Title of Invention

A PROCESS OF EXTRACTION OF SILVER FROM USED DRY BATTERY CELLS

Abstract Abstract EXTRUSION COATED SUBSTRATE Article comprising a substrate, which is extrusion coated with a composition comprising a multi-branched polypropylene having a g' of less than 1.00.
Full Text

Extrusion coated substrate
The present invention relates to an extrusion coated substrate. Furthermore, it relates to the use of multi-branched polypropylene for ihe preparation of extrusion coated substrate.
In the process of extrusion coating, a substrate is coated with a particular polymer so as to provide a specific functionality such as sealability to said substrate. Examples include juice and milk packings, typically having an interior polymer extrusion coated onto a foil substrate. In general, extrusion coating of substrates such as paper, paperboard, fabrics and metal foils with a thin layer of plastic is practiced on a large scale. The polymer is extruded first whereby the flux of molten polymeric material passes through a fiat die to obtain a film a few microns thick, followed by a coating step, whereby the film is laid on a support and passes on a cooling cylinder. Upon cooling, the polymer adheres to its support.
The plastic most often used is low density polyethylene, a polymer which is readily extruded as a thin coating onto the surface of a moving substrate at high rates of speed. For some coating applications, crystalline polypropylene is a more desirable coating material than polyethylene due to its higher stiffness and higher heat resistance.
However, since many polypropylene materials suffer from low melt strength and low melt extensibility, they show poor processibility in high speed extrusion coating. At present, only a few polypropylene-based systems are available in the industry for extrusion coating. According to one approach for improving processibility, low density polyethylene is added to a polypropylene prepared in the presence of a Ziegler/Natta catalyst, as described e.g. in GB 992 388. In JP 2002 363356, low density polyethylene is added to a polypropylene prepared in the presence of a single site catalyst. EP-A-109 006 8 discloses a blend of a propylene homopolymer with a propylene copolymer of low crystallinity.

By blending polypropylene prepared in the presence of Ziegler/Natta catalysts or single site catalysts with either low density polyethylene or propylene copolymers of low crystaJHnity, processability can be improved but the level of extractables increases dramatically at moderate gel level. However, for food and beverage packings as well as for medical packing, high levels of extractables are not acceptable.
Furthermore, significant amounts of low density polyethylene or propylene copolymers of low crystallinity adversely affect thermal resistance as well as dimensional stability at elevated temperature. However, for many applications the extrusion coated substrate should have high thermal resistance and/or dimensional stability at elevated temperature.
According to EP-A-0947551, processibilty is improved by post-reactor modification, such as treatment by irradiation or free radicals. However, although known post-reactor modification processes can improve processibility, they result in a high level of extractables. Furthermore, the gel-rating of post-reactor modified resins is typically high.
Thus, considering the problems outlined above, it is an object of the present invention to provide a polypropylene-based extrusion coated substrate which can be obtained at high extrusion coating rate but still has a low content of extractables in combination with high heat stability.
The finding of the present invention is to provide an article comprising a substrate which is extrusion coated with composition based on polypropylene being multi-branched, i.e. not only the polypropylene backbone is furnished with a larger number of side chains (branched polypropylene) but also some of the side chains themselves t are provided with further side chains.

Hence, the present invention is related, in a first embodiment, to an article comprising a substrate which is extrusion coated with a composition comprising a polypropylene, wherein
said polypropylene is produced in the presence of a metallocene catalyst, preferably in the presence of a metallocene catalyst as further defined below, and said composition and/or said polypropylene has (have)
a. a branching index g' of less than 1.00 and
b. a strain hardening index (SHI@ls') of at least 0.30 measured by
a deformation rate de/dt of 1.00 s"1 at a temperature of 180 °C,
wherein the strain hardening index (SHI) is defined as the slope
of the logarithm to the basis 10 of the tensile stress growth
function (lg {rj£*)) as function of the logarithm to the basis 10 of
the Hencky strain (lg (£)) in the range of Hencky strains between
1 and 3.
Preferably the composition is free of polyethylene, even more preferred the composition comprises a polypropylene as defined above and further defined below as the only polymer component.
Surprisingly, it has been found that articles with such characteristics have superior properties compared to the articles known in the art. Especially, the melt of the composition in the extrusion process has a high stability, i.e. the extrusion line can be operated at a high screw speed. In addition the inventive article, in particular the composition of said article, is characterized by high heat stability in combination with low levels of extractables.
As stated above, one characteristic of the inventive article is the extensional meit flow properties of the composition and/or the polypropylene component of said ' composition, which is extrusion coated on the substrate. The extensional flow, or

deformation that involves the stretching of a viscous material, is the dominant type of deformation in converging and squeezing flows that occur in typical polymer processing operations. Extensional melt flow measurements are particularly useful in polymer characterization because they are very sensitive to the molecular structure of the polymeric system being tested. When the true strain rate of extension, also referred to as the Hencky strain rate, is constant, simple extension is said to be a "strong flow" in the sense that it can generate a much higher degree of molecular orientation and stretching than flows in simple shear. As a consequence, extensional flows are very sensitive to crystallinity and macro-structural effects, such as long-chain branching, and as such can be far more descriptive with regard to polymer characterization than other types of bulk Theological measurement which apply shear flow.
Accordingly one preferred requirement of the invention is that the polypropylene of the article has a branching index g' of less than 1.00, more preferably less than 0.90, still more preferably less than 0.80. In the preferred embodiment, the branching index g' shall be less than 0.75. The branching index g' defines the degree of branching and correlates with the amount of branches of a polymer. The branching index g' is defined as g'=[IVJfcr/[IV]un in which g' is the branching index, [IVbr] is the intrinsic viscosity of the branched polypropylene and [I V]iin is the intrinsic viscosity of the linear polypropylene having the same weight average molecular weight (within a range of ±10 %) as the branched polypropylene. Thereby, a low g'-value is an indicator for a high branched polymer. In other words, if the g'-value decreases, the branching of the polypropylene increases. Reference is made in this context to B.H. Zimm and W,H. Stockmeyer, J. Chem. Phys. 17,1501 (1949). This document is herewith included by reference.
When measured on the composition, which is extrusion coated on the substrate, the branching index g' is preferably of less than 1.00, more

preferably less than 0.90, still more preferably less than 0.80. In the preferred embodiment, the branching index g' of the composition, which is extrusion coated on the substrate, shall be less than 0.75. In this case of course the whole composition is used for [IVbJ.



Another physical parameter which is sensitive to heat resistance and the strain rate thickening is the so-called multi-branching index (MBI), as will be explained below in further detail.

Similarly to the measurement of SHi@ls~\ a strain hardening index (SHI) can be determined at different strain rates. A strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress

Hence, a further preferred requirement of the inventive article is that the composition, which is extrusion coated on the substrate, and/or the polypropylene of said composition has a multi-branching index (MBI) of at least 0.15, more preferably of at least 0.20, and still more preferred of at least

0.25. In a still more preferred embodiment the multi-branching index (MB1) is at least 0.28.
!t is in particular preferred that the inventive article comprises a composition aeing extrusion coated on the substrate, wherein said composition and/or the polypropylene of said composition has (have) a branching index g' of less than 1.00, a strain hardening index (SHI@ls') of at least 0.30 and multi-branching index (MBI) of at least 0.15. Still more preferred said composition and/or the polypropylene of said composition has (have) a branching index g' of less than 0.80, a strain hardening index (SHl@ls') of at least 0.40 and multi-branching index (MBI) of at least 0.15. In another preferred embodiment said composition and/or the polypropylene of said composition has (have) a branching index g' of less than 1.00, a strain hardening index (SHI@3s"') of at least 0.30 and multi-branching index (MBI) of at least 0.20. In still another preferred embodiment said composition and/or the polypropylene of said composition has (have) a branching index g' of less than 0.80, a strain hardening index (SHI@ls"') of at least 0.40 and multi-branching index (MBI) of at least 0.20. In yet another preferred embodiment said composition and/or the polypropylene of said composition has (have) a branching index g' of less than 0.80, a strain hardening index (SHI@ls"') of at least 0.50 and multi-branching index (MBI) of at least 0.30.
Accordingly, the composition of the inventive article and/or the polypropylenes of said composition is (are) characterized by the fact that their strain hardening index (SHI) increases with the deformation rate iH, i.e. a
phenomenon which is not observed in other compositions being extrusion coated on the substrates. Single branched polymer types (so called Y polymers having a backbone with a single long side-chain and an architecture which resembles a "Y") or H-branched polymer types (two polymer chains coupled

with a bridging group and a architecture which resemble an "H") as welJ as linear or short chain branched polymers do not show such a relationship, i.e. the strain hardening index (SHI) is not influenced by the deformation rate (see Figures 2 and 3). Accordingly, the strain hardening index (SHI) of known polymers, in particular known polypropylenes and polyethylenes, does not increase or increases only negligible with increase of the deformation rate (de/di). Industrial conversion processes which imply elongational flow operate at very fast extension rates. Hence the advantage of a material which shows more pronounced strain hardening (measured by the strain hardening index SHI) at high strain rates becomes obvious. The faster the material is stretched, the higher the strain hardening index (SHI) and hence the more stable the material will be in conversion. Especially in the fast extrusion process, like in the extrusion coating process, the melt of the multi-branched polypropylenes has a high stability. Moreover the inventive articles, i.e. the compositions, which are extrusion coated on the substrates, are characterized by a rather high stiffness in combination with a rather high heat resistance.
For further information concerning the measuring methods applied to obtain the relevant data for the branching index g', the tensile stress growth function tj£*, the Hencky strain rate eH, the Hencky strain s and the multi-branching index (MB1) it is referred to the example section.
It is in addition preferred that the inventive article, in particular the composition, which is extrusion coated on the substrate, is further characterized by low amounts of extractables. Extractables are undesirable in the field of food packing or in the field of medical packing. However the inventive article shall be preferably used for such applications. Thus it is preferred that the composition, which is extrusion coated on the substrate, according to the first aspect of this invention has a

good process properties even though said composition is characterized by rather low amounts of xylene solubles, i.e. by xylene solubles of less than 2.0 wt.-%.
Xylene solubles are the part of the polymer soluble in cold xylene determined by dissolution in boiling xylene and letting the insoluble part crystallize from the cooling solution (for the method see below in the experimental part). The xylene solubles fraction contains polymer chains of low stereo-regularity and is an indication for the amount of non-crystalline areas.
However, not only extractables in the article, in particular in the composition which is extrusion coated on the substrate, are detrimental for their use as packing material but also a low heat resistance. Thus in another aspect it is preferred that the article, i.e. the composition extrusion coated on the substrate, is characterized by a high heat resistance.
Accordingly, the article according to the first aspect of the present invention is further defined as follows: The article comprises a substrate, which is extrusion coated with a composition comprising a polypropylene, wherein said polypropylene is produced in (he presence of a metallocene catalyst, preferably in the presence of a metallocene catalyst as further defined below, and
a) said composition and/or (he polypropylene of said composition has (have) Xylene solubles (XS) of less than 2.0 wt.-% and/or, preferably and,
b) said composition and/or the polypropylene of said composition fulfils the equation
Vicat B [°C] > -3.96 ■ Cx [mol%] + 86.85 wherein

Vicat B is the heat resistance of the composition or
of the polypropylene according to ISO 306 [50 N), and
Cx is the comonomer content in said
composition or in said polypropylene.
Preferably the article, more preferably the composition of the article, is free of polyethylene, even more preferred the article, in particular the composition, comprises a polypropylene as defined above and further defined below as the only polymer component.
Even more preferred the amount of xylene solubles of the composition, which is extrusion coated on the substrate, and/or of the polypropylene of said composition are less than 2.0 wt.-%, more preferably less than 1.0 wt.-%, and yet more preferably less than 0.80 wt-%.
The Vicat softening temperature, like Vicat B as used in above stated formula, shows heat softening characteristics of the compositions and polypropylene, respectively, used for the article. For the measurement a flat specimen is placed in a temperature regulated heating bath, a needle type, loaded penetrator is set on the specimen surface and the bath temperature is raised at a constant rate. The temperature of the bath at which the penetration of the needle has reached a predefined level is the Vicat B softening temperature. The exact measuring method is determined in the example section.
Accordingly the Vicat B temperature is an appropriate parameter to define the article, in particular the composition of the article, which is extrusion coated on the substrate, with regard to its thermal behaviour.

As stated above C* stands for the comonomers used in the composition and used in the polypropylene, respectively. Thus C„ can represent any comonomer suitable for the composition or propylene copolymer according to this invention. In particular C* represents any comonomers suitable for propylene copolymers, i.e. suitable for propylene copolymers as defined in the instant invention. It is in particular preferred that Cx stands for C2, i.e. for the ethylene content in the composition or in the propylene copolymer, in particular for the propylene copolymer as defined in the instant invention.
As indicated above, according to the first aspect of the invention the article can be or can be additionally (in addition to the definition by xylene solubles) defined by the heat resistance of its composition and/or of the polypropylene of said composition. However it is preferred that the article comprising a substrate, which is extrusion coated with a composition, is characterized in that
a) said composition comprises a propylene homopolymer
and wherein
said composition and/or said homopolymer has (have) a heat resistance measured according to Vicat B of at least 90 °C, still more preferred of at least 95 °C, yet more preferred of at least 100 °C, and more preferred said composition and/or said homopolymer has (have) in addition xylene solubles (XS) of less than 2.0 wt.-%, more preferred of less than 1.0 wt.-%, and yet more preferred of less than 0.80 wt.-%., or
b) said composition comprises a propylene copolymer and
wherein
said composition and/or said copolymer has (have) a heat resistance measured according to Vicat B of at least 73 °C, stiii more preferred of at least 76 °C, yet more preferred of at least 80 °C, and more preferrred

said composition and/or said copolymer has (have) in addition xylene solubles (XS) of less than 2.0 wt.-%, more preferred of less than 1.0 wt.-%, and yet more preferred of less than 0.80 wt.-%.
As stated above, high amounts of extractables are undesired. High amounts of xylene solubles in compositions comprising polypropylene are often caused by rather high amounts of comonomer fractions, in particular by rather high amounts of ethylene. Thus it is preferred that the comonomer content, preferably the ethylene content, in the composition, which is extrusion coated on the substrate, and/or in the polypropylene of said composition does not exceed 10 mol.-%, more preferably does not exceed 8 mol-%. It is in particular preferred that the polypropylene is a propylene homopolymer as defined below.
It is in particular mentioned that the above stated formula
Vicat B [°CI > -3.96 • Cx [moI%] + 86.85 is preferably applied for the articles with comonomer contents of not higher than 10mol.-%., i.e. the comonomer content of the composition of said article and/or of the polypropylene does not exceed 10 mol.-%.
Another source which causes rather high amounts of extractables is the use of plasticizer in the polymer composition. Thus it is preferred that the composition and/or the polypropylene does (do) not comprise any plasticizer in detectable amounts.
In a second embodiment, the present invention is related to an article comprising a substrate which is extrusion coated with a composition comprising a polypropylene, wherein said composition and/or said polypropylene has (have) a strain rate thickening which means that the strain hardening increases with extension rates. A strain hardening index (SHI) can

be determined at different strain rates. A strain hardening index (SHI) is defined as the slope of the tensile stress growth function rje* as function of the Hencky strain son a logarithmic scale between 1.00 and 3.00 at a at a temperature of 180 °C, where a SHl@0.1s"' is determined with a deformation rate eH of 0.10 s"', a SHltajO.Ss"1 is determined with a deformation rate tH of 0.3O s"', a SHI@3s' is determined with a deformation rate eH of 3.00 s"\ a SHI@lQs"' is determined with a deformation rate EH of 10.00 s"1. In comparing the strain hardening index at those five strain rates eH of 0.10, 0.30, 1.0, 3,0 and 10.00s"1, the slope of the strain hardening index (SHI) as function of the logarithm to the basis 10 of iH, ig (£w), is a characteristic measure for multi-branching. Therefore, a multi-branching index (MEI) is defined as the slope of the strain hardening index (SHI as a function of Ig (sH), i.e. the slope of a linear fitting curve of the strain hardening index (SHI) versus Ig (eH) applying the least square method, preferably the strain hardening index (SHI) is defined at deformation rates eH between 0.05 s"' and 20.0 s'1, more preferably between 0.10 s*1 and 10.0 s"', still more preferably at the deformations rates 0.10, 0.30, 1.00, 3.00 and 10.0 s"'.Yet moxe preferably the SHI-values determined by the deformations rates 0.10, 0.30, 1.00,3.00 and 10.0s"1 are used for the linear fit according to the least square method when establishing the multi-branching index (MBI).
Hence, in the second embodiment the article comprises a substrate which is extrusion coated with a composition comprising a polypropylene, wherein said composition and/or the polypropylene of said composition has (have) a multi-branching index (MBI) of at least 0.15.
Preferably the article, i.e. the composition of the article, is free of polyethylene, even more preferred the article, i.e. the composition of the

article, comprises a polypropylene as defined above and further defined below
as the only polymer component.
Preferably said polypropylene is produced in the presence of a metalfocene catalyst, more preferably in the presence of a metallocene catalyst as further defined below.
Surprisingly, it has been found that articles with such characteristics have superior properties compared to the articles known in the art. Especially, the melt of the composition in the extrusion process has a high stability, i.e. the extrusion line can be operated at a high screw speed. In addition the inventive article, in particular the composition of said article, is characterized by a high heat stability in combination with low levels of extractables.
As stated above, one characteristic of the inventive article is the extensional melt flow properties of the composition and/or the polypropylene component of said composition; which is extrusion coated on the substrate. The extensional flow, or deformation that involves the stretching of a viscous material, is the dominant type of deformation in converging and squeezing flows that occur in typical polymer processing operations. Extensional melt flow measurements are particularly useful in polymer characterization because they are very sensitive to the molecular structure of the polymeric system being tested. When the true strain rate of extension, also referred to as the Hencky strain rate, is constant, simple extension is said to be a "strong flow" in the sense that it can generate a much higher degree of molecular orientation and stretching than flows in simple shear. As a consequence, extensional flows are very sensitive to crystallinity and macro-structural effects, such as long-chain branching, and as such can be far more descriptive with regard to polymer characterization than other types of bulk Theological measurement which apply shear flow.

As stated above, the first requirement according to the second embodiment is that the composition of the article and/or the polypropylene of said composition has (have) a multi-branching index (MB1) of at least 0.15, more preferably of at least 0.20, and still more preferred of at least 0.30.
As mentioned above, the multi-branching index (MBI) is defined as the slope of the strain hardening index (SHI) as a function of Ig (ds/di) [dSHVd \%(ds/dt)].
Accordingly, the composition and/or the polypropylene of said composition is (are) characterized by the fact that their strain hardening index (SHI) increases with the deformation rate iH, i.e. a phenomenon which is not observed in other pofypropyienes. Single branched polymer types (so called Y polymers having a backbone with a single long side-chain and an architecture which resembles a "Y") or H-branched polymer types (two polymer chains coupled with a bridging group and a architecture which resemble an "H") as well as linear or short chain branched polymers do not show such a relationship, i.e. the strain hardening index (SHI) is not influenced by the deformation rate (see Figures 2 and 3). Accordingly, the strain hardening index (SHI) of known polymers, in particular known polypropylenes and polyethylenes, does not increase or increases only negligible with increase of the deformation rate {ds/dt). Industrial conversion processes which imply elongational flow operate at very fast extension rates. Hence the advantage of a material which shows more pronounced strain hardening (measured by the strain hardening index (SHI)) at high strain rates becomes obvious. The faster the material is stretched, the higher the strain hardening index (SHI) and hence the more stable the material will be in conversion. Especially in the fast extrusion process, like in the extrusion coating process, the melt of the multi-branched polypropylenes has a high stability. Moreover the inventive articles, i.e. the

compositions, which are extrusion coated on the substrates, are characterized by a rather high stiffness in combination with a rather high heat resistance.
A further preferred requirement is that the strain hardening index (SHI@ls') of the composition and/or the polypropylene of said composition shall be a! least 0.30, more preferred of at least 0.40, still more preferred of at least 0.50.


A(s) = A0 ■ —— • exp {-£) wherein
the Hencky strain rate iH is defined as for the Hencky strain e
"F" is the tangential stretching force
"R" is the radius of the equi-dimensional windup drums
"T" is the measured torque signal, related to the tangential stretching force "F"
"A" is the instantaneous cross-sectional area of a stretched molten specimen
"Ao" is the cross-sectional area of the specimen in the solid state (i.e. prior to
melting),
"ds" is the solid state density and
"dM" the melt density of the polymer.
In addition, it is preferred that the branching index g' of the polypropylene of the article shall be less than 1,00, more preferably less than 0.90, still more preferably less than 0.80. In the preferred embodiment, the branching index g' shall be less than 0.70. The branching index g' defines the degree of branching and correlates with the amount of branches of a polymer. The branching index g' is defined as g'=[IV]b(/[IV],in in which g' is the branching index, [IVb,] is the intrinsic viscosity of the branched polypropylene and [IV]ljn is the intrinsic viscosity of the linear polypropylene having the same weight average molecular weight (within a range of ±10 %) as the branched polypropylene. Thereby, a low g'-value is an indicator for a high branched polymer. In other words, if the g'-value decreases, the branching of the polypropylene increases. Reference is made in this context to B.H. Zimm and W.H. Stockmeyer, J. Chem. Phys. 17,1301 (1949). This document is herewith included by reference.
When measured on the composition, which is extrusion coated on the substrate, the branching index g' is preferably of less than 1.00, more

preferably less than 0.90, still more preferably less than 0.80. In the preferred embodiment, the branching index g' of the composition, which is extrusion coated on the substrate, shall be less than 0.75. In this case of course the whole composition is used for [IVbr]-
The intrinsic viscosity needed for determining the branching index g' is measured according to DIN ISO 1628/1, October 1999 (in Decalin at 135 °C).
For further information concerning the measuring methods applied to obtain the relevant data for the a multi-branching index (MBI), the tensile stress growth function rjE+, the Hencky strain rate iH, the Hencky strain e and the branching index g it is referred to the example section.
It is in particular preferred that the inventive article comprises a composition being extrusion coated on the substrate, wherein said composition and/or the polypropylene of said composition has (have) a branching index g' of less than 1.00, a strain hardening index (SHI@ls"') of at least 0.30 and multi-branching index (MBI) of at least 0.15. Stil] more preferred the said composition and/or the polypropylene of said composition has (have) a branching index g' of less than 0.80, a strain hardening index (SHI@ls"') of at least 0.40 and multi-branching index (MBI) of at least 0.15. In another preferred embodiment said composition and/or the polypropylene of said composition has (have) a branching index g' of less than J.00, a strain hardening index (SHI@ls*') of at least 0.30 and multi-branching index (MBI) of at least 020. In still another preferred embodiment said composition and/or the polypropylene of said composition has (have) a branching index g' of less than 0.80, a strain hardening index (SH!@ls']) of at least 0.40 and multi-branching index (MBI) of at least 020. In yet another preferred embodiment said composition and/or the polypropylene of said composition has (have) a branching index g' of less

than 0.80, a strain hardening index (SHl@ls'1) of at least 0.50 and multi-branching index (MBI) of at least 030.
It is in addition preferred that the inventive article, in particular the composition, which is extrusion coated on the substrate, is further characterized by low amounts of extractables. Extractables are undesirable in the field of food packing or in the field of medical packing. However the inventive article shall be preferably used for such applications. Thus it is preferred that the composition, which is extrusion coated on the substrate, according to the second aspect of this invention has a good process properties even though said composition is characterized by rather low amounts of xylene solubles, i.e. by xylene solubles of less than 2.0 wt.-%.
Xylene solubles are the part of the polymer soluble in cold xylene determined by dissolution in boiling xylene and letting the insoluble part crystallize from the cooling solution (for the method see below in the experimental part). The xylene solubles fraction contains polymer chains of low stereo-regularity and is an indication for the amount of non-crystalline areas.
However, not only extractables in article, in particular in the composition which is extrusion coated on the substrate, are detrimental for their use as packing material but also a low heat resistance. Thus in another aspect it is preferred that the article, i.e. the composition extrusion coated on the substrate, is characterized by a high heat resistance.
Accordingly, the article according to the second aspect of the present invention
is further defined as follows: The article comprises a substrate, which is
extrusion coated with a composition comprising a polypropylene, wherein
a) said composition and/or the polypropylene of said
composition has (have) Xylene solubles (XS) of less than 2.0 wt.-% and/or, preferably and,

b) said composition and/or the polypropylene of said
composition fulfils the equation
Vicat B [°C] > -3.96 ■ C, [mol%] + 86.85
wherein
Vicat B is the heat resistance of the composition or
of the polypropylene according to ISO 306
(50 N), and
Cx is the comonomer content in said
composition or in said polypropylene.
Preferably the article, more preferably the composition of the article, is free of polyethylene, even more preferred the article, in particular the composition, comprises a polypropylene as defined above and further defined below as the only polymer component.
Even more preferred is that the amount of xylene solubles of the composition, which is extrusion coated on the substrate, and/or of the polypropylene of said composition is iess than 2.0 wt.-%, more preferably less than 1.0 wt.-%, and yet more preferably less than 0.80 wt.-%.
The Vicat softening temperature, like Vicat B as used in the above stated formula, shows heat softening characteristics of the compositions and polypropylene, respectively, used for inventive article. For the measurement a flat specimen is placed in a temperature regulated heating bath, a needle type, loaded penetrator is set on the specimen surface and the bath temperature is raised at a constant rate. The temperature of the bath at which the penetration of the needle has reached a predefined level is the Vicat B softening temperature. The exact measuring method is described in the example section.

Accordingly the Vicat B temperature is an appropriate parameter to define the article, in particular the composition of the article, which is extrusion coated on the substrate, with regard to its thermal behaviour.
As stated above C stands for the comonomers used in the composition and used in the polypropylene, respectively. Thus Cx can represent any comonomer suitable for the composition or propylene copolymer according to this invention. In particular C* represents any comonomers suitable for propylene copolymers, i.e. suitable for propylene copolymers as defined in the instant invention. It is in particular preferred that C stands for C2, i.e. for the ethylene content in the composition or in the propylene copolymer, in particular for the propylene copolymer as defined in the instant invention.
As indicated above, according to the second aspect of the invention the article can be or can be additionally (in addition to the definition by xylene solubles) defined by the heat resistance of its composition and/or of the polypropylene of said composition. However it is preferred that the article comprising a substrate, which is extrusion coated with a composition, is characterized in that
a) said composition comprises a propylene homopolymer
and wherein
said composition and/or said homopolymer has (have) a heat resistance measured according to Vicat B of at least 90 °C, still more preferred of at least 95 °C, yet more preferred of at least 100 CC, and more preferred said composition and/or said homopolymer has (have) in addition xylene solubles (XS) of less than 2.0 wt.-%, more preferred of less than 1.0 wt.-%, and yet more preferred of less than 0.80 wt.-%., or
b) said composition comprises a propylene copolymer and
wherein

said composition and/or said copolymer has (have) a heat resistance measured according to Vicat B of at least 73 °C, still more preferred of at least 76 °C, yet more preferred of at least SO °C, and more preferrred said composition and/or said copolymer has (have) in addition xylene solubles (XS) of less than 2.0 wt.-%, more preferred of less than 1.0 wt.-%, and yet more preferred of less than 0.80 wt.-%.
\s stated above, high amounts of extractables are undesired. High amounts of tylene solubles in compositions comprising polypropylene are often caused by rather ligh amounts of comonomer fractions, in particular by rather high amounts of ithylene. Thus it is preferred that the comonomer content, preferably the ethylene intent, in the composition, which is extrusion coated on the substrate, and/or m the polypropylene of said composition does not exceed 10 moI.-%, more preferably does not exceed 8 mol-%. It is in particular preferred that the polypropylene is a propylene homopolymer as defined below.
It is in particular mentioned that the above stated formula
Vicat B [°C] > -3.96 ■ Cx [mol%] + 86.85 is preferably applied for the articles with comonomer contents of not higher than 10 mol.-%., i.e. the comonomer content of the composition of said article and/or of the polypropylene does not exceed 10 mol.-%.
Another source which causes rather high amounts of extractables is the use of plasticizer in the polymer composition. Thus it is preferred that the composition and/or the polypropylene does (do) not comprise any plasticizer in detectable amounts.

The third aspect of this invention is directed to an article comprising a substrate, which is extrusion coated with a composition comprising a polypropylene, wherein the article, in particular the composition of said article is characterized by low amounts of extractables. Extractables are undesirable in the field of food packing or in the field of medical packing. However the inventive article shall be preferably used for such applications. Thus it is preferred that the article according to the third aspect of this invention has a good process properties even though its composition, which is extrusion coated on the substrate, is characterized by rather low amounts of xylene solubles, i.e. by xylene solubles of less than 2.0 wt.-%.
Xylene solubles are the part of the polymer soluble in cold xylene determined by dissolution in boiling xylene and letting the insoluble part crystallize from the cooling solution (for the method see below in the experimental part). The xylene solubles fraction contains polymer chains of low stereo-regularity and is an indication for the amount of non-crystalline areas.
However, not only extractables in the articles, i.e. in the compositions of the articles, are detrimental for iheir use as packing material but also a low heat resistance. Thus in another aspect it is preferred that the composition of the article is characterized by a high heat resistance.
Accordingly, the article according to the third aspect of the present invention comprises a substrate, which is extrusion coaled with a composition comprising a polypropylene, wherein
a) said composition and/or the polypropylene of said composition has (have) Xylene solubles (XS) of less than 2.0 wt.-% and/or, preferably and,
b) said composition and/or the polypropylene of said composition fulfils the equation
Vicat B [°C] > -3.96 ■ Cx [mol%] + 86.85

wherein
Vicat B is the heat resistance of the composition or
of the polypropylene according to ISO 306
(50 N), and
Cx is the comonomer content in said
composition or in said polypropylene.
Preferably the article, more preferably the composition of the article, is free of polyethylene, even more preferred the article, more preferably the composition of the article, comprises a polypropylene as defined above and further defined below as the only polymer component.
Preferably said polypropylene is produced in the presence of a metallocene catalyst, more preferably in the presence of a metallocene catalyst as further defined below.
Surprisingly, it has been found that articles with such characteristics have superior properties compared to the articles known in the art. Especially, the melt of the composition in the extrusion process has a high stability, i.e. the extrusion line can be operated at a high screw speed. In addition the inventive article, in particular the composition, is characterized by high heat stability in combination with low levels of ex tradables.
Even more preferred is that the amount of xylene solubles of the composition of the article and/or of the polypropylene of said composition is less than 2.0 wt.-%, more preferably less than 1.0 wt.-%, and yet more preferably less than 0.80 wt.-%.
The Vicat softening temperature, like Vicat B as used in the above stated formula. shows heat softening characteristics of the compositions, which are extrusion coated

on the substrate, and polypropylene, respectively, used for the article. For the measurement a flat specimen is placed in a temperature regulated heating bath, a needle type, loaded penetrator is set on the specimen surface and the bath temperature is raised at a constant rate. The temperature of the bath at which the penetration of the needle has reached a predefined level is the Vicat B softening temperature. The exact measuring method is determined in the example section. Accordingly the Vicat B temperature is an appropriate parameter to define the article with regard to its thermal behaviour.
As stated above Cx stands for the comonomers used in the composition and used in the polypropylene, respectively. Thus C, can represent any comonomer suitable for the composition or propylene copolymer according to this invention. In particular Ct represents any comonomers suitable for propylene copolymers, i.e. suitable for propylene copolymers as defined in the instant invention. It is in particular preferred that Cx stands for C2, i.e. for the ethylene content in the composition or in the propylene copolymer, in particular for the propylene copolymer as defined in the instant invention.
As indicated above, according to the third aspect of the invention the article can be or can be additionally (in addition to the definition by xylene solubles) defined by the heat resistance of its composition and/or of the polypropylene of said composition. However it is preferred that the article comprising a substrate, which is extrusion coated with a composition, is characterized in that
a) said composition comprises a propylene homopolymer
and wherein
said composition and/or said homopolymer has (have) a heat resistance measured according to Vicat B of at least 90 °C, still more preferred of at least 95 °C, yet more preferred of at least 100 °C, and more preferred

said composition and/or said hornopolymer has (have) in
addition xylene solubles (XS) of less than 2.0 wt.-%,
more preferred of less than 1.0 wt.-%, and yet more preferred
of less than 0.80 wt.-%., or
b) said composition comprises a propylene copolymer and
wherein
said composition and/or said copolymer has (have) a heat resistance measured according to Vicat B of at least 73 °C, still more preferred of at least 76 °C, yet more preferred of at least 80 °C, and more preferrred said composition and/or said copolymer has (have) in addition xylene solubles (XS) of less than 2.0 wt.-%, more preferred of less than 1.0 wt.-%, and yet more preferred of less than 0.80 wt.-%.
As stated above, high amounts of extractables are undesired. High amounts of xylene solubles in articles, i.e. in compositions extrusion coated on a substrate, comprising polypropylene are often caused by rather high amounts of comonomer fractions, in particular by rather high amounts of ethylene. Thus it is preferred that the comonomer content, preferably the ethylene content, in the composition of the article and/or in the polypropylene of said composition does not exceed 10 moI.-%, more preferably does not exceed 8 moI-%. h is in particular preferred that the polypropylene is a propylene hornopolymer as defined below.
It is in particular mentioned that the above slated formula
Vicat B [°CJ > -3.96 ■ C, [mol%] + 86.85 is preferably applied for the articles with comonomer contents of not higher than 10 mol.-°/o., i.e. the comonomer content of the composition of said article and/or of the polypropylene does not exceed 10 mol.-%.

Another source which causes rather high amounts of extractables is the use of plasticizer in the polymer composition. Thus it is preferred that the composition and/or the polypropylene does (do) not comprise any plasticizer in detectable amounts.
In addition it is preferred that the composition of the inventive article and/or the polypropylene of said composition has (have) a strain rate thickening which means that the strain hardening increases with extension rates. A strain hardening index (SHI) can be determined at different strain rates. A strain hardening index (SHI) is defined as the slope of the tensile stress growth function ?i£* as function of the Hencky strain son a logarithmic scale between 1.00 and 3.00 at a at a temperature of 180 °C, where a SHI@0.1s"1 is determined with a deformation rate eH of 0.10 s"', a SHI@0.3s"J is determined with a deformation rate iH of 0.30 s'\ a SHI@3s"' is determined with a deformation rate e„ of 3.00 s"', a SHI@10s"' is determined with a deformation rate eH of 10.0 s"1. In compaxing the strain hardening index at those five strain rates eH 0(0.10,0.3,0, 1.0,3.0 and 10.00 s'\ the slope of the strain hardening index (SHI) as function of the logarithm to the basis 10 of iH, Ig (eH), is a characteristic measure for multi-branching. Therefore, a multi-branching index (MBI) is defined as the slope of the strain hardening index (SHI as a function of Ig {£„), i.e. the slope of a linear fitting curve of the strain hardening index (SHI) versus Ig (sH) applying the least square method, preferably the strain hardening index (SHI) is defined at deformation rates iH between 0,05.s"' and 20.0 s"', more preferably between 0.10 s'1 and 10.0 s"', still more preferably at the deformations rates 0.10, 0.30, 1.00, 3.00 and 10.00 s'l.Yet more preferably the SHI-values determined by the deformations rates 0.10, 0.30, 1.00, 3.00 and 10.00 s'1 are used for the linear fit according to the least square method when establishing the multi-branching index (MBI).

Hence, it is preferred that the composition, which is extrusion coated on the substrate, and/or the polypropylene of said composition has (have) a multi-branching index (MBI) of at least 0.15, more preferably of at least 020, and still more preferred of at least 0.30.
Hence, the composition of the article, i.e. the composition which is extrusion coated on the substrate, and/or the polypropylene component of said composition is (are) characterized in particular by extensional melt flow properties. The extensional flow, or deformation that involves the stretching of a viscous material, is the dominant type of deformation in converging and squeezing flows that occur in typical polymer processing operations. Extensional melt flow measurements are particularly useful in polymer characterization because they are very sensitive to the molecular structure of the polymeric system being tested. When the true strain rate of extension, also referred to as the Hencky strain rate, is constant, simple extension is said to be a "strong flow" in the sense that it can generate a much higher degree of molecular orientation and stretching than flows in simple shear. As a consequence, extensional flows are very sensitive to crystallinity and macro-structural effects, such as long-chain branching, and as such can be far more descriptive with regard to polymer characterization than other types of bulk rbeological measurement which apply shear flow.
As mentioned above, the multi-branching index (MBI) is defined as the slope of the strain hardening index (SHI) as a function of Ig (de/dt) [d SHI/d lg (de/di)].
Accordingly, the composition of the article and/or the polypropylene of said composition is (are) preferably characterized by the fact that their strain hardening index (SHI) increases with the deformation rate en, i.e. a

phenomenon which is not observed in other polypropylenes. Single branched polymer types (so called Y polymers having a backbone with a single long side-chain and an architecture which resembles a "Y") or H-branched polymer types (two polymer chains coupled with a bridging group and a architecture which resemble an "H") as well as linear or short chain branched polymers do not show such a relationship, i.e. the strain hardening index (SHI) is not influenced by the deformation rate (see Figures 2 and 3). Accordingly, the strain hardening index (SHI) of known polymers, in particular known polypropylenes and poly ethylenes, does not increase or increases only negligible with increase of the deformation rate (ds/dt). Industrial conversion processes which imply elongational flow operate at very fast extension rates. Hence the advantage of a material which shows more pronounced strain hardening (measured by the strain hardening index (SHI)) at high strain rates becomes obvious. The faster the material is stretched, the higher the strain hardening index (SHI) and hence the more stable the material will be in conversion. Especially in the fast extrusion process, like in the extrusion coating process, the melt of the multi-branched polypropylenes has a high stability. Moreover the compositions extrusion coated on the substrates are characterized by a rather high stiffness in combination with a high heat resistance.
A further preferred requirement is that the strain hardening index (SHI@ls* ) of the composition of the article, i.e. the composition which is extrusion coated on the substrate, and/or the polypropylene of said composition shall be at least 0.30, more preferred of at least 0.40, still more preferred of at least 0.50.
The strain hardening index (SHI) is a measure for the strain hardening behavior of the polymer melt, in particular of the polypropylene melt. In the present invention, the strain hardening index (SHI@ls') has been measured

by a deformation rate (de/dt) of 1.00 s'1 at a temperature of 1 SO °C for determining the strain hardening behavior, wherein the strain hardening index (SHI) is defined as the slope of the tensile stress growth function r}E* as a function of the Hencky strain eon a logarithmic scale between 1.00 and 3.00 (see figure 1). Thereby the Hencky strain e is defined by the formula


"ds" is the solid state density and "din" the melt density of the polymer.
In addition, it is preferred that the branching index g' of the polypropylene of the composition which is extrusion coated on the substrate shall be less than 1.00, more preferably less than 0.90, still more preferably less than 0.80, In the preferred embodiment, the branching index g' shall be less than 0.70. The branching index g' defines the degree of branching and correlates with the amount of branches of a polymer. The branching index g' is defined as g'=[IV]br/[IV]iin in which g' is the branching index, [IVbr] is the intrinsic viscosity of the branched polypropylene and CIVJJin is the intrinsic viscosity of the linear polypropylene having the same weight average molecular weight (within a range of ±10 %) as the branched polypropylene. Thereby, a low g1-value is an indicator for a high branched polymer. In other words, if the g'-value decreases, the branching of the polypropylene increases. Reference is made in this context to B.H. Zimm and W.H. Stockmeyer, J. Chem. Phys. 17,1301 (1949). This document is herewith included by reference.
When measured on the composition, which is extrusion coated on the substrate, the branching index g' is preferably of less than 1.00, more preferably less than 0.90, still more preferably less than 0.80. In the preferred embodiment, the branching index g' of the composition, which is extrusion coated on the substrate, shall be less than 0.75. In this case of course the whole composition, which is extrusion coated on the substrate.is used for CIV*].
The intrinsic viscosity needed for determining the branching index g' is measured according to DIN ISO 1628/1, October 1999 (in Decalin at 135 °C).

For further information concerning the measuring methods applied to obtain the relevant data for the multi-branching index (MBI), the tensile stress growth function t\£*t the Hencky strain rate kH, the Hencky strain £ and the branching index g' it is referred to the example section.
It is in particular preferred that the composition, which is extrusion coated on the substrate, and/or the polypropylene of said composition has (have) a branching index g' of less than 1.00, a strain hardening index (SHl@ls"') of at least 0.30 and multi-branching index (MBI) of at least 0.15. Still more preferred the composition, which is extrusion coated on the substrate, and/or the polypropylene of said composition has (have) a branching index g' of less than 0.80, a strain hardening index (SHI@ls~') of at least 0.40 and muiti-branching index (MBI) of at least 0.15. In another preferred embodiment the composition, which is extrusion coated on the substrate, and/or the polypropylene of said composition has (have) a branching index g' of less than 1.00, a strain hardening index (SHIfgJls'1) of at least 0.30 and multi-branching index (MBI) of at least 020. In still another preferred embodiment the composition, which is extrusion coated on the substrate, and/or the polypropylene of said composition has (have) a branching index g' of less than 0.80, a strain hardening index (SHI@lsl) of at least 0.40 and multi-branching index (MBI) of at least 020. In yet another preferred embodiment the composition, which is extrusion coated on the substrate, and/or the polypropylene of said composition has (have) a branching index g' of less than 0.80, a strain hardening index {SHI@ls"') of at least 0.50 and multi-branching index (MBI) of at least 0.30.
Moreover, the tensile modulus of the composition of the article, i.e. the composition which is extrusion coated on the substrate, itself shall be rather high. Thus it is

preferred that the tensile modulus of the composition based on a propylene homopolymer shall be at least 720 MPa, more preferably at least 740 MPa.
The further features mentioned below apply to all embodiments described above, i.e. the first, the second and the third embodiment as defined above.
Preferably the polypropylene used for the composition which is extrusion coated on the substrate and/or the polypropylene comprised therein shall be not cross-linked as it is commonly done to improve the process properties of the polypropylene. However the cross-linking is detrimental in many aspects. Inter alia the manufacture of said products is difficult to obtain.
Moreover it is preferred, that article according to the instant invention is further characterized in that the composition extrusion coated on the substrate has only gels with a diameter of equal or less than 500 urn, i.e. no gels with a diameter of more than 500 [im are present in said composition, and wherein said gels are not more than 100 gels per square meter (sqm), more preferably not more than 80 gels per square meter (sqm), and yet more preferably not more than 60 gels per square meter (sqm). In yet another preferred embodiment the composition extrusion coated on the substrate has only gels with a diameter of equal or less than 400 }im, i.e. no gels with a diameter of more than 500 urn are present in said composition, and wherein said gels are not more than J 00 gels per square meter (sqm), more preferably not more than 80 gels per square meter (sqm), and yet more preferably not more than 60 gels per square meter (sqm). In still yet another preferred embodiment the composition extrusion coated on the substrate has only gels with a diameter of equal or less than 300 urn, i.e. no geis with a diameter of more than 500 jam are present in said composition, and wherein said gels are not more than 100 gels per square meter (sqm), more preferably not more than 80 gels per square

meter (sqm), and yet more preferably not more than 60 gels per square meter (sqm).
Furthermore, it is preferred that the polypropylene has a melt flow rate (MFR) given in a specific range. The melt flow rate mainly depends on the average molecular weight. This is due to the fact that long molecules render the material a lower flow tendency than short molecules. An increase in molecular weight means a decrease in the MFR-value. The meh flow rale (MFR) is measured in g/10 min of the polymer discharged through a defined dye under specified temperature and pressure conditions and the measure of viscosity of the polymer which, in turn, for each type of polymer is mainly influenced by its molecular weight but also by its degree of branching. The melt flow rate measured under a load of 2.16 kg at 230 °C (ISO 1133) is denoted as MFR2. Accordingly, it is preferred that in the present invention the polypropylene has an MFR2 in a range of 0.01 to 1000.00 g/10 min, more preferably of 0.01 to 100.00 g/10 min, still more preferred of 0.05 to 50 g/10 min. In a preferred embodiment, the MFR is in a range of 1.00 to 11.00 g/10 min. In another preferred embodiment, the MFR is in a range of 3.00 to 11.00 g/10 min.
The number average molecular weight (Mn) is an average molecular weight of a polymer expressed as the first moment of a plot of the number of molecules in each molecular weight range against the molecular weight. In effect, this is the total molecular weight of all molecules divided by the number of molecules. In turn, the weight average molecular weight (Mw) is the first moment of a plot of the weight of polymer in each molecular weight range against molecular weight.
The number average molecular weight (Mn) and the weight average molecular weight (Mw) as well as the molecular weight distribution are determined by size exclusion chromatography (SEC) using Waters Alliance GPCV 2000 instrument with

online viscometer. The oven temperature is (40 °C. Trichforobenzene is used as a solvent.
It is preferred that the polypropylene has a weight average molecular weight (Mw) from 10,000 to 2,000,000 g/mol, more preferably from 20,000 to 1,500,000 g/mol.
More preferably, the polypropylene of the instant invention is isotactic. Thus the polypropylene according to this invention shall have a rather high pentade concentration, i.e. higher than 90 %, more preferably higher than 92 % and most preferably higher than 93 %. In another preferred embodiment the pentade concentration is higher than 95 %. The pentade concentration is an indicator for the narrowness in the stereoregularity distribution of the polypropylene.
In addition, it is preferred that the polypropylene has a melting temperature Tm of higher than 120 °C. It is in particular preferred that the melting temperature is higher than 120 °C if the polypropylene is a polypropylene copolymer as defined below. In turn, in case the polypropylene is a polypropylene homopolymer as defined below, it is preferred, that polypropylene has a melting temperature of higher than 150 °C, more preferred higher than 155 °C.
Not only the polypropylene of the composition, but also the composition itself shall preferably not exceed a specific temperature. Hence it is preferred that the composition of the inventive article, i.e. the composition which is extrusion coated on the substrate, has a melting temperature Tm of higher than 120 DC. It is in particular preferred that the melting temperature is higher than ISO °C, more preferred higher than 155 °C.

In a preferred embodiment the polypropylene as defined above (and further defined below) is preferably unimodal. In another preferred embodiment the polypropylene as defined above (and further defined below) is preferably multimodal, more preferably bimodal.
"Multimodal" or "multimodal distribution" describes a frequency distribution that has several relative maxima. In particular, the expression "modality of a polymer" refers to the form of its molecular weight distribution (MWD) curve, i.e. the appearance of the graph of the polymer weight fraction as a function of its molecular weight. If the polymer is produced in the sequential step process, i.e, by utilizing reactors coupled in series, and using different conditions in each reactor, the different polymer fractions produced in the different reactors each have their own molecular weight distribution which may considerably differ from one another. The molecular weight distribution curve of the resulting final polymer can be seen at a super-imposing of the molecular weight distribution curves of the polymer fraction which will, accordingly, show a more distinct maxima, or at least be distinctively broadened compared with the curves for individual fractions.
A polymer showing such molecular weight distribution curve is called bimodal or multimodal, respectively.
In case the polypropylene of the inventive article is not unimodal it is preferably bimodal.
The polypropylene according to this invention can be homopolymer or a copolymer. Accordingly, the homopolymer as well as the copolymer can be a multimodal polymer composition.

The expression homopolymer used herein relates to a polypropylene that consists substantially, i.e. of at least 97 wt%, preferably of at least 99 wt%, and most preferably of at least 99.8 wt% of propylene units. In a preferred embodiment only propylene units in the polypropylene homopolymer are detectable. The comonomer content can be determined with FT infrared spectroscopy, as described below in the examples.
In case the polypropylene according to this invention is a propylene copolymer, it is preferred that the comonomer is ethylene. However, also other comonomers known in the art are suitable. Preferably, the total amount of comonomer, more preferably ethylene, in the propylene copolymer is up to 15 wt%, more preferably up to 10 wt%,
In a preferred embodiment, the polypropylene is a propylene copolymer comprising a polypropylene matrix and an ethylene-propylene rubber (EPR).
The polypropylene matrix can be a homopolymer or a copolymer, more preferably multimodal, i.e. bimodal, homopolymer or a multimodal, i.e. bimodal, copolymer. In case the polypropylene matrix is a propylene copolymer, then it is preferred that the comonomer is ethylene or butene. However, also other comonomers known in the art are suitable. The preferred amount of comonomer, more preferably ethylene, in the polypropylene matrix is up to 8.00 Mol%. In case the propylene copolymer matrix has ethylene as the comonomer component, it is in particular preferred that the amount of ethylene in the matrix is up to 8.00 Mol%, more preferably less than 6.00 Mol%. In case the propylene copolymer matrix has butene as the comonomer component, it is in particular preferred that the amount of butene in the matrix is up to 6.00 Mol%, more preferably less than 4.00 Mol%.

Preferably, the ethylene-propylene rubber (EPR) in the total propylene copolymer is up to 80 wt%. More preferably the amount of ethylene-propylene rubber (EPR) in the total propylene copolymer is in the range of 20 to 80 wt%, still more preferably in the range of 30 to 60 wt%.
In addition, it is preferred that the polypropylene being a copolymer comprising a polypropylene matrix and an ethylene-propylene rubber (EPR) has an ethylene-propylene rubber (EPR) with an ethylene-content of up to 50 wt%.
In addition, it is preferred that the polypropylene as defined above is produced in the presence of the catalyst as defined below. Furthermore, for the production of the polypropylene of the inventive article as defined above, the process as stated below is preferably used.
Preferably a metallocene catalyst is used for the polypropylene of the composition, which is extrusion coated on the substrate.
Even more preferred, the polypropylene according to this invention is obtainable by a new catalyst system. This new catalyst system comprises an asymmetric catalyst, whereby the catalyst system has a porosity of less than 1.40 ml/g, more preferably less than 1.30 ml/g and most preferably less than 1.00 ml/g. The porosity has been measured according to DIN 66135 (N2). In another preferred embodiment the porosity is not detectable when determined with the method applied according to DIN 66135 (N2).
An asymmetric catalyst according to this invention is a metallocene compound comprising at least two organic ligands which differ in their chemical structure. More preferably the asymmetric catalyst according to this invention is a metallocene compound comprising at least two organic ligands which

differ in their chemical structure and the metallocene compound is free of C2-symmetry and/or any higher symmetry. Preferably the asymetric metallocene compound comprises only two different organic ligands, still more preferably comprises only two organic ligands which are different and linked via a bridge.
Said asymmetric catalyst is preferably a single site catalyst (SSC).
Due to the use of the catalyst system with a very low porosity comprising an asymmetric catalyst the manufacture of the above defined multi-branched polypropylene is possible.
Furthermore it is preferred, that the catalyst system has a surface area of less than 25 mVg, yet more preferred less than 20 mVg, still more preferred less than 15 mVg, yet still less than 10 mVg and most preferred less than 5 mVg. The surface area according to this invention is measured according to ISO 9277 (N2).
It is in particular preferred that the catalytic system according to this invention comprises an asymmetric catalyst, i.e. a catalyst as defined below, and has porosity not detectable when applying the method according to DIN 66135 (N2) and has a surface area measured according to ISO 9277 (N2) less than 5 mVg.
Preferably the asymmetric catalyst compound, i.e. the asymetric metallocenet has the formula (I);
(Cp^RzMX* (I)
wherein z is 0 or 1, M is Zr, Hf or Ti, more preferably Zr, and

X is independently a monovalent anionic ligand, such as o-ligand
R is a bridging group linking the two Cp ligands
Cp is an organic ligand selected from the group consisting of unsubstituted
cyclopenadienyl, unsubstituted indenyl, unsubstituted tetrahydroindenyl,
unsubstituted fluorenyf, substituted cyclopenadienyl, substituted indenyl,
substituted tetrahydroindenyl, and substituted fluorenyl,
with the proviso that both Cp-ligands are selected from the above stated group
and both Cp-ligands have a different chemical structure.
The term "o-ligand" is understood in the whole description in a known manner, i.e. a group bonded to the metal at one or more places via a sigma bond. A preferred monovalent anionic ligand is halogen, in particular chlorine (CI).
Preferably, the asymmetric catalyst is of formula (I) indicated above, wherein M is Zr and each X is CI.
Preferably both identical Cp-ligands are substituted.
Preferably both Cp-figands have different residues to obtain an asymmetric structure.
Preferably, both Cp-ligands are selected from the group consisting of substituted cyclopenadienyl-ring, substituted indenyl-ring, substituted tetrahydroindenyl-ring, and substituted fluorenyl-ring wherein the Cp-ligands differ in the substituents bonded to the rings.
The optional one or more substituent(s) bonded to cyclopenadienyl, indenyl, tetrahydroindenyl, or fluorenyl may be independently selected from a group

including halogen, hydrocarbyl (e.g. Ci-Cjo-alkyl, C2-C2o-alkenyl, C2-C20-alkynyl, C3-Ci2-cycloalkyI, C6-C2o-aryl or C7-C2o-arylalkyl), C3-C]2-cycloalkyl which contains 1, 2, 3 or 4 heteroatom(s) in the ring moiety, CVC20-heteroaryl, d-C^-haloalkyl, -SiR"3, -OSiR'V -SR", -PR"3 and -NR"3, wherein each R" is independently a hydrogen or hydrocarbyl, e.g. C1-C20-alkyl, C2-C2o-alkenyl, C2-Cio-alkynyl, C3-C |2-cyc!oalkyl or C6-C2o-aryl.
More preferably both Cp-ligands are indenyl moieties wherein each indenyl moiety bear one or two substituents as defined above. More preferably each Cp-ligand is an indenyl moiety bearing two substituents as defined above, with the proviso that the substituents are chosen in such are manner that both Cp-ligands are of different chemical structure, i.e both Cp-ligands differ at least in one substituent bonded to the indenyl moiety, in particular differ in the substituent bonded to the five member ring of the indenyl moiety.
Still more preferably both Cp are indenyl moieties wherein the indenyl moieties comprise at least at the five membered ring of the indenyl moiety, more preferably at 2-position, a substituent selected from the group consisting of alkyl, such as C|-Cg alkyl, e.g. methyl, ethyl, isopropyl, and trialkyloxysiloxy, wherein each alkyl is independently selected from C1-C6 alkyl, such as methyl or ethyl, with proviso that the indenyl moieties of both Cp must chemically differ from each other, i.e. the indenyl moieties of both Cp comprise different substituents.
Still more preferred both Cp are indenyl moieties wherein the indenyl moieties comprise at least at the six membered ring of the indenyl moiety, more preferably at 4-position, a substituent selected from the group consisting of a C6-C20 aromatic ring moiety, such as phenyl or naphthyl, preferably phenyl, which is optionally substituted with one or more substitutents, such as Ci-Cs alkyl, and a heteroaromatic ring moiety, with proviso that the indenyl moieties

of both Cp must chemically differ from each other, i.e. the indenyl moieties of both Cp comprise different substituents.
Yet more preferably both Cp are indenyl moieties wherein the indenyl moieties comprise at the five membered ring of the indenyl moiety, more preferably at 2-position, a substituent and at the six membered ring of (he indenyl moiety, more preferably at 4-position, a further substituent, wherein the substituent of the five membered ring is selected from the group consisting of alkyl, such as Ci-Ce alkyl, e.g. methyl, ethyl, isopropyl, and trialkyloxysiloxy, wherein each alkyl is independently selected from Ci-C$ alkyl, such as methyl or ethyl, and the further substituent of the six membered ring is selected from the group consisting of a Cs-Cjo aromatic ring moiety, such as phenyl or naphthyl, preferably phenyl, which is optionally substituted with one or more substituents, such as Ci-C^ alkyl, and a heteroaromatic ring moiety, with proviso that the indenyl moieties of both Cp must chemically differ from each other, i.e. the indenyl moieties of both Cp comprise different substituents. It is in particular preferred that both Cp are idenyl rings comprising two substituentes each and differ in the substituents bonded to the five membered ring of the idenyl rings.
Concerning the moiety "R" it is preferred that "R" has the formula (II)
-V(R')3- (II)
wherein
Y is C, Si or Ge, and R' is C\ to C2o alkyl, C6-Ci2 ary\, or C7-C12 arylalkyJ or trimethylsilyl.
In case both Cp-iigands of the asymmetric catalyst as defined above, in particular case of two indenyl moieties, are linked with a bridge member R, the bridge member R is typically placed at 1-position. The bridge member R
may contain one or more bridge atoms selected from e.g. C, Si and/or Ge,

preferably from C and/or Si. One preferable bridge R is -Si(R')2-> wherein R' is selected independently from one or more of e.g. trimethylsilyl,Ci-Cio alkyl, C1-C20 alkyl, such as C6-C12 aryl, or C7-C40, such as C7-C12 arylalkyi, wherein alkyl as such or as part of arylalkyi is preferably Ci-C6 alkyl, such as ethyl or methyl, preferably methyl, and aryl is preferably phenyl. The bridge -Si(R*)2-is preferably e.g. -Si(C\-Cs aiky!)2-, -Si(phenyl)2- or -Si(Cr Ct alkyl)(phenyl)-, such as -Si(Me)2~.
In a preferred embodiment the asymmetric catalyst, i.e. the asymetric metallocene, is defined by the formula (111)
(CphRiZrCh (HI)
wherein
both Cp coordinate to M and are selected from the group consisting of unsubstituted cyclopenadienyl, unsubstituted indenyl, unsubstituted tetrahydroindenyl, unsubstituted fluorenyl, substituted cyclopenadienyl, substituted indenyl, substituted tetrahydroindenyl, and substituted fluorenyl, with the proviso that both Cp-ligands are of different chemical structure, and R is a bridging group linking two ligands L, wherein R is defined by the formula (II)
-Y(R')2- (II)
wherein
Y is C, Si or Ge, and R' is Ci to C20 alkyl, C6-C]2 aryl, or C7-C12 arylalkyi.
More preferably the asymmetric catalyst is defined by the formula (III), wherein both Cp are selected from the group consisting of substituted cyclopenadienyl, substituted indenyl, substituted tetrahydroindenyl, and substituted fluorenyl.

Yet more preferably the asymmetric catalyst is defined by the formula (111), wherein both Cp are selected from the group consisting of substituted cyclopenadienyl, substituted indenyl, substituted tetrahydroindenyl, and substituted fluorenyl
with the proviso that both Cp-ligands differ in the substituents, i.e. the subriluents as defined above, bonded io cyclopenadienyl, indenyl, tetrahydroindenyl, or fluorenyl.
Still more preferably the asymmetric catalyst is defined by the formula (111), wherein both Cp are indenyl and both indenyl differ in one substituent, i,e. in a substiuent as defined above bonded to the five member ring of indenyl.
It is in particular preferred that the asymmetric catalyst is a non-silica supported catalyst as defined above, in particular a metaliocene catalyst as defined above.
In a preferred embodiment the asymmetric catalyst is dimethylsilyl [(2-metfayl-(4'-tert.butyI)-4-phenyl-indenyl)(2-isopropyI-(4'-tert.butyl)-4-phenyl-indenyl)]zirkonium dichloride (IUPAC: dimethylsilandiyl [(2-methyl-(4'-tert. buty I )-4-phenyl -i ndeny l)(2-i sopropy l-(4* -tertbutyl )-4-phenyI -indenyl)]zirkonium dichloride). More preferred said asymmetric catalyst is not silica supported.
The above described asymmetric catalyst components are prepared according to the methods described in WO 01/48034.
It is in particular preferred that the asymmetric catalyst system is obtained by the emulsion solidification technology as described in WO 03/051934. This document is herewith included in its entirety by reference. Hence the

asymmetric catalyst is preferably in the form of solid catalyst particles, obtainable by a process comprising the steps of
a) preparing a solution of one or more asymmetric catalyst components;
b) dispersing said solution in a solvent immiscible therewith to form an emulsion in which said one or more catalyst components are present in the droplets of the dispersed phase,
c) solidifying said dispersed phase to convert said droplets to solid particles and optionally recovering said particles to obtain said catalyst.
Preferably a solvent, more preferably an organic solvent, is used to form said solution. Stili more preferably the organic solvent is selected from the group consisting of a linear alkane, cyclic alkane, linear alkene, cyclic alkene, aromatic hydrocarbon and halogen-containing hydrocarbon.
Moreover the immiscible solvent forming the continuous phase is an inert solvent, more preferably the immiscible solvent comprises a fiuorinated organic solvent and/or a functionalized derivative thereof, still more preferably the immiscible solvent comprises a semi-, highly- or perfluorinated hydrocarbon and/or a functionalized derivative thereof It is in particular preferred, that said immiscible solvent comprises a perfluorohydrocarbon or a functionalized derivative thereof, preferably C3-C30 perfluoroalkanes, -alkenes or -cycloalkanes, more preferred C4-C10 perfluoro-alkanes, -alkenes or -cycloalkanes, particularly preferred perfluorohexane, perfluoroheptane, perfiuorooctane OT perfluoro (methylcyclohexane) or a mixture thereof.
Furthermore it is preferred that the emulsion comprising said continuous phase and said dispersed phase is a bi-or multiphasic system as known in the art. An emuisifier may be used for forming the emulsion. After the formation of the emuision

system, said catalyst is formed in situ from catalyst components in said solution.
In principle, the emulsifying agent may be any suitable agent which contributes to the formation and/or stabilization of the emulsion and which does not have any adverse effect on the catalytic activity of the catalyst. The emulsifying agent may e.g. be a surfactant based on hydrocarbons optionally interrupted with (a) heteroatom(s), preferably halogenated hydrocarbons optionally having a functional group, preferably semi-, highly- or perfluorinated hydrocarbons as known in the art. Alternatively, the emulsifying agent may be prepared during the emulsion preparation, e.g. by reacting a surfactant precursor with a compound of the catalyst solution. Said surfactant precursor may be a halogenated hydrocarbon with at least one functional group, e.g. a highly fluorinated Ci to C30 alcohol, which reacts e.g. with a cocatalyst component, such as alurninoxane.
In principle any solidification method can be used for forming the solid particles from the dispersed droplets. According to one preferable embodiment the solidification is effected by a temperature change treatment. Hence the emulsion subjected to gradual temperature change of up to 10 °C/min, preferably 0.5 to 6 °C/min and more preferably 1 to 5 "Drnin. Even more preferred the emulsion is subjected to a temperature change of more than 40 °C, preferably more than 50 °C within less than 10 seconds, preferably less than 6 seconds.
The recovered particles have preferably an average size range of 5 to 200 urn, more preferably 10 to 100 um.
Moreover, the form of solidified particles have preferably a spherical shape, a predetermined particles size distribution and a surface area as mentioned above of preferably less than 25 m2/g, stiil more preferably less than 20 m3/g, yet more

preferably less than 15 m /g, yet still more preferably less than 10 ms/g and most preferably less than 5 mJ/g, wherein said particles are obtained by the process as described above.
For further details, embodiments and examples of the continuous and dispersed phase system, emulsion formation method, emulsifying agent and solidification methods reference is made e.g. to the above cited international patent application WO 03/051934.
As mentioned above the catalyst system may further comprise an activator as a cocatalyst, as described in WO 03/051934, which is enclosed herein with reference.
Preferred as coeatalysts for metallocenes and non-metallocenes, if desired, are the aluminoxanes, in particular the Ci-Cio-alkylaluminoxanes, most particularly methylaluminoxane (MAO). Such aluminoxanes can be used as the sole cocatalyst or together with other cocata!yst(s). Thus besides or in addition to aluminoxanes, other cation complex forming catalysts activators can be used. Said activators are commercially available or can be prepared according to the prior art literature.
Further aluminoxane coeatalysts are described i.a. in WO 94/28034 which is incorporated herein by reference. These are linear or cyclic oligomers of having up to 40, preferably 3 to 20, -(A1(R"')0)- repeat units (wherein R"' is hydrogen, Ci-Cio-alkyl (preferably methyl) or Cg-Cig-aryl or mixtures thereof)-
The use and amounts of such activators are within the skills of an expert in the field. As an example, with the boron activators, 5:1 to 1:5, preferably 2:1 to 1:2, such as 1:1, ratio of the transition metal to boron activator may be used. In case of preferred aluminoxanes, such as methylaluminumoxane (MAO), the amount of Al, provided by aluminoxane, can be chosen to provide a molar ratio of A) transition metal e.g. in the range of 1 to JO 0O0, suitably 5 to 8000,

preferably 10 to 7000, e.g. 100 to 4000, such as 1000 to 3000. Typically in case of solid (heterogeneous) catalyst the ratio is preferably below 500.
The quantity of cocatalyst to be employed in the catalyst of the invention is thus variable, and depends on the conditions and the particular transition metal compound chosen in a manner well known to a person skilled in the art.
Any additional components to be contained in the solution comprising the organotransition compound may be added to said solution before or, alternatively, after the dispersing step.
Furthermore, the present invention is related to the use of the above-defined catalyst system for the production of polymers, in particular of a polypropylene according to this invention.
In addition, the present invention is related to the process for producing the inventive polypropylene, whereby the catalyst system as defined above is employed. Furthermore it is preferred that the process temperature is higher than 60 °C. Preferably, the process is a multi-stage process to obtain multimodal polypropylene as defined above.
Multistage processes include also bulk/gas phase reactors known as muitizone gas phase reactors for producing multimodal propylene polymer.
A preferred multistage process is a "loop-gas phase"-process, such as developed by Borealis A/S, Denmark (known as BORSTAR® technology) described e.g. in patent literature, such as in EP 0 887 379 or in WO 92/12182.
Multimodal polymers can be produced according to several processes which are described, e.g. in WO 92/12182, EP 0 887 379 and WO 97/22633.

A multimodal polypropylene according to this invention is produced preferably in a multi-stage process in a multi-stage reaction sequence as described in WO 92/12182. The contents of this document are included herein by reference.
It has previously been known to produce multimodal, in particular bimodal, polypropylene in two or more reactors connected in series, i.e. in different steps (a) and (b).
According to the present invention, the main polymerization stages are preferably carried out as a combination of a bulk polymerization/gas phase polymerization.
The bulk polymerizations are preferably performed in a so-called loop reactor.
In order to produce the multimodal polypropylene according to this invention, a flexible mode is preferred. For this reason, it is preferred thai the composition be produced in two main polymerization stages in combination of loop reactor/gas phase reactor.
Optionally, and preferably, the process may also comprise a prepolymerization step in a manner known in the field and which may precede the polymerization step (a).
If desired, a further elastomeric comonomer component, so called ethylene-propylene rubber (EPR) component as defined in this invention, may be incorporated into the obtained propylene polymer to form a propylene copolymer as defined above. The ethylene-propylene rubber (EPR) component may preferably be produced after the gas phase polymerization step (b) in a

subsequent second or further gas phase polymerizations using one or more gas phase reactors.
The process is preferably a continuous process.
Preferably, in the process for producing the propylene polymer as defined above the conditions for the bulk reactor of step (a) may be as follows:
the temperature is within the range of 40 °C to U 0 °CS preferably
between 60 °C and 100 °C, 70 to 90 °C,
the pressure is within the range of 20 bar to 80 bar, preferably between
30 bar to 60 bar,
hydrogen can be added for controlling the molar mass in a manner
known per se.
Subsequently, the reaction mixture from the bulk (bulk) reactor (step a) is transferred to the gas phase reactor, i.e. to step (b), whereby the conditions in step (b) are preferably as follows:
the temperature is within the range of 50 °C to 130 °C, preferably
between 60 °C and 100 °C,
the pressure is within the range of 5 bar to 50 bar, preferably between
15 bar to 35 bar,
hydrogen can be added for controlling the molar mass in a manner
known per se.
The residence time can vary in both reactor zones. In one embodiment of the process for producing the propylene polymer the residence time in bulk reactor, e.g. loop is in the range 0.5 to 5 hours, e.g. 0.5 to 2 hours and the residence time in gas phase reactor will generally be 1 to 8 hours.

If desired, the polymerization may be effected in a known manner under supercritical conditions in the bulk, preferably loop reactor, and/or as a condensed mode in the gas phase reactor.
The process of the invention or any embodiments thereof above enable highly feasible means for producing and furiher tailoring the propylene polymer composition within the invention, e.g. the properties of the polymer composition can be adjusted or controlled in a known manner e.g. with one or more of the following process parameters: temperature, hydrogen feed, comonomer feed, propylene feed e.g. in the gas phase reactor, catalyst, the type and amount of an external donor (if used), split between components.
The above process enables very feasible means for oblaining the reactor-made propylene polymer as defined above.
More over the present invention is related to the manufacture of the article by conventional extrusion coating of the composition and/or the polypropylene as defined herein.
The extrusion coating process may be carried out using conventional extrusion coating techniques. Hence, the polymer obtained from the above defined polymerization process is fed, typically in the form of pellets, optionally containing additives, to an extruding device. From the extruder the polymer melt is passed preferably through a flat die to the substrate to be coated. Due to the distance between the die lip and the nip, the molten plastic is oxidized in the air for a short period, usually leading to an improved adhesion between the coating and the substrate. The coated substrate is cooled on a chill roll, after which it is passed to edge trimmers and wound up. The width of the line may vary between, for example, i 500 to 1500 mm, e.g. 800 to 1100 mm, with a line speed of up to 1000 m/min, for

instance 300 to 800 m/min. The temperature of the polymer melt is typically between 275 and 330 °C. The polypropylene of the invention can be extruded onto the substrate as a monolayer coating or as one layer in coextrusion. In either of these cases it is possible to use the polypropylene as such or to blend the polypropylene with other polymers. Blending can occur in a post reactor treatment or just prior to the extrusion in the coating process. However it is preferred that only the polypropylene as defined in the present invention is extrusion coated. In a multilayer extrusion coating, the other layers may comprise any polymer resin having the desired properties and processability. Examples of such polymers include: barrier layer PA (polyamide) and EVA; polar copolymers of ethylene, such as copolymers of ethylene and vinyl alcohol or copolymers of ethylene and an acrylate monomer; adhesive layers, e. g. ionomers, copolymers of ethylene and ethyl acrylate, etc; HDPE for stiffness; LDPE resins produced in a high- pressure process; LLDPE resins produced by polymerising ethylene and alpha-olefin comortomers in the presence of a Ziegler, chromium or metallocene catalyst; and MDPE resins.
Thus the present invention is preferably related to articles comprising a substrate and at least one layer of the composition extrusion coated on said substrate as defined in this invention.
In another aspect the present invention is directed to articles comprising a substrate and more than one layer, i.e. two or three layers, wherein at least one layer is (are) a composition and/or a polypropylene as defined in this invention.
Furthermore the present invention is also directed to the use of the inventive aricle as packing material, in particular as a packing material for food and/or medical products.

In a further aspect the present invention is directed to the use of the inventive polypropylene as defined herein for extrusion coating and/or for articles comprising at least one layer comprising said polypropylene.
In the following, the present invention is described by way of examples.

Examples
1. Definitions/Measuring Methods
The following definitions of terms and determination methods apply for the above general description of the invention as well as to the below examples unless otherwise defined.
A. Pentad Concentration
For the meso pentad concentration analysis, also referred herein as pentad concentration analysis, the assignment analysis is undertaken according to T Hayashi, Pentad concentration, R. Chujo and T. Asakura, Polymer £9 138-43 (1988) and Chujo R, et al., Polymer 35 339 (1994)
B. Multi-branching Index
1. Acquiring the experimental data
Polymer is melted at T=18Q °C and stretched with the SER Universal Testing Platform as described below at deformation rates of de/dt=0.1 0.3 1.0 3.0 and 10 s~' in subsequent experiments. The method to acquire the raw data is described in Sentmanat et al., J. Rheol. 2005, Measuring the Transient Elongational Rheology of Polyethylene Melts Using the SER Universal Testing Platform.

Experimental Setup
A Paar Physica MCR300, equipped with a TC30 temperature control unit and an oven CTT600 (convection and radiation heating) and a SERVPO1-025 extensional device with temperature sensor and a software RHEOPLUS/32 v2.66 is used.
Sample Preparation
Stabilized Pellets me compression moulded at 220°C (gel time 3min, pressure time 3 min, total moulding time 3+3=6min) in a mould at a pressure sufficient to avoid bubbles in the specimen, cooled to room temperature. From such prepared plate of 0.7mm thickness, stripes of a width of 10mm and a length of 18mm are cut.
Check of the SER Device
Because of the low forces acting on samples stretched to thin thicknesses, any essential friction of the device would deteriorate the precision of the resulis and has to be avoided.
In order to make sure that the friction of the device less than a threshold of 5x10-3 mNm (Milli-Newtonmeter) which is required for precise and correct measurements, following check procedure is performed prior to each measurement;
• The device is set to test temperature (180°C) for minimum 20minutes without sample in presence of the clamps
• A standard test with 0.3s-1 is performed with the device on test temperature (180*C)
• The torque {measured in mNm) is recorded and plotted against time

* The torque must not exceed a value of 5x10-3 mNm to make sure that the friction of the device is in an acceptably low range
Conducting the experiment
The device is heated for min. 20min to the test temperature (180°C measured with the thermocouple attached to the SER. device) with clamps but without sample. Subsequently, the sample (0.7x1 Ox 18mm), prepared as described above, is clamped into the hot device. The sample is allowed to melt for 2 minutes +A 20 seconds before the experiment is started.
During the stretching experiment under inert atmosphere (nitrogen) at constant Hencky strain rate, the torque is recorded as function of time at isothermal conditions measured and controlled with the thermocouple attached to the SER device).
tfter stretching, the device is opened and the stretched film (which is winded on the Irums) is inspected. Homogenous extension is required. It can be judged visually rom the shape of the stretched film on the drums if the sample stretching has been loraogenous or not. The tape must me wound up symmetrically on both drums, but ilso symmetrically in the upper and lower half of the specimen.
[f symmetrical stretching is confirmed hereby, the transient elongationa! viscosity calculates from the recorded torque as outlined below.
2. Evaluation
For each of the different strain rates de/dl applied, the resulting tensile stress growth function r|E+ (de/dt, t) is plotted against the total Hencky strain e to determine the strain hardening behaviour of the melt, see Figure I.

In the range of Hencky strains between 1.0 and 3.0, the tensile stress growth function n,E+can be well fitted with a function
nl(e.s) = cree7
where ct and ci are fitting variables. Such derived c2 is a measure for the strain hardening behavior of the melt and called Strain Hardening Index SHI.
Dependent on the polymer architecture, SHI can
- be independent of the strain rate (linear materials, Y- or H-structures)
- increase with strain rate (short chain-, hyperbranched- or multi-branched structures).
This is illustrated in Figure 2.
For polyethylene, linear (HDPE), short-chain branched (LLDPE) and hyperbranched structures (LDPE) are well known and hence they are used to illustrate the structural analytics based on the results on extensional viscosity. They are compared with a polypropylene with Y and H-structures with regard to their change of the strain-hardening behavior as function of strain rate, see Figure 2 and Table 1.
To illustrate the determination of SHI at different strain rates as well as the multi-branching index (MB1) four polymers of known chain architecture are examined with the analytical procedure described above.
The first polymer is a H- and Y-shaped polypropylene homopoiymer made according to EP 879 830 ("A") example 1 through adjusting the MFR with the

amount of butadiene. It has a MFR230/2.16 of 2.0g/10min, a tensile modulus of 1950MPa and a branching index g' of 0.7.
The second polymer is a commercial hyperbranched LDPE, Borealis "B", made in a high pressure process known in the art. It has a MFR190/2.16 of 4.5 and a density of 923kg/m1.
The third polymer is a short chain branched LLDPE, Borealis "C", made tn a low pressure process known in the art. It has a MFR190/2.16 of 1.2 and a density of 9l9kg/m3.
The fourth polymer is a linear HDPE, Borealis "D", made in a low pressure process known in the art. It has a MFR190/2.16 of 4.0 and a density of 954kg/mThe four materials of known chain architecture are investigated by means of measurement of the transient elongational viscosity at 180°C at strain rates of 0.10, 0.30, 1.0, 3.0 and 10s"1. Obtained data (transient elongational viscosity versus Hencky strain) is fitted with a function
ti=C,*£C2
for each of the mentioned strain rates. The parameters cl and c2 are found through plotting the logarithm of the transient elongational viscosity against the logarithm of the Hencky strain and performing a linear fit of this data applying the least square method. The parameter cl calculates from the intercept of the linear fit of the data lg(tj£*) versus lg(s) from
Cl=10lmcrcepl

and cj is the strain hardening index {SHI) at the particular strain rate.
This procedure is done for all five strain rates and hence, SHI@0.1s"\ SHI@0.3s"', SHI@1.0s"', SHI@3.0s-f, SHItglOs"' are determined, see Figure
1.
Table 1: SHl-values

From the strain hardening behaviour measured by the values of the SHI@ls"' one can already clearly distinguish between two groups of polymers: Linear and short-chain branched have a SHI@Is"' significantly smaller than 0.30. In contrast, the Y and H-branched as well as hyper-branched materials have a SHI@Is~' significantly larger than 0.30.
In comparing the strain hardening index at those five strain rates sH of 0.10, 0.30, 1.0, 3.0 and 10s'1, the slope of SHI as function of the logarithm of iH> lg( eH) is a characteristic measure for mufti -branching. Therefore, a multi-

branching index (MBI) is calculated from the slope of a linear fitting curve of SHI versus \g(eH):
S///UH)=c3+MBI*lg(eH)
The parameters c3 and MBI are found through plotting the SHI against the logarithm of the Hencky strain rate !g(£w) and performing a linear fit of this data applying the least square method. Please confer to Figure 2.
Table 2; Multi-branched-index (MBI)

short-chain
Y and H Hvoerbranch
Property
MBI

YandH branched PP Hyperbranch ed LDPE branched LLDPE Linear HOPE
A B C D
0,04 0,45 0,10 0,01

The multi-branching index MBI allows now to distinguish between Y or H-branched polymers which show a MBI smaller than 0.05 and hyper-branched polymers which show a MBI larger than 0.15. Further, it allows to distinguish between short-chain branched polymers with MBI larger than 0.10 and linear materials which have a MBI smaller than 0.3 0.
Similar results can be observed when comparing different polypropylenes, i.e. polypropylenes with rather high branched structures have higher SHI and MBI-values, respectively, compared to their linear counterparts. Similar to the hyper-branched polyethylenes the new developed polypropylenes show a high degree of branching. However the polypropylenes according to the instant invention are clearly distinguished in the SHI and MBI-values when compared

to known hyper-branched polyethylenes. Without being bound on this theory, it is believed, that the different SHI and MBI-values are the result of a different branching architecture. For this reason the new found branched polypropylenes according to this invention are designated as multi-branched.
Combining both, strain hardening index (SHI) and multi-branching (MBI) index, the chain architecture can be assessed as indicated in Table 3:
TabJe 3: Strain Hardening Index (SHI) and Multi-branching Index (MBI)
for various chain architectures
Property Y and H Hyper- short-chain linear
branched branched / branched
Multi-
branched
SHl@1.0s' >0.30 >0.30 MBI 0.10 C. Further Measuring Methods
Particle size distribution: Particle size distribution is measured via Coulter Counter LS 200 at room temperature with n-neptane as medium.
NMR
NMR-spectroscopy measurements:
The ,3C-NMR spectra of polypropylenes were recorded on Bruker 400MHz spectrometer at 130 °C from samples dissolved in 1,2,4-trichlorobenzene/benzene-d6 (90/10 w/w). For the pentad analysis the assignment is done according to the

methods described in literature: (T. Hayashi, Y. Inoue, R. ChCijd*, and T. Asakura, Polymer 29 138-43 (1988).and Chujo R, et al,Polymer 35 339 (1994).
The NMR-measurement was used for determining the mmmm pentad concentration in a manner well known in the art.
Number average molecular weight (M„), weight average molecular weight (Mw) and molecular weight distribution (MWD) are determined by size exclusion chromatography (SEC) using Waters Alliance GPCV 2000 instrument with online viscometer. The oven temperature is 140 °C. Trichlorobenzene is used as a solvent (ISO 16014).
In detail: The number average molecular weight (M„), the weight average molecular weight (Mw) and the molecular weight distribution (MWD) are measured by a method based on ISO 16014-1:2003 and ISO 16014-4:2003. A Waters Alliance GPCV 2000 instrument, equipped with refractive index detector and online vtscosimeter was used with 3 x TSK-gel columns (GMHXL-HT) from TosoHaas and 1,2,4-trichlorobenzene (TCB, stabilized with 200 mg/L 2,6-Di tert butyl-4-methyl-phenol) as solvent at 145 °C and at a constant flow rate of! mL/min. 216.5 uLof sample solution were injected per analysis. The column set was calibrated using relative calibration with 19 narrow MWD polystyrene (PS) standards in the range of 0.5 kg/mol to 11 500 kg/mol and a set of well characterized broad polypropylene standards. AH samples were prepared by dissolving 5 - ] 0 mg of polymer in 10 mh (at 160 °C) of stabilized TCB (same as mobile phase) and keeping for 3 hours with continuous shaking prior sampling in into the GPC instrument.
The xylene solubles (XS, wt.-%): Analysis according to the known method: 2.0 g of polymer is dissolved in 250 ml p-xylene at 13S°C under agitation. After 30±2 minutes the solution is allowed to cool for 15 minutes at ambient temperature and then allowed to settle for 30 minutes at 25±0.5°C. The solution is filtered and

evaporated in nitrogen flow and the residue dried under vacuum at 90 °C until constant weight is reached.
XS% = (100 x mi x vo) / (mo x v,), wherein
mo= initial polymer amount (g)
mi = weight of residue (g)
vo= initial volume (ml)
Vi = volume of analyzed sample (ml)
Melting temperature Tin, crystallization temperature Tc, and the degree of crystallinity: measured with Mettler TA820 differential scanning calorimetry (DSC) on 5-10 mg samples. Both crystallization and melting curves were obtained during 10 °C/min cooling and heating scans between 30 °C and 225 °C. Melting and crystallization temperatures were taken as the peaks of endotherms and exotiierms.
Also the melt- and crystallization enthalpy (Hm and He) were measured by the DSC method according to ISO 11357-3.
Vicat B: Vicat B is measured according to ISO 306 (50 N). Viact B is the temperature at which the specimen is penetrated to a depth of 1 mm by a flat-ended needle with a 1 sq. mm circular or square cross-section, under a 1000-gm load.
Melt strength and melt extensibility by Rheotens measurement:
The strain hardening behaviour of polymers is analysed by Rheotens apparatus (product of Gbttfert, Siemensstr. 2, 74711 Buchen, Germany) in which a melt strand is elongated by drawing down with a defined acceleration. The haul-off force F in dependence of draw-down velocity v is recorded.

The test procedure is perfonned in a standard climatised room with controlled room temperature of T = 23 °C. The Rheolens apparatus is combined with an extruder/melt pump for continuous feeding of the melt strand. The extrusion temperature is 200 °C; a capillary die with a diameter of 2 mm and a length of 6 mm is used and the acceleration of the melt strand drawn down is 120 mrn/s2. The maximum points (Fmsxi vmax) at failure of the strand are characteristic for the strength and the drawability of the melt.
Stiffness Film TD (transversal direction), Stiffness Film MD (machine direction), Elongation at break TD and Elongation at break MD: these are
determined according to ISO 527-3 (cross head speed: 1 mm/min).
Stiffness (tensile modulus) is measured according to ISO 527-2. The modulus is measured at a speed of 1 mm/min.
Haze and transparency: are determined according to ASTM D1003-92 (haze).
Gels: Gels are determined by visuai counting using the following equipment
Gel Inspection System OCS
The OCS equipment is used for continuous gel determination (counting, classification and documentation) in PP films.
The equipment is assembled by the following components:
Extruder: Lab extruder ME25/5200, 3 heating zones (up to 450°C)
Screw diameter 25, L/D 25 Die width 150 mm, die gap 0,5 mm

Chill Roll: CR8, automatic film tension regulation,
Air knife, air jet, temperature range 20°C to 100°C Effective width 180 mm
Inspection System: FS-5, transmitted light principle
Gelsize50uto>1000n Camera resolution 4096 Pixel 50.000.000 Pixel/Second Illumination width 100 mm
Intrinsic viscosity: is measured according to DIN ISO 1628/1, October 1999 (inDecalinat 135 °C).
Porosity: is measured according to DIN 66135
Surface area: is measured according to ISO 9277

3. Examples
Example 1 (C 1 - Comparison)
A Z/N polypropylene homopolymer of MFR 16 has been prepared using the Borstar process known in the art.
Example 2 (C 2 - Comparison)
A Y or H shaped polypropylene homopolymer of MFR 24 has been prepared according to EP 0 879 830 example 1 and adjusting the amount of butadiene to obtain an MFR 24.
Example 3 (C 3 - Comparison)
A blend of polypropylene homopolymer and LDPE has been prepared according to GB 992 388.
Example 4 (E 1 - Inventive)
A support-free catalyst has been prepared as described in example 5 of WO 03/051934 whilst using an asymmetric metallocene dimethylsilyi [(2-methyl-(4'-tert.butyl)-4-phenyl-indenyl)(2-isopropyi-(4'-tert.butyl)-4-phenyl-indenyl)]zirkonium dichloride.
Such catalyst has been used to polymerise a polypropylene homopolymer of MFR 30 in the Borstar process, known in the art.

All four materials have been tested on a pilot scale high speed extrusion coating line (Beloit line) where the maximum stable output has been determined,
In order to assess the processing behaviour of different polypropylenes systematic trials on a 450 kg/hr high speed extrusion coating line with a maximum coating speed of 1000 m/min has been carried out. The line is shown schematically in Figure 5. The extruder barrel temperatures were set to 290 °C, the screw speed has been adjusted to yield the respective coating weight, and the die width was in the order of lm.
The maximum line speed at which stable process conditions were obtained, has been assessed by increasing the line speed in steps of 100 m/min and keeping the coating weight constant at 20 g/m2. As soon as either the edge-weaving exceeded a limiting value of 3 mm or the melt curtain became unstable, the experiment was stopped. The highest line-speed, which could be achieved according to this procedure, was taken as maximum draw down (DD). It should be mentioned, that the precision of this measure is not too high and the steps of 100 m/min yield rather large error bars.

Table 4: Properties of the extrusion coated films

In order to investigate the influence of comonomer content on the Vicat B softening temperature, a further set of experiments has been conducted. For that purpose the metallocene catalysed polypropylenes E 2, E 3 and E 4 have been prepared with the same catalyst and polymerisation procedure as used for E 1. However, the ethylene content has been varied. E 2 was prepared without ethylene to yield a polypropylene homopolymei. E I and E 4 were prepared in



It shows that the Vicat B temperature is significantly improved with the inventive examples. Please confer to Figure 6,


New Claims
1. Article comprising a substrate, which is extrusion coated with a composition comprising a polypropylene, wherein,
(a) said composition and/or the polypropylene of said composition has (have) xylene solubles (XS) of less than 2.0 wt.-% and/or
(b) said composition and/or the polypropylene of said composition fulfils the equation
Vicat B [°C] > -3.96 C* [mol%] + 86.8S wherein
Vicat B is the heat resistance of the composition or of the polypropylene according to ISO306(SON), and Cx is the comonomer content in said composition or in said polypropylene,
2. Article according to claim 1, wherein
(a) said composition comprises a propylene homopolymer and wherein said composition and/or said homopolymer has (have) a heat resistance measured according to Vicat B of at least 90 °C or
(b) said composition comprises a propylene copolymer and wherein said composition and/or said copolymer has (have) a heat resistance measured according to Vicat B of at least 73 °C.
i. Article comprising a substrate, which is extrusion coated with a composition comprising a polypropylene, wherein
said polypropylene is not-cross-linked and produced in the presence of a metallocene catalyst and

said composition (a) (b) (c)
and/or said polypropylene has (have)
xylene solubles (XS) of less than 2.0 wt-% a branching index g' of less than 1.00 and a strain hardening index (SHIPS'1) of at least 0.30 measured by a deformation rate de/dt of 1.00 s"! at a temperature of 180 °C, wherein the strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function (lg (//£*)) as function of the logarithm to the basis 10 of the Hencky strain (lg (s)) in the range of Hencky strains between 1 and 3.
4. Article according to claim 3, wherein said composition and/or the polypropylene has (have) a multi-branching index (MBI) of at least 0.15, wherein the multi-branching index (MBI) is defined as the slope of strain hardening index (SHI) as function of the logarithm to the basis 10 of the Hencky strain rate (lg (de/dt)).
5. Article comprising a substrate, which is extrusion coated with a composition comprising a polypropylene being not-cross-1 inked, wherein said composition and/or said polypropylene has (have)
(a) xylene solubles (XS) of less than 2.0 wt-%, and
(b) a multi-branching index (MBI) of at least 0.15, wherein the
multi-branching index (MBI) is defined as the slope of strain
hardening index (SHI) as function of the logarithm to the basis
10 of the Hencky strain rate (lg {de/dt)), wherein
de/dt is the deformation rate, E is the Hencky strain, and

the strain hardening index (SHI) is measured at 180 °C, wherein the strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function (lg (r?£+)) as function of the logarithm to the basis 10 of the Hencky strain (lg (£)) in the range of Hencky strains between I and 3.
6. Article according to claim 5, wherein said composition and/or the polypropylene
has (have)
(a) a branching index g* of less than 1.00 and/or
(b) a strain hardening index (SHI@ls"') of at least 0.30 measured by a deformation rate (de/di) of 1.00 s'1 at a temperature of 180 °C.
7. Article according to claim 1 or 2, wherein said composition and/or the
polypropylene has (have)
(a) a branching index g* of less than 1.00 and/or
(b) a strain hardening index (SHI@ls"') of at least 0.30 measured by a deformation rate de/dt of 1.00 s'1 at a temperature of 180 °C, wherein the strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function (lg (i;£+)) as function of the logarithm to the basis 10 of the Hencky strain (lg (e)) in the range of Hencky strains between 1 and 3.
8. Article according to any one of the claims 1, 2 and 7, wherein said composition
and/or said polypropylene has (have) a multi-branching index (MBI) of at least
0.15, wherein the multi-branching index (MBI) is defined as the slope of strain
hardening index (SHI) as function of the logarithm to the basis 10 of the Hencky
strain rate (lg (de/dt)), wherein

de/dt is the deformation rate,
eis the Hencky strain, and
the strain hardening index (SHI) is measured at 180 °C, wherein the strain
hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of
the tensile stress growth function (lg (i/£*)) as function of the logarithm to the
basis 10 of the Hencky strain (lg (e)) in the range of Hencky strains between 1
and 3.
9. Article according to any one of the claims 3 to 6, wherein said composition and/or the polypropylene of said composition fulfils the equation
Vicat B [°C] > -3.96 • Cx [mot%] + 86.85 wherein
Vicat B is the heat resistance of the composition or of the
polypropylene according to ISO 306 (50 NX and
C* is the coraonomer content in said composition or in said
polypropylene
10. Article (a)
(b)
according to any one of the claims 3 to 6 and 9, wherein,
said composition comprises a propylene homopolymer and wherein said composition and/or said homopolymer has (have) a heat resistance measured according to Vicat B of at least 90 °C or said composition comprises a propylene copolymer and wherein said composition and/or said copolymer has (have) a heat resistance measured according to Vicat B of at least 73 °C.
11. Article according to any one of the claims 1 to 10, wherein the composition extrusion coated on the substrate has only gels with a diameter of equal or less

than 500 urn and wherein said gels are not more than 100 gels per square meter (sqm).
12. Article according to any one of the claims 1 to 11, wherein said polypropylene has melt flow rate MFR2 measured at 230 °C in the range of 0.01 to 1000.00 g/lOmin.
13. Article according to any one of the claims 1 to 12, wherein said polypropylene has mmmm pentad concentration of higher than 90 %,
14. Article according to any one of the claims 1 to 13, wherein said polypropylene has a melting point Tm of at least 125 °C.
15. Article according to any one of the claims 1 to 14, wherein said polypropylene is multimodal.
16. Article according to any one of the claims 1 to 15, wherein said polypropylene is a propylene homopolymer.
17. Article according to any one of the claims 1 to 16, -wheiein said polypropylene is propylene copolymer.
18. Article according to claim 17, wherein the comonomer is ethylene.
19. Article according to claim 17 or 18, wherein the total amount of comonomer in the propylene copolymer is up to 10 mol%.

20. Article according to any one of the claims 17 to 19, wherein the propylene copolymer comprises a polypropylene matrix and an ethylene-propylene rubber (EPR).
21. Article according to claim 20, wherein the ethylene-propylene rubber (EPR) in the propylene copolymer is up to 70 wt%.
22. Article according to claim 20 or 21, wherein the ethylene-propylene rubber (EPR) has an ethylene content of up to 50 vn%,
23. Article according to any one of the claims 1 to 22, wherein the polypropylene has been produced in the presence of a catalyst system comprising an asymmetric catalyst, wherein the catalyst system has a porosity of less than 1.40 ml/g.
24. Article according to claim 23, wherein the asymmetric catalyst is dimethylsilyl [(2-methyl-(4'-tert. butyI)-4-phenyl-indenyI)(2-isopropyl-(4'-tert. butyl)-4-phenyl-indenyI)]zirconium dichloride.
25. Article according to any one of the preceding claims, wherein the substrate is selected from the group consisting of paper, paperboard, fabrics and metal foils.
26. Process for the manufacture of the article according to any one of the claims 1 to 25, wherein the composition and/or the polypropylene as defined in any one of the claims 1 to 24 is extrusion coated on a substrate.
27. Process according to claim 26, wherein the substrate is selected from the group consisting of paper, paperboard, fabrics and metal foils.

28. Use of the article according to any one of the claims 1 to 25 as packing material.
29. Use of the polypropylene as defined in. any one of the claims 1 to 10 and 12 to 24
for extrusion coating a substrate.


Documents:

0108-mas-1999 abstract.pdf

0108-mas-1999 claims.pdf

0108-mas-1999 correspondence-others.pdf

0108-mas-1999 correspondence-po.pdf

0108-mas-1999 description (complete).pdf

0108-mas-1999 form-1.pdf

0108-mas-1999 form-19.pdf

0108-mas-1999 form-26.pdf


Patent Number 196375
Indian Patent Application Number 108/MAS/1999
PG Journal Number 30/2009
Publication Date 24-Jul-2009
Grant Date
Date of Filing 29-Jan-1999
Name of Patentee MYSORE KRISHNAMOORTHY RANGASWAMY
Applicant Address 52, PANTHERPALYA, MYSORE ROAD, BANGALORE 560 039,
Inventors:
# Inventor's Name Inventor's Address
1 MYSORE KRISHNAMOORTHY RANGASWAMY 52, PANTHERPALYA, MYSORE ROAD, BANGALORE 560 039,
PCT International Classification Number C22B 11/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA