reactor through the bottom of the termination reaction zone; then, the resultant oil-gas mixture and reacted catalyst flowed to the separation system; then the reaction products were separated out, and the spent catalyst, passing through steam stripping, entered the regenerator and, after coke-burning, the regenerated catalyst was circulated back for reuse. The weight ratio of catalytic gasoline to stock A was 0.20:1.
The reaction conditions and product distribution are shown in Table 3, from which it can be seen that the yield of liquefied gas IS 16.34wt%, and the yield of diesel oil is 27.81wt%. The properties of gasoline products are shown in Table 4, from which it can be seen that the gasoline products have RON and MON of 93 .2 and 80 . 5 respectively, an olefin content of 37 . awt% and a sulfur content of 760ppm.
Comparative Example 1

This comparative example was conducted to demonstrate the yields of liquefied gas and diesel oil obtained from a conventional catalytic feedstock in a conventional non-sectional catalytic cracking riser reactor. The process was carried out in a pilot plant riser reactor having a total height of 10 m.
The feedstock and catalyse used m chis comparative example were the same respectively as those used in Example 1. The reaction conditions and produc'c distribution are shown in Table 3, from which it can be seen that the yield of liquefied gas is only 13.23wt%, 3.11 percentage points lower than that obtained in Example 1; and the yield of diesel oil is only 25.72wt%, 1.79 percentage poinds lower than that obtained in Example 1. The properties of the gasoline products are shown in Table 4 , from which it can be seen that the gasoline products have a RON and MON of 92.4 and 79.1 respectively, an olefin content of 47.5wt% and a sulfur ccnren-r of 670ppm.
Example 2
This example was conducted to demonstrate that the yields of liquefied gas and diesel oil can be increased simultaneously by the process of the present invention. The process was carried out in the same reactor as that used in Example 1.
The pre-lif ting steam and catalytic gasoline (having a RON and MON of 92,6 and 79.4 respectively and an olefin content of 46.1wt%) in a weight ratio of 0.10:1 were charged into the reactor through a location at a height of 60% the height of the gasoline cracking zone, contacted catalyst B, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the heavy oil cracking zone; a portion of 40wt% of stock A and all the slurry and heavy cycle oil were charged into the reactor through the bottom of heavy oil cracking zone, contacted the reactant oil-gas mixture and catalyst from the gasoline cracking zone, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the light oil cracking zone; a portion of 60wt% of stock A and all the recycling heavy cycle oil were charged into the reactor through the bottom of light oil cracking zone, contacted the reactant oil-gas mixture and catalyst from the heavy oil cracking zone, and then the resultant oil-gas mixture and reacted catalyst rose

up and entered the termination reaction zone; softened water in an amount of 10% by weight of stock A was charged into the reactor through the bottom of the termination reaction zone; then, the resultant oil-gas mixture and reacted catalyst flowed to the separation system; then the reaction products were separated out, and the spent catalyst, passing through steam stripping, entered the regenerator and, after coke-burning, the regenerated catalyst was circulated back for reuse. The weight ratio of catalycic gasoline stock to stock A was 0.08:1.
The reaction conditions and produce distribution are shown m Table 5 , from which it can be seen that the yield of liquefied gas is 16.68wt%, and the yield of diesel oil is 27.56wt%. The properties of gasoline products are shown in Table 6, from which It can be seen the gasoline products have RON and MON of 92.8 and 80.2 respectively, an olefin content of 43.4wt% and a sulfur content of SOlppm.
Comparative Example 2
This comparative example was conducted to demonstrate the yields of liquefied gas and diesel oil obtained from a conventional catalytic feedstock in a conventional non-sectional catalytic cracking riser reactor. The process was carried out in a pilot plant riser reactor having a total height =5 :0 m.
The feedstock and catalyst used in this comparative example were the same respectively as the conventional catalytic cracking feed and catalyst used in Example 2. The reaction conditions and product distribution are shown in Table 5, from which it can be seen that, in the absence of a gasoline stock, the yield of liquefied gas is only l5.23wt%, 1.36 percentage points lower than that obtained in Example 2; and the yield of diesel oil is only 25.79vjt%, 1.77 percentage points lower than that obtained in Example 2 . The properties of the gasoline products ars shown in Table 6, from which it can be seen that the gasoline products have a RON and MON of" 92.6 and 79.4 respectively, an olefin content of 46 . lwt% and a sulfur content of 85Oppm.
Example 3

This example was conducted to demonstrate that the yields of liquefied gas and diesel oil can be increased sirnultaneously by the process of the present invention. The process was carried out in a pilot plant riser reactor, the same as that used in Example 1.
The pre-lif ting steam and catalytic gasoline (having a RON and MON of 92.6 and 79.4 respectively and an olefin convene of ■36.1wt%) in a weight ratio of 0.06:1 were charged mco the reactor through a location at a height of 40% the height of the gasoline cracking zone, contacted the catalyst B, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the heavy oil cracking zone; a stock A of 75wt:% and all the recycling slurry were charged into the reactor through the bottom of heavy oil cracking zone, contacted r,he oil-gas mixture and catalyst from the gasoline cracking zone, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the light oil cracking zone; a stock A of 25wt% and all the recycling heavy cycle oil were charged into the reactor through the bottom of light oil cracking zone, contacted the oil-gas mixture and catalyst from the heavy oil cracking zone, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the termination reaction zone; softened water in an amount of 5% by weight of stock A was charged into the reactor through the bottom of the termination reaction zone; then, the resultant oil-gas mixture and reacted catalyst flowed to the separation system; chen the reaction products were separated out, and the spent catalyst, passing through steam stripping, entered the regenerator and, after coke-burning, the regenerated catalyst was circulated back for reuse. The weight ratio of catalytic gasoline stock to stock A was 0.15:1,
The reaction conditions and product distribution are shown in Table 5 , from which it can be seen that the yield of liquefied gas is 18.44wt%, and the yield of diesel oil is 28.00wt%. The properties of gasoline products are shown in Table 6, from which it can be seen that the gasoline products have RON and MON of 93 . 6 and SO . 7 respectively, an olefin content of 39 . 9wt% and a sulfur content of 780ppm.
Example 4
This example was conducted to demonstrate that the yields

of liquefied gas and diesel oil can be increased simultaneously by the process of the present invention. The process was carried out in a pilot plant riser reactor, the same as that used in Example 1,
The pre-lif ting steam and catalytic gasoline (having a RON and MON of 90.1 and 79,3 respectively and an olefin content of 51.2wt%) in a weight ratio of 0.09:1 were charged into the reactor through a iocatio.a at a height of 20% the height of the gasoline cracking zone, contacted the catalyst C, and then the resultan' oil-gas mixture and reacted catalyst rose up and entered the hea"'/y oil cracking zone; a stock B of 60wt% and a porticn of aOwt% of the recycling slurry were charged into the reactor through the bottom of heavy oil cracking zcne, contacted the reactar.t oil-gas mixture and catalyst from, the gasoline cracking zone, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the light oil cracking zone; a stock S cf 40wt% and all the recycling heavy cv'cle oil were charged mtc the reactor through the bottom of light oil cracking zone, contacted the reactant oil-gas mixture and catalyst from the heavy oil cracking zone, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the termination reaction zone; catalytic gasoline in an amount of 5% by weight of stock B was charged into the reactor through the bottom of the termination reaction zone; then, the resultant oil-gas mixture and reacted catalyst flowed to the separation system; then the reaction products were separated out, and the spent catalyst, passing through steam stripping, entered the regenerator and, after coke-burning, the regenerated catalyst was circulated back for reuse. The weight ratio of catalytic gasoline stock to stock B was 0.10:1.
The reaction conditions and product distribution are shown in Table 7 , from which it can be seen that the yield of liquefied gas is 20.49wt%, and the yield of diesel oil is 28.45wt%. The properties of gasoline products are shown in Table 8, from which it can be seen that the gasoline products have RON and MON of 90.5 and 80 .2 respectively, an olefin content of 45.9wt% and a sulfur content of 314ppm.
Comparative Example 3
This comparative example was conducted to dsmonstrate the yields of liquefied gas and diesel oil obtained from a

conventional catalytic feedstock in a conventional non-sectional catalytic crackling riser reactor. The process was carried out in a pilot plant riser reactor having a total height of 10 m.
The feedstock and catalyst used in this comparative example were the same respectively as the conventional catalytic cracking feed and catalyst used in Example 4. The reaction conditions and product distribution are shown, in Table 7 , from which It can be seen that, in the absence of a gasoline stock, the yield of liq'jefied gas is only 18.4awt%, 2.01 percentage points lower than that obtained in Example 4; and the yield of diesel oil is only 26.61wt%, 1.84 percentage points lower than that obtained m Example 4. The properties of gasoline products are shown in Table 8, from which it can be seen that the gasoline produces have a RON and MON of 79.8 and 90.1 respectively, an olefin content of 51. 2wt% and a sulfur content of 394ppm.
E xamp1e 5
This example was conducted to demonstrate that the yields of liquefied gas and diesel oil can be increased simultaneously by the process of the present invention. The process was carried out m a pilot plant riser reactor, the same as that used in Example 1.
The catalytic gasoline (having a RON and MON of 90.1 and 79.8 respectively and an olefin content of 51.2wt%) was charged into the reactor through the bottom of the gasoline cracking zone, contacted the catalyst C, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the heavy oil cracking zone; 100wt% of stock B and all the recycling slurry were charged into the reactor through the bottom of heavy oil cracking zone, contacted the reactant oil-gas mixture and catalyst from the gasoline cracking zone, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the light oil cracking zone; all the recycling heavy cycle oil was charged into the reactor through the bottom of light oil cracking zone, contacted the oil-gas mixture and catalyst from the heavy oil cracking zone, and then the resultant oil-gas mixture and reacted catalyst rose up and entered the termination reaction zone; catalytic gasoline in an amount of 10wt% the weight of stock B was charged into the

reactor through the bottom of the termination reaction zone; then, the resultant oil-gas mixture and reacted catalyst flowed to the separation system; then the reaction products were separated out, and the spent catalyst, passing through steam stripping, entered the regenerator and, after coke-burning, the regenerated catalyst was circulated back for reuse. The weight ratio of catalytic gasoline stock to stock B was 0.049:1.
The reaction conditions and product distribution are shown in Table 7 , from which it can be seer, rhat the yield of liquefied gas IS 18.9Bwt%, and the yield cf diesel oil is 27.04wt%. The properties of gasoline products are shown in Table S, from which it can be seen that the gasoline products have RON and MON of 90 .3 and 79.8 respectively, an olefin content of 48.8wt% and a sulfur content of 365ppm.


















WE CLAIM:
1. A process for catalytically cracking hydrocarbon stocks in a riser or fluidized
bed reactor, comprising the steps of:
(a) charging a gasoline stock and a catalytic cracking catalyst into a lower zone of the reactor to permit contact between the catalyst and the gasoline stock and to produce a liquefied gas-rich oil-gas mixture containing reacted catalyst;
(b) introducing the liquefied gas-rich oil-gas mixture with reacted catalyst produced in step (a) into a reaction zone above the lower zone of the reactor and flirther introducing at least one conventional catalytic hydrocarbon feed independently into at least two sites in said upper zone, each site having a different height above the lower zone of the reactor, to produce a diesel-rich oil-gas mixture; and
(c) separating the resulting oil-gas mixture produced in step (b) in a fractionation system into hquefied gas, gasoline and diesel oil products, heavy cycle oil, and slurry.
2. The process as claimed in claim 1, wherein said gasoline stock in step (a) is a
distillate oil having a boiling range of 30'-210'C. selected from at least one
member selected from the group consisting of straight-run gasoline, catalytic
gasoline and coker gasoline, and mixtures thereof, and said conventional
catalytic cracking feed is selected from at least one member selected from the
group consisting of straight-run gas oil, coker gas oil, deasphalted oil,
hydrofmed oil, hydrocracking tail oil, vacuum residue and atmospheric residue,
and mixtures thereof

3. The process as claimed in claim 1, wherein the reaction temperature in step (a) is about 500-700'C., the reaction pressure is in the range of from atmospheric pressure to 300 KPa, the residence time is about 0.1-3.0 sec, the weight ratio of catalyst to gasoline stock is about 10-150, and the temperature of the regenerated catalyst in step (c) is about 600-750°C.
4. The process as claimed in claim 1, wherein the weight ratio of catalyst to conventional catalytic cracking feed in step (b) is about 3-15, and the residence time is about 0.1 -6 sec.
5. The process as claimed in claim 1, further including the step of charging said gasoline stocks into the lower zone of the reactor with a pre-lifting medium.
6. The process as claimed in claim 1, including the step of recycling at least a portion of the heavy cycle oil and slurry produced in step (c) to the reactor.
7. The process as claimed in claim 1, further including the step of separating any spent catalyst from the oil-gas mixture produced in step (b) and steam-stripping and regenerating the spent catalyst by coke-burning in a regenerator.
8. The process as claimed in claim 7, further including the step of recirculating the regenerated catalyst to said reactor,
9. A process for catalytically cracking hydrocarbon stocks in a riser or fluidized bed reactor, wherein said reactor comprises a gasoline cracking zone, a heavy oil cracking zone, and a light oil cracking zone, comprising the steps of:
(a) charging gasoline stocks to the gasoline cracking zone to contact said gasoline stock with a catalytic cracking catalyst to produce an oil-gas mixture,

(b) passing the resultant oil-gas mixture and reacted catalyst of step (a) into the heavy oil cracking zone;
(c) charging at least one stock selected from the group consisting of catalytic cracking feed, a mixture of catalytic cracking feed and slurry, a mixture of catalytic cracking feed and heavy cycle oil, and a mixture of catalytic cracking feed, slurry, and heavy oil, into the heavy oil cracking zone and contacting the oil-gas mixture and catalyst from step (a) to produce an oil-gas mixture containing reacted catalyst,
(d) passing the resultant oil-gas mixture and reacted catalyst from step (c) into the Hght oil cracking zone;
(e) charging at least one member selected from the group consisting of catalytic cracking feed, a mixture catalytic cracking feed and slurry, a mixture of catalytic cracking feed and heavy cycle oil, and a mixture of catalytic cracking feed, slurry, and heavy cycle oil into the light oil cracking zone to contact the oil-gas mixture and reacted catalyst provided in step (c) to produce a product stream containing a oil-gas mixture and obtain spent catalyst.

10. The process as claimed in claim 9, wherein said pre-lifting medium is dry gas or steam, the weight ratio of the prehfting medium to the gasoline stock is 0-5:1.
11. The process as claimed in claim 9, wherein said gasoline stock in the gasoline cracking zone is a distillate oil having a boiling range of 30'-210'C selected from at least one of straight-run gasoline, catalytic gasoline and coker gasoline, or mixtures thereof

12. The process as claimed in claim 11, wherein said gasoline stock in the gasoline cracking zone is a catalytic gasoline fraction of C7'-205°C.
13. The process as claimed in claim 9, wherein the gasoline cracking zone has a reaction temperature of about SOO-yoCC, a reaction pressure is in the range of from atmospheric pressure to 300 KPa, a residence time is about 0.1-3.0 sec, and a weight ratio of catalyst to gasoline stock is about 10-150.
14. The process as claimed in claim 13, wherein the gasoline cracking zone has a reaction temperature of about 620-680°C,, a reaction pressure is about 100-230 KPa, a residence time is about 0.2-1,5 sec, and a weight ratio of catalyst to gasoline stock is about 20-80,
15. The process as claimed in claim 9, wherein the heavy oil cracking zone has a weight ratio of catalyst to feedstock of about 5-20, and a residence time is about 0.1-2 sec, and the light oil cracking zone has a weight ratio of catalyst to feedstock of about 3-15, and aresidence time of about 0.1-6 sec.
16. The process as claimed in claim 15, wherein the heavy oil cracking zone has a weight ratio of catalyst to feedstock of about 7-15, and a residence time is about 0,3-1 sec, and the light oil cracking zone has a weight ratio of catalyst to feedstock of about 5-10, and a residence time of about 0.2-3 sec,
17. The process as claimed in claim 9, wherein said conventional catalytic cracking feed is selected from the group consisting of straight-run gas oil, coker gas oil, deasphaited oil, hydrofined oil, hydrocracking tail oil, vacuum residue and atmospheric residue, and mixtures thereof

18. The process as claimed in claim 9, wherein the weight ratio of said feed used in step (b) to said feed used in step (c) is about 20-95:80-5.
19. The process as claimed in claim 9, wherein gasoline stock and conventional catalytic cracking feed is fed to the reactor in a weight ratio of gasoline slock to conventional catalytic cracking feed of about 0.02-0.50:1.
20. The process as claimed in claim 9, wherein the total height of said reactor is 10-50 m, of which the heights of gasoline cracking zone, heavy oil cracking zone, hght oil cracking and termination reaction zone are 2-20%, 2-40%, 2-60% and 0-40%, respectively.
21. The process as claimed in claim 9, including a fiirther step of introducing a pre-hfting medium into the gasoline cracking zone of the reactor.
22. The process as claimed in claim 9, wherein the reactor further includes a reaction termination zone, comprising the steps of:
introducing the resultant oil-gas mixture and reacted catalyst of step (d) into the
reaction terminating zone, and
introducing a reaction terminating medium into the reaction termination zone.
23. The process as claimed in claim 22, wherein said reaction terminating medium
is selected from the group consisting of waste water, softened water, catalytic
gasoline, coker gasoline, straight-run gasoline, cycle oil stock, heavy oil
fraction, coker gas oil, deasphaUed oil, straight-run gas oil and hydrocracking
tail oil, or mixtures thereof, and said reaction terminating medium accounts for
0-30 wt % of the conventional catalytic cracking feed.

24. The process as claimed in claim 9, further including the step of passing the
resulting oil-gas mixture and reacted catalyst of step (e) to a disengaging
section.
25. The process as claimed in claim 9, including the step of separating said oil-gas
mixture from step (e) in a fractionation system to obtain liquefied gas and
gasohne and diesel oil products,
26. The process as claimed in claim 9, further including the step of separating any
spent catalyst from the produced in step (e) and steam-stripping and
regenerating the spent catalyst by coke-burning in a regenerator.
27. A process for catalytically cracking hydrocarbon stocks substantially as herein
described with reference to the accompanying drawings.


Documents:

in-pct-2001-1809-che abstract-duplicate.pdf

in-pct-2001-1809-che abstract.pdf

in-pct-2001-1809-che claims-duplicate.pdf

in-pct-2001-1809-che claims.pdf

in-pct-2001-1809-che correspondence-others.pdf

in-pct-2001-1809-che correspondence-po.pdf

in-pct-2001-1809-che description(complete)-duplicate.pdf

in-pct-2001-1809-che description(complete).pdf

in-pct-2001-1809-che drawings-dupclaite.pdf

in-pct-2001-1809-che drawings.pdf

in-pct-2001-1809-che form-1.pdf

in-pct-2001-1809-che form-19.pdf

in-pct-2001-1809-che form-26.pdf

in-pct-2001-1809-che form-3.pdf

in-pct-2001-1809-che form-5.pdf

in-pct-2001-1809-che others.pdf

in-pct-2001-1809-che pct.pdf

in-pct-2001-1809-che petition.pdf


Patent Number 200389
Indian Patent Application Number IN/PCT/2001/1809/CHE
PG Journal Number 08/2007
Publication Date 23-Feb-2007
Grant Date 15-May-2006
Date of Filing 24-Dec-2001
Name of Patentee CHINA PETROCHEMICAL CORPORATION
Applicant Address 6A Huixin Dong Street, Chaoyang District, Beijing 100029
Inventors:
# Inventor's Name Inventor's Address
1 ZHANG, JIUSHAN NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
2 MAO, ANGUO NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
3 ZHONG, XIAOXIANG NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
4 ZHANG, ZHIGANG NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
5 CHEN, ZUBI NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
6 WANG, YAMIN NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
7 WANG, WEI NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
8 CUI, SHUXIN NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
9 WANG, ZEYU NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
10 CUI, HUA NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
11 ZHANG, RUICHI NE18 XUEYUAN ROAD, HAIDIAN DISTRICT, BEIJING, 100083,
PCT International Classification Number C10G11/18
PCT International Application Number PCT/CN2000/000166
PCT International Filing date 2000-06-20
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 99109195.7 1999-06-23 China